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Abstract 

The researchers present an econometric structure for the analysis of intergenerational 
mobility that integrates non-linearities, the role of maternal-side effects and the impact of 
grandparents. They show how previously estimated models are special cases of this 
general framework and what specific assumptions each embeds. Their analysis of linked 
U. S. data 1900–40 reveals the extent to which inadequate consideration of assortative 
mating and the impact of mothers produces misleading conclusions. 
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1 Introduction

The economic analysis of intergenerational socioeconomic mobility has advanced dramati-
cally since the first formal model of Becker and Tomes (1979, 1986). Significant effort has
been devoted to better estimation of permanent income (Mazumder, 2005), more careful
consideration of the stages of the life cycle to compare across generations (Mazumder and
Acosta, 2015), the discovery of new ways to exploit historical and contemporary sources to
generate links across generations (Abramitzky et al., 2021a) and–more recently–the explo-
ration of potential non-linearities in the relationship between outcomes in one generation and
those in the next (Durlauf et al., 2022). The roles of both women and generations prior to
the [male] parent in the transmission of advantages to children have received less attention
than one would expect in the study of processes of inheritance that are likely inherently both
biparental and multigenerational (exceptions are Chadwick and Solon, 2002; Olivetti and
Paserman, 2015; Jácome et al., 2021). Whereas they look at different mobility by gender
(sons vs daughters), we look at the individual contributions of mothers to their children, and
differentially for sons and daughters.

We provide a unified treatment of the econometrics of the transmission of socioeconomic
status across generations that integrates the latter three previously neglected dimensions of
the empirical analysis of mobility: (1) non-linearities in the links across generations; (2) the
role of women; and (3) the role of prior generations. Unlike the Becker and Tomes frame-
work, ours is not a structural model of maximizing behavior subject to constraints. Rather,
we present a fully-specified econometric framework–specifically, a three-equation non-linear
instrumental variable (NLIV) approach–that both (1) reveals the variety of assumptions
embedded in previous mobility studies and (2) demonstrates how different combinations of
assumptions permit the identification of a range of structural parameters of interest. More-
over, we show a range of results depending on the data available to the econometrician.
With richer data, less restrictive assumptions obtain point-identification. We then apply this
framework to data for the U.S. 1900-1940 linked across three generations.1

Our results reveal the importance of including women and particularly mothers, in any
analysis of intergenerational mobility that occurs in a setting with a degree of assortative
mating that is greater than zero and less than one. The absence of complete information on
the measured incomes of women who spend more time than men in household production
has hampered the inclusion of women in many previous analyses. But we show both how
information on the prior generation can overcome this challenge and how much valuable

1We do not restrict attention by race; however, Blacks are underrepresented in our sample. It is not
possible with our sample size to do a separate analysis for most of the empirical designs, although we include
a select number of specifications for Blacks in an Appendix C.
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information is lost when women and grandparents are excluded. We also demonstrate how
to account for both gendered effects of parental income–allowing the effect of mothers to
differ from that of fathers and the effect of grandmothers to differ from that of grandfathers–
and differences in the effect of parental income at different generations–allowing the effect of
grandparents on parents to differ from those of parents on children.

The conventional measure of father-to-son mobility–the intergenerational elasticity (IGE)
of income for fathers in 1900 and sons in 1920–that we find is 0.484, roughly in line with a
large number of prior studies for the U.S. Every additional $1.00 of income for the father
is associated with an additional $0.484 of income for the son. The father’s effect falls to
0.167 when we use our three-equation NLIV to account fully for the mother’s impact (0.763).
Moreover, the mother’s contribution to mobility is almost five times larger than the father’s.
Note that the total parental effect (father plus mother) is closer to 1 than it is to our
naive estimate of 0.485, revealing considerably greater immobility once the maternal line is
included. We also find a high degree of assortative mating where the correlation between
spouses is 0.416. The conventional measure (0.485) is then the sum of a direct effect of
the father on the son (0.167) and and indirect effect that measures the effect of the mother
(0.763) and the correlation between the parents (0.416), i.e., 0.484 = 0.167 + 0.763 · 0.416.

We also show substantively and statistically significant results for both assortative mating
and differences in transmission across generational pairs (i.e. grandparent-to-parent effects
that differ from parent-to-child effects) and additionally that transmission to children can
differ based on the gender of the recipient.

Overall, our work demonstrates the high return to taking seriously the econometrics of
the relationships underlying the transmission of advantage across generations, the pitfalls of
ignoring those complications and the ease with which a proper accounting for them can be
adapted to different settings as dictated by data availability, social norms and institutional
constraints.

2 Data

In this section we describe the construction of the data, in particular the linking and con-
struction of occupational income scores.

2.1 Linking

The econometric methodology we have described above is sufficiently general to capture
the full range of relationships among family members both within a generation (assortative
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matching) and across generations (direct parent-to-child transmission of financial or genetic
or social resources). But that same methodology can also be applied to subsets of the nodes
of three-generation family trees. To show how the results the methodology produces can
vary by which nodes are used (and implicitly, by which assumptions are made regarding
links within and across generations), we need data for the full tree–child, both parents, both
sets of grandparents–a total of seven individuals. In some cases we will use maternal uncles
as well.

The only datasets sufficiently large to yield a satisfactory number of linkages across three
generations are the 100% transcriptions of the U.S. Census of Population. As generations
are normally separated by 25 years, but the census is available every tenth year, we have two
options in choosing the censuses to link: (1) 1900, 1920 and 1940 with twenty years between
adjacent censuses; or (2) 1880, 1910 and 1940 with thirty years between adjacent censuses.
An alternative approach would be to use any three-generation family lines that can be found
in any of the years 1880, 1900, 1910, 1920, 1930, or 1940.2 For the present exercise, we have
chosen option (1).

We begin with an individual adult in the 1940 Census. We then link that individual to
their parents by finding the individual as a child in the 1920 Census. The parents who are
adults co-resident with the child in 1920 are then linked back to their own parents in the
1900 Census. Automated linkage across large cross-sectional datasets at different points in
time to create intragenerational and multigenerational datasets in this way is now routine.
A variety of algorithms have been developed and evaluated since the first work along these
lines in the 1930s (Ferrie, 1996; Ruggles et al., 2018; Bailey et al., 2020; Abramitzky et al.,
2021b)

All methods result in both some missed links (“efficiency loss,” Type I Errors, or false
negatives when a link that should have been made was not) and some wrong links (“precision
loss,” Type II Errors, or false positives when a link that should not have been made was).
The approach we have used is essentially that described in Ferrie (1996) with the addition of
string comparators to allow for misspellings and mistranscriptions not otherwise captured in
name standardization schemes. This modified algorithm corresponds to the ABE-JW method
described and evaluated by Abramitzky et al. (2021b) Among the procedures they evaluate
that do not use machine learning, this one provides the best trade-off between efficiency loss
and precision loss. Both Bailey et al. (2020, p. 1033-4) and Abramitzky et al. (2021b, p.
895-9) show that the ABE-JW procedure matches inferences on intergenerational mobility
produced by the most rigorous approaches (manual linkage by trained human researchers

2The manuscript schedules of the 1890 U.S. Census have not survived.
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and the recently released IPUMS Linked Census Files).3

There is, however, one novelty in our linkage process: we have used records from the
Social Security Administration’s NUMIDENT (Numerical Identification) file to link adult
females back to the households were they were children co-resident with their own parents
(NARA 2018).4 This file contains exact place of birth (city or town), exact date of birth
(month, day, year) and the full names of both parents, including the mother’s pre-marriage
surname.5 In our application it is this last item that is most important: for an adult female in
1940, for example, we can ascertain their father’s full name (both given name and surname)
from the NUMIDENT file, so even if that 1940 adult female had changed her surname at
marriage we would know the family (surnames and given names for both parents, as well as
presence of the individual herself) in which to search for her in 1920. Knowledge of the given
names of both parents allows us to make this match with high accuracy.6

To take the male adult 1920 parent back to his own 1900 household (where his parents–the
grandparents of the 1940 adults with which we began the process–can be observed as 1900
adults) is straightforward, as we know the surname for which to search in 1900, his given
name, age in 1900 and state of birth.

But for the female adult 1920 parent (whose surname in 1920 would be that of her spouse
and not that of her adult 1900 parents) we can use the pre-marriage mother’s surname
reported in the NUMIDENT for the 1940 adult female to identify the 1900 household in
which the 1920 adult female lived as a child, at which point we can observe her parents (the
maternal grandparents of the 1940 adult female who was our starting point.7

With the 1900 childhood household of the 1920 adult males and females identified, their
1900 male siblings could then be linked forward to 1920. This provides the paternal and
maternal uncles of the original 1940 adult female.

3Given the need for many links across three generations for our purposes, the IPUMS linkages were
inappropriate–the overlap between their 1900-20 and 1920-40 linkages was too small to be useful. The time
and labor cost of generating tens of thousands of multigenerational links by hand were prohibitive.

4After we began work on this project in 2019, we learned that Althoff et al. (2022) have also used the
NUMIDENT to facilitate maternal line linkage. Our linkage procedure was developed independently from
theirs.

5The version of the file in the possession of the National Archives contains only individuals with a verified
death between 1936 and 2007 or who would have been over 110 years old by December 31, 2007. This file
records the information provided by individuals as they entered the Social Security system. Though this
information is now collected at birth, in the period from the late 1930s through the 1960s it was collected
instead when an individual first entered employment in a “covered” industry–until the late 1950s this was
primarily any work other than that in agriculture, domestic service, or self-employment. By the end of their
work lives, virtually all U S. workers have spent at least some time in covered employment and been thereby
at risk to enter the NUMIDENT file.

6The given names of both parents also enhances the accuracy of links for males.
7Note that, for both males and females observed as 1920 adults, the link back to them as 1900 children

will be lower in accuracy than linkage of both males and females observed as 1940 adults back to them as
1920 children because the former links will not rely on parental given names.
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Figure 1: Matching

1940 Census
M & F Age 20-35*

N=33,220,634

NUMIDENT
w/Mother & Father

N=2,808,292

Criteria:
Name (First, Last, Middle),

Age, Sex, Race
Birth State

1920 Census
M & F Age 0-15

N=815,457

Criteria:
Name (First, Last, Middle),
Age, Sex, Race, Birth State,

Parents’ Names

1900 Census
Mothers Age 0-15

N=120,403

Criteria:
Name (First, Last, Middle),
Age, Sex, Race, Birth State,

Parents’ Birthplaces

1900 Census
Grandfathers
N=114,619

1920 Census
Uncles

N=39,747

Criteria:
Name (First, Last, Middle),
Age, Sex, Race, Birth State,

Parents’ Names

1920 Census
M Age 0-15

N=3,076,391

1940 Census M & F Age 20-35*
With 1920 Mother & Father,

Maternal Grandfather & Maternal Uncles
N=41,238

*U.S.-born only

Notes: The figure demonstrates the process of constructing the matches as described in Section 2.1.

Figure 1 presents a flow chart that schematically describes the linkage process and re-
ports the number of observations included at each stage. In Appendix B we discuss the
representativeness of the data compared to the general population. Note that because of the
stringent data requirements, the sample size is small relative to the population. The link to
the NUMIDENT file is successful for under 10% of cases. Conventional links, from one Cen-
sus to another, have more standard matching rates. For example, the 1920 link backwards
to 1900 has a link rate of 15%. Further attrition occurs because all four male members of
the tree must have a valid occupation, which is particularly restrictive for the sons.

2.2 Measuring Socioeconomic Status

The IPUMS data that we used in generating our linked samples is based on the full-count
files from the U.S. Census of Population from 1900 through 1940. The only measure of so-
cioeconomic standing that is consistently and contemporaneously reported in all of these five
census and is therefore available for us to assess intergenerational mobility in socioeconomic
status is self-reported occupational title (e.g. “carpenter,” “farmer,” “surveyor,” “laborer”).
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These titles can be grouped into broad categories that correspond roughly to different
levels of socioeconomic status (where “status” is an amalgam of income, education, skill,
autonomy and prestige). “Mobility” across generations can then be assessed by measuring
the off-diagonal cells in a 2-dimensional matrix of the M [a] collapsed categories in Gener-
ation a and the M [b] collapsed categories in Generation b. This approach–often employed
in sociology–is used in Long and Ferrie (2013), with four broad categories (white collar,
skilled/semiskilled, unskilled, farmer).

Another approach is to assign a value to each of the hundreds of occupational titles that
appear in the census manuscripts and analyze differences in these values across generations.
IPUMS itself provides such a measure in its OCCSCORE variable. Each occupational title
is assigned the median annual income (in hundreds of dollars) in that occupation reported in
the 1950 Census of Population.8 Saavedra and Twinam (2020) document 25 recent studies
that adopt this approach and treat the resulting measure of socioeconomic status as cardinal.

The categorical approach suppresses a great deal of potentially useful information (e.g.
differences in occupational titles across generations that fall within the same broad category–
such as clerk and civil engineer which are both “white collar”–will show up as immobility).
The cardinal approach assumes that the distances between scores for any pair of occupations
is the same in all years before 1950 as it was in 1950 (e.g. the 1900 ratio of the score for
“clerk” to the the score for “carpenter” is the same as that ratio was in 1950).

To remedy the shortcomings of both the categorical and cardinal approaches to the mea-
surement of mobility across generations in socioeconomic status, we have adopted a hybrid
approach. We adjust occupational scores in two ways: allowing for heterogeneity by state
and computing farmers’ income by state and decade.

To allow for heterogeneity across states, we calculate state-specific occscores. These are
based on the wage income measure in 1940, but adjusted to be based on total income, a
variable not present in 1940. To construct this variable, we first take the ratio of total
income to wage income in 1950 among males 18-65 reporting a non-zero total income and
wage income and take the mean of this number by occupation. We then inflate the wage
income of individuals in 1940 by this ratio with the same sample restriction and then adjust
this number so that it is comparable to the original occscores by making the median by
occupation the same.9 We then calculate the median of this number by state.

8See Sobek (1995). The choice of 1950 was dictated by data availability: though the 1940 census was
the first to report income and therefore the first opportunity to associate median incomes with occupational
titles, the income measure was limited to wages and salaries, so the self-employed (proprietors and farmers)
were excluded. The 1950 data included both income derived from wages and salaries and income derived
from self-employment.

9For a small number of occupations, there is no match between the occupations in 1940 and 1950, in
which case we use the ratio of total income to wage income for all occupations in 1950 as the ratio.

7



Farmers present an altogether different challenge. Their annual earnings will fluctuate
based on prices, yields and product mix. This occupation was large throughout the period
1900-1950 (though a falling share of total employment): the number of farms was 5.4 million
in 1950 and 5.7 million in 1900. U.S. Census Bureau (1960, Series K4). It presents three
problems in measuring intergenerational mobility: (1) earnings vary enormously by location
(due to differences in climate, soil and crop mix); (2) the socioeconomic status of farmer
relative to other occupations changed considerably from 1950 when OCCSCORE is anchored
back to 1900; and (3) the distribution of farm earnings is highly unequal in 1950. Based on
their 1950 median annual income of $1,430 the IPUMS OCCSCORE for farmers is 14. Based
on their 1950 median annual income of $2,076 the IPUMS OCCSCORE for unskilled laborers
(“Laborers (n.e.c.)”) is 21. This implies a socioeconomic status for unskilled laborers that is
1.5 times greater than that for farmers.

In our main sample, containing both grandparents, 59 percent of grandfathers are farm-
ers in 1900. In Figure 8, we show a violin plot displaying the density of the percentile of
farmers in the distribution of adjusted occupational scores for grandfathers. The unadjusted
OCCSCORE for farmers, would place the income of all farmers in 1900 at the 4th percentile,
i.e., farmers income represents a mass point of over half of the distribution from the 4th to
the 73th percentile. Our adjusted OCCSCORES based on state farm income result in a much
wider spread of farmers within the overall distribution. Whereas in 1950 farmers are at the
bottom of the income distribution, in 1900 the average farmer income in certain states would
place farmers at the top quintile of the distribution.

We have used Strauss and Bean (1940, Table 7) for farmer’s mean annual earnings 1900-
1909 and U.S. Census Bureau (1960, Series K128) for 1910-1950. Both series were converted
to a per-farm basis by dividing them by the number of farm operators (interpolated between
1900 and 1909, reported directly from 1910 forward). The resulting 1950 mean value per farm
is $3,781–2.7 times the median earnings of farmers, indicting the highly unequal distribution
of earnings in this sector, with many farmers with very low earnings and a small number
with very high earnings.

As it is not possible to compute the median value back before 1950, we can only compare
mean earnings at earlier dates. The ratio of mean 1950 earnings of farmers ($3,781) to
mean 1950 earnings of laborers ($2,558) is 1.48. In 1900, this ratio is 1.34 ($674/$503). For
a log-normal distribution such as earnings, the ratio of the mean to the median is constant
regardless of the mean for a constant variance. As a result, we use the ratio of means between
farmers and unskilled workers to adjust the ratio of their medians from 1950 back to 1900.

In Table 1, we show the parameters from a regression of log son income on log father
income for pairs with the same occupation, different occupations and for the overall sample,
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with various adjustments to the OCCSCORE.10 For unadjusted occscores, fathers and sons
with the same occupation have the same OCCSCORE and thus the coefficient is 1. This is
particularly problematic for farmers, i.e., 64 percent of farmers in 1900 have son that was
a farmer in 1920. Without our new estimates for farmers income, the correlations for those
pairs would mechanically be equal to 1. In the various columns, we show the results from
unadjusted occscores, adjusting for state differences, adjusting for changes in occupational
categories, adjusting for both state and occupational differences and finally allowing also
adjustments for farm income. Note that while the final numbers incorporating all of the
adjustments give a similar number to the unadjusted OCCSCORE, the numbers for different
adjustments can be quite different. For example, we find higher levels of persistence when
adjusting for the income at the state level.

Table 1: Elasticities by Income Adjustment
Adjustment Unadj. State Farm State and Farm

Same Occupations
Elasticity 1.000 0.978 1.099 1.096

(.) (0.004) (0.009) (0.009)

N 3,481 3,481 3,481 3,481

Different Occupations
Elasticity 0.375 0.469 0.221 0.296

(0.009) (0.009) (0.007) (0.008)

N 20,255 20,255 20,255 20,255

Full Sample
Elasticity 0.443 0.540 0.366 0.427

(0.008) (0.008) (0.008) (0.008)

N 23,736 23,736 23,736 23,736

Notes: Coefficients from regressions of log son income on log father income for the sample of matched sons,
fathers and grandparents. The columns represent different methods of adjusting income as described in
Section 2.2. ‘̀‘State” to the state-specific adjustments and “farm” incorporating farm price adjustments.

10Note these variables differ from the standardized ones used in the structural estimation below.
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3 Setup

The idea here is simple. Studies of social mobility most often use income data on male
parents and their children to assess social mobility as in equation (1). Equation (1) measures
the correlation between the (standardized) income of the son (Si) and the (standardized)
income of the father (Fi).11

Si = β̃F Fi + νi (1)

The estimation of the parameter of interest β̃F could be biased if the equation above is
misspecified. In particular, one can think of other family members that can have an effect
on the characteristics of the child. The first that comes to mind is the mother. Whether
we think they directly transmit socioeconomic status, or that they transmit only traits that
affect socioeconomic status, mothers will play an essential role. In particular, they are as
important as fathers if we think the transmission is due to genetics and usually also as
important if we think the transmission is mostly inherited wealth.

Alternatively, we might think that what is transmitted from generation to generation is
human capital, or networks, which could be transmitted from father to son, without mothers
playing a major role. Even in these instances, grandfathers might play a role in determining
the socioeconomic status of the son, even after accounting for the effect of the father (see
Long and Ferrie, 2013). In any case, there are reasons to believe that the above equation
might be misspecified. Our goal here is to provide a framework where this could be tested
and where β̃F and other parameters of interest could be identified.

This estimation of the parameter of interest β̃F can be biased if the characteristics of the
mother have any effect on the income of the child and the characteristics of the mother and
the father are correlated, i.e., if there is assortative mating. In particular, we can think that
the income of the son is affected by both the income of the father and the income of the
mother (Mi) as reflected in equation (2):

Si = βF Fi + βMMi + ϵS
i (2)

If the data is generated by equation (2) but the econometrician uses an OLS estimator for
equation (1), the estimator β̃F will be biased if E

[
Fi

(
βMMi + ϵS

i

)]
̸= 0 (Espín-Sánchez et

11 Throughout the paper we consider all variables to have zero mean and unit variance, e.g., E[Mi] =

E[Fi] = 0 and E[MiMi] = E[FiFi] = 1.
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al., 2022). If equation (2) is well specified we have E
[
Fiϵ

S
i

]
= 0 and this condition becomes

ρβM ̸= 0, where ρ = E [FiMi]. Such an estimator would be

β̃F = E [FiSi]
E [FiFi]

(3)

In general, the OLS estimate β̃F from equation (1) is a biased estimator of both the effect
of the father on the child βF and the effects of both parents on the child (βF + βM). In one
extreme case, where mating is perfectly assortative; i.e., the correlation between maternal and
paternal income is 1, i.e., ρ = 1, the estimator β̃F will consistently estimate (βF + ρβM).12

In the another extreme case, where mating is perfectly random, i.e., ρ = 0, the estimator
β̃F will consistently estimate βF , but we would not be able to estimate βM . These extreme
examples are the most optimistic ones for the econometrician. In general, matching will be
somewhat assortative (ρ > 0) and the estimator β̃F will produce a number in between βF and
(βF + βM), but we would not know how close the estimator is to either end without knowing
the degree of assortment ρ.

We now propose a simple model to estimate consistently all three parameters of interest
(βF , βM , ρ), using only data on male income. Notice that if we have information on maternal
income, we could easily estimate the three parameters of interest just by running an OLS
regression on equation (2) and computing the correlation between maternal and paternal
income. However, in many historical and contemporary sources maternal income is not
available. This gap exists either because only the income of the household head is reported
or because women do not report any occupation.13 The system of equations is then:

Si = βF Fi + βMMi + ϵS
i (4)

Fi = βF PGFi + βMPGMi + ϵF
i (5)

Mi = βF MGFi + βMMGMi + ϵM
i (6)

where PGFi is the income of the Paternal Grandfather, PGMi is the income of the Paternal
Grandmother, MGFi is the income of the Maternal Grandfather, MGMi is the income of
the Maternal Grandmother and ϵS

i , ϵF
i and ϵM

i are white noise. In the baseline model, the
12 For β̃F to be a consistent estimate of (βF + βM ) it is required that Mi = Fi (ρ = 1) for all households.

If Mi = ρFi, the correlation between maternal and paternal income would still be 1, but β̃F would not be an
unbiased estimator of (βF + βM ).

13The same problem arises when the woman works and the man stays at home, or in any situation when
either or both parents do not report income.
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relations that we are trying to estimate are depicted in Figure 2.

• Three (horizontal) relations of assortative mating: Father-Mother, measured by ρ; and
paternal grandfather-paternal grandmother and maternal grandfather-maternal grand-
mother measured by λ, none of which could be estimated directly.

• Three causal male relations (father-son, paternal grandfather-father and maternal grandmother-
mother) that are governed by the same parameter βF and could be estimated if mating
was random.

• Three causal female relations (mother-son, paternal grandmother-father and maternal
grandmother-mother) that are governed by the same parameter βM , none of which
could be estimated directly.

Figure 2: Structural Parameters.

Notes: The horizontal lines in red represent the degree of assortative matching; the vertical relations in
green (arrows) represent the masculine effect on mobility; the vertical relations in blue (arrows) represent the
feminine effects on mobility. The solid circles represent individuals (males) with observed income while the
dashed circles represent individuals (females) with unobserved income. There are only three terminal nodes
in the graph: Father, Mother and Son. Thus, we can only write three equations to represent the model.

We now present the general data generating process of the model, represented by equations
(4), (5) and (6). At this point, we do not make any assumptions about the relationship
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between grandparents. Matrix Σ below represents the variance-covariance matrix among the
grandparents. For simplicity, we normalize all variables to have zero mean and unit variance,
so the correlation and the cross-products coincide.

Σ = V ar


PGFi

PGMi

MGFi

MGMi

 =


1 λ a d

λ 1 b c

a b 1 λ

d c λ 1


where the nuisance parameters measure the four correlation among grandparent pairs, i.e.,
a = E [PGFiMGFi], b = E [MGFiPGMi], c = E [PGMiMGMi] and d = E [MGMiPGFi].

With this data-generating process, we can see in Figure 2 that there are only three end
nodes in the tree: father, mother and son. Therefore, we can only use equations (4), (5)
and (6) to estimate the model. In other words, the data is originally generated by the
incomes of the four grandparents, with the correlations given by Σ. The transmission from
the grandparents to the father and the mother occurs according to the causal relationships
in equations (5) and (6), i.e., the income of the father and mother are realized. After those
realizations, the transmission from the parents to the son occurs according to the causal
relationships in equation (4), i.e., the income of the son is realized.

Table 2 summarizes the notation of the model. It is worth discussing the interpretation
of the three types of elements here. First, the structural parameters (βF , βM , ρ)–shown in
Figure 2–are our main parameters of interest. They reflect the parameters of the model
and reflect our interest as social scientists in social phenomena. βF measures the effect of
the father’s status on the child’s status. βM measures the effect of the mother’s status on
the child’s status. ρ measures assortative mating between the mother and the father, by
computing the correlation between the status of the father and the mother.

Second, we have the nuisance parameters (a, b, c, d)–shown in Table (2) and Figure 3.A.
We call then nuisance parameters because they are not our main object of interest here.
With the exception of a = E [PGFiMGFi], they are not directly observed in the data.
Notice, however, that the nuisance parameters measure a more complex relationship between
the grandparents than is typically assumed in the literature. Moreover, we can interpret
the nuisance parameters, in light of matrix Σ above, as a more general way of thinking of
family structure and assortative mating. In other words, the nuisance parameters allow us
to think of a more general model of household formation and whether the characteristics of
the grandparents affect the mating between the parents in a more nuanced way. We discuss
this in detail below in Section 4.

Third, we define the empirical relationships in the data. Because we have four variables
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Figure 3: Nuisance Parameters and Empirical Relations.

A. Nuisance parameters.

B. Empirical Relations.

Notes: The solid circles represent individuals (males) with observed income while the dashed circles represent
individuals (females) with unobserved income. Panel A. The dashed lines represents the correlations between
each of the four grandparents. The rest of the model is represented in light gray. Panel B: The thick solid
lines represents all six possible pair-wise empirical relations among the four male members of the family tree.
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Table 2: Parameters and Data Relationships.
Symbol Definition

Structural Parameters

βF Effect of Father on child
βM Effect of Mother on child
ρ AM, 2nd gen, ρ ≡ E [Fi, Mi]
λ AM, 1st gen, λ ≡ E [PGFi, PGMi]

Nuisance Parameters

a a = E [PGFiMGFi] = 0.4811
b b = E [MGFiPGMi]
c c = E [PGMiMGMi]
d d = E [MGMiPGFi]

Empirical Relationships

A A = E [SiFi] = 0.3685
B B = E [PGFiFi] = 0.4841
C C = E [MGFiSi] = 0.2283
D D = E [MGFiFi] = 0.4473
E E = E [PGFiSi] = 0.2302

available (Si, Fi, PGFi, MGFi) we can get six empirical relationships, which correspond to
(A, B, C, D, E) and a–shown in Table 2 and Figure 3.A. Below we show how we use these
relationships to identify the structural parameters. Notice that the standard models of so-
cial mobility only observe two variables (Si, Fi) and are thus able to obtain one empirical
relationship A = E [SiFi]. With that relationship, in our model, the econometrician can only
identify β̃F ≡ βF + ρβM , but not each individual parameter, as shown in Espín-Sánchez et
al. (2022).

Table 3 presents a summary of the various propositions, assumptions and identified pa-
rameters. These propositions are discussed beginning in Subsection 4.3 below with proofs in
Appendix A.

4 Identification

In this section, we discuss the identification of the vector of structural parameters βF , βM , λ, ρ.
In subsection 4.1 we discuss set identification of the structural parameters. We show how the
model as specified above, with four variables and six empirical relationships does not provide
point identification of the structural parameters. There is one extra degree of freedom. In
subsection 4.3, we present identification results when we make assumptions on the nuisance
parameters. In subsection 4.2 we discuss identification using two-generation records. In
subsection 4.4, we present identification results when we do not make any assumptions on
the nuisance parameters. In this case, it is necessary either to use information on other male
relatives–such as uncles– or to make assumptions regarding some parameters of the model,
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Table 3: Summary of Identification results.

Prop. Data Nuisance Structural Point Identified
Assumptions Assumptions Parameters

Identification using two generations
Prop. 1 (F, PGF, MGF ) a = b = c = d λ = ρ (βF , βM , ρ)
Prop. 2 (F, PGF, MGF ) βM = 0 (βF , ρ)
Prop. 3 (F, PGF, MGF ) a = b = c = d βF = βM (βF , λ, ρ)

Identification using three generations
Prop. 4 (S, F, PGF, MGF ) b = d (βF , βM , λ, ρ)

Identification from maternal uncles
Prop. 5 (S, F, MGF ) a = b = c = d λ = ρ (βF , βM , ρ, a)
Prop. 6 (S, F, MU, MGF ) (βF , βM , λ, ρ, γ)
Prop. 7 (S, F, MU, PGF ) (βF , βM , λ, ρ, γ)
Prop. 8 (S, F, MU) γ = 0 λ = ρ (βF , βM , ρ)

Identification allowing heterogeneous effects by gender
Prop. 9 (S, F, PGF, MGF ) a = b = c = d

(
βS

F , βS
M , βD

F , βD
M , λ, ρ

)
Prop. 10 (S, F, PGF, MGF ) b = d = 0; a = c

(
βS

F , βS
M , βD

F , βD
M , λ, ρ

)
Identification allowing heterogeneous effects by generation

Prop. 11 (S, F, PGF, MGF ) b = d (βF , βM , α, ρ)
Cor. 1 (S, F, PGF, MGF ) a = b = d αF = αM (βF , βM , αF , λ, ρ)

Prop. 12 (S, F, PGF, MGF ) b = d = 0; a = c (βF , βM , αF , αM , λ, ρ)
Prop. 13 (S, F, PGF, MGF ) a = b = d λ = ρ (βF , βM , αF , αM , ρ)
Prop. 14 (S, F, PGF, MGF ) b = d =

√
ac (βF , βM , α̃, λ, ρ)

Cor. 2 (S, F, PGF, MGF ) b = d =
√

ac αF = αM (βF , βM , α̃, ρ)
Notes: The estimates for (βF , βM , ρ) in Propositions 4, 11 and 14, are identical because they are based on
the same moments of the data.
We only use the sixth moment (equation (12)) to estimate structural parameters when we are making as-
sumptions about c, i.e., Propositions 1; 2 and 3 (only for ρ); 5, 9 and 10; and 12 (only for λ).
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or both. Finally, in subsections 4.5 and 4.6, we relax respectively the assumptions that the
structural parameters are constant across the child gender and constant across generations.

4.1 Set identification

We now discuss what parameters can be identified, depending on the data available. In
particular, we focus on the case where data on female characteristics is unknown. We assume
that the system formed by equations (4), (5) and (6) is well specified, i.e., that the error term
is uncorrelated with the regressor in each equation. In particular, the exclusion restrictions
are: 1) E

[
Fiϵ

S
i

]
= 0; 2) E

[
PGFiϵ

S
i

]
= 0; 3) E

[
PGFiϵ

F
i

]
= 0; 4) E

[
PGFiϵ

M
i

]
= 0; 5)

E
[
MGFiϵ

S
i

]
= 0; 6) E

[
MGFiϵ

F
i

]
= 0; and 7) E

[
MGFiϵ

M
i

]
= 0

Notice that we only have 7 exclusion restrictions. Since the son is at the end of the tree,
we cannot have any exclusion restriction multiplying Si by any of the ϵi. The first exclusion
restriction is the standard one, when we just say that the equation for the son is well specified.
Since the father is in the middle of the tree, we can only use one exclusion restriction for
Fi, E

[
Fiϵ

S
i

]
= 0, since Fi would be endogenous to all other epsilons, except the one at the

bottom of the tree. The grandfathers are at the top of the tree therefore, PGFi and MGFi,
are exogenous to the epsilons in the middle of the tree, ϵF

i and ϵM
i and the one at the end

of the tree ϵS
i . Using these exclusion restrictions we are using the grandparents as non-linear

instruments to construct the relevant moments.
We now combine equations (4), (5) and (6) with the seven exclusion restrictions above

to generate six moments.14 As shown in Appendix A.1, with the exclusion restrictions above
we can generate the following moments:
Using equation (4) and E

[
Fiϵ

S
i

]
= 0 we get

A ≡ E [SiFi]
= βFE [FiFi] + βME [MiFi]
= βF + ρβM (7)

14 In each case, we multiply one of the equations for one of the observable variables and take expectations,
e.g., we take equation (4) and multiply by Fi, and then take expectations and use E

[
Fiϵ

S
i

]
= 0 to get equation

(7). See Appendix A.1 for details.
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Using equation (5) and E
[
PGFiϵ

F
i

]
= 0 we get

B ≡ E [FiPGFi]
= βFE [PGFiPGFi] + βME [PGMiPGFi]
= βF + λβM (8)

Using equations (4) and (6) and E
[
MGFiϵ

M
i

]
= 0 and E

[
MGFiϵ

S
i

]
= 0 we get

C ≡ E [MGFiSi] = βFE [MGFiFi] + βME [MGFiMi]
= βFE [MGFiFi] + βM (βFE [MGFiMGFi] + βME [MGFiMGMi])
= βF D + βM (βF + λβM) (9)

Using equation (5) and E
[
MGFiϵ

F
i

]
= 0 we get

D ≡ E [FiMGFi]
= βFE [PGFiMGFi] + βME [PGMiMGFi]
= βF a + βMb (10)

Using equation (4) and E
[
PGFiϵ

S
i

]
= 0 and E

[
PGFiϵ

M
i

]
= 0 we get

E ≡ E [PGFiSi]
= βFE [PGFiFi] + βME [PGFiMi]
= βFE [PGFiFi] + βM (βFE [PGFiMGFi] + βME [PGFiMGMi])
= βF B + βM (βF a + βMd) (11)

Using equations (5) and (6) we get15

E [FiMi] = E [(βF PGFi + βMPGMi) (βF MGFi + βMMGM)]

and solving we get

ρ = β2
F a + β2

Mc + βF βM (b + d) (12)

In equations (10), (11) and (12) we have three terms, the nuisance parameters, that
we do not observe in the data, e.g., b = E [MGFiPGMi], c = E [PGMiMGMi] and d =
E [MGMiPGFi]. Therefore, we have six independent equations and seven unknowns.

We now put out system of equations in light or other econometric estimators used in
economics. In particular, we show how our estimator can be seen as a generalization of both

15Notice that here we are using E
[
MGFiϵ

F
i

]
= E

[
MGMiϵ

F
i

]
= E

[
PGFiϵ

M
i

]
= E

[
PGMiϵ

M
i

]
= 0. In

addition to that, for this moment only we are assuming E
[
ϵF

i ϵM
i

]
= 0. This implies that mating is done on

observables (income) only, i.e., no mating on unobservables. This assumption could be relax and we could
estimate E

[
ϵF

i ϵM
i

]
by assuming, for example, a = c.
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Instrumental Variables (IV) in cross-sectional data and Time Series data.16

Equation (7)–and also equation (8)–can be seen as a standard equation with omitted
variables in cross-sectional data where Si is the dependent variable, Fi is the regressor and Mi

is the omitted variable. The standard solution in such case would be to use an instrumental
variable that is correlated with the regressor Fi but not with the omitted variable Mi. What
we do here instead is to use an instrumental variable that is correlated with the omitted
variable Mi in a particular way. For example, Equation (9) is equivalent to using MGFi as
an instrument in equation (4). However, instead of the usual assumption that the instrument
is uncorrelated with the omitted variable, i.e., E [MGFiMi] = 0, our model indicates that
this correlation is a function of the structural parameters, i.e., E [MGFiMi] = βF + λβM . In
that sense, our model is a generalization of the usual IV approach where we put structure on
the correlation of our instrument and the omitted variable.

Although mathematically all six moments–that is, equations (7), (8), (9), (10), (11) and
(12)–come from the identifying assumptions of the data, there is a qualitative difference
between the first three and the last three equations. In the first three equations ((7), (8) and
(9)), the exclusion restrictions come from using the error term of a person and the status
of her/his father, e.g., ϵS

i and Fi, ϵF
i and PGFi, and ϵM

i and MGFi. These moments are
analogous to a time series model that follows an AR(1) process. In that case the model is
Yt = βYt−1 + ϵt and the exclusion restriction is E [Yt−1ϵt] = 0. When βM = 0 our model is
identical to that AR(1) process. In that sense, time series is a particular case of econometric
trees where only only line–in this case patrilineal–matters. The availability of the matrilineal
line provides extra exclusion restrictions that allow us to identify βM and ρ. We can think
of our estimator as a generalization of the instruments used in time series, where we also use
the matrilineal “lags” in the data.

Therefore, in equations equations (7), (8), (9) there are no nuisance parameters. This
means that if we have one extra identifying assumption that does not relate to the nuisance
parameters, we just need to use the first three equations, together with a new independent
assumption and we will get a system of four independent equations and four unknowns. The
assumption ρ = λ does not provide a new independent equation, because it would make
equations (7) and (8) colinear.

In the last three equations (10, 11 and 12), we have the nuisance parameters (b, c, d), as
well as the parameters relating to the son’s equation (βF , βM , ρ). Thus, if we can identify
(βF , βM , ρ) from other equations, we can use the last three equations to identify (b, c, d).17

16When we use data maternal uncles we face a problem similar to panel data in that there could be
household fixed effects. Our estimator in that case can be seen as a generalization of Arellano and Bond
(1991).

17The intuition also works conversely: if we can identify (b, c, d), then we can identify (βF , βM , ρ). This
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Lemma (1) below shows this intuition.

Lemma 1. If we know (βF , βM , ρ), then equations (10), (11) and (12) identify all nuisance
parameters (b, c, d).

We now discuss set identification using equations (8) and (9) above. Combining both
equations we get

βME [FiPGFi] = E [MGFiSi] − βFE [MGFiFi] (13)

Thus, we can use two identifying equations to get an equation that is a linear combination
of βF and βM alone. Figure 4 (left) shows an equation that depends only on βF and βM and
data, by combining equations (8) and (9). Notice that all the other moments depend on ρ, λ

and the nuisance parameters. Thus, without further assumptions, this line is our identified
set for βF and βM .

Figure 4: Set Identification and Point Identification.

O C/D

C/B

βF

βM

O C/D

C/B

βF

βM

0.276

0.216
(β∗

F , β∗
M)

Notes: Panel A. The equation comes from using equations (8) and (9). The equation is
βM = C

B − D
B βF = 0.4707 − 0.9221βF . Panel B. Black line is the same as in panel A. The second equation

(red line) comes from using equations (10) and (11) and the assumption b = d. The resulting equation is
βM = E

D − B
D βF = 0.5157 − 1.0845βF .

4.2 Identification Using Two Generations

In this subsection, we present our baseline results. We assume that the econometrician has
access to two generations of data–marriage records or similar information–on male socioe-
conomic status Fi, PGFi, MGFi. With three variables, we can only compute three empirical
intuition is the basis for the proofs of the propositions below.
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moments: a = E [PGFiMGFi], D = E [MGFiFi] and B = E [PGFiFi]. We now show how
these three empirical moments, together with the exclusion restrictions, generate three in-
dependent equations. These equations, unfortunately, contain nuisance parameters and we
cannot identify any structural parameters without further assumptions.

The system of equations using two generations is then:

E [FiPGFi] = βF + λβM (14)

E [FiMGFi] = βF a + βMb (15)

ρ = β2
F a + β2

Mc + βF βM (d + b) (16)

We now have a system with three equations and seven unknowns: the four structural
parameters (βF , βM , λ, ρ) and the three unknown nuisance parameters (b, c, d). We now show
three possible ways to get identification of some structural parameters when we only have
information from two-generation records.

Proposition 1 below shows how one can identify (βF , βM , ρ) making assumptions on nui-
sance parameters, using information on two-generation records alone, i.e., without observing
Si.

Proposition 1. Suppose Fi, PGFi, and MGFi are observed. If we assume a = b = c = d

and λ = ρ, then (βF , βM , ρ) is point identified.

Proposition 1 needs to make the strongest assumption on the nuisance parameters, i.e.,
that they are all equal. This highlights the importance of having information on three
generations, not just two, even if we want to estimate a model where the effects are only
across one generation. Having information on the son adds one variable Si to the system,
but in terms of moments, we go from just three empirical relations (a, B, D) to six empirical
relations (a, A, B, C, D, E). This extra variable doubles our degrees of freedom and allows us
to get a more nuanced picture of intergenerational mobility and assortative mating. Below
we show Proposition 2, which uses similar assumptions than Clark et al. (2022), but here we
specify the model correctly and obtain a different estimator.

Proposition 2. Suppose Fi, PGFi, and MGFi are observed. If we assume βM = 0, then
(βF , ρ) is point identified.

Notice that Proposition 2 generates a system with three equations and two unknowns.
This means that the system is overidentified, or that the assumption βM = 0 is testable. On
the other hand, one can see that if we do not have information on a we can still estimate
(βF , ρ) by writing βF = B and ρ = DB.
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There are some recent papers using marriage records to study social mobility and assor-
tative mating (Clark et al., 2022; Curtis, 2022; Clark and Cummins, 2022). The estimator
they use are based on the seminal work by Chadwick and Solon (2002, henceforth CS).18

This method requires two assumptions: i) that the income of the mother causes the income
of the father, i.e., Fi = ρ0Mi + ϵ; ii) That the parental grandparents’ income is uncorrelated
with the maternal grandparents’ income, i.e., a = b = c = d = 0. If this two assumptions
hold, then, following CS you can estimate ρ0 = D/B. This is the method used by the papers
above. Alternatives to assumption i) give different estimators. In Appendix A.8 we show that
if you assume causality in the opposite direction, i.e., Mi = ρ1Fi + ϵ

′ you get ρ1 = B/D. If
you do not assume causality, but rather that the relation between the father and the mother
is just correlational, Prop. 2 shows that ρ = DB. We think that in most settings the relation
between spouses is correlational, not causal. In summary

• CS: Fi = ρ0Mi + ϵ, the estimator is ρ0 = D/B.

• Reversed CS: Mi = ρ1Fi + ϵ
′
,the estimator is ρ1 = B/D.

• Non-causal: E [FiMi] = ρ, the estimator is ρ = BD.

Whereas i) is an economic assumption, ii) is an empirical assumption. Moreover, if the
econometrician is using two-generation records to estimate B and D, she should be able to
estimate a. If a ̸= 0 the CS method is invalid, regardless of the economic setting.

In summary, using two-generation records alone, without further assumptions on struc-
tural or nuisance parameters, we cannot identify βM . If we assume that mothers have no effect
on their children, i.e., βM = 0, then we can identify βF and ρ. However, when the relation-
ship between the parents income/status is non-causal, unlike in Chadwick and Solon (2002)
and Clark (2023), the estimator is the product of the two empirical relations–E [PGFiFi] and
E [MGFiFi]–not their ratio.

Assuming βM = 0 might be too strong in many settings. Proposition 3 below shows how
to estimate (βF , ρ) using data from two generations if you assume βF = βM as in Clark and
Cummins (2022). Moreover, using a allow us to also identify λ. This result is somewhat
surprising because we only have data in two generations, but we are able to identify the
degree of assortative mating on both generations, i.e., we can identify λ and ρ.

Proposition 3. Suppose Fi, PGFi, and MGFi are observed. If we assume a = b = c = d

and βF = βM , then (βF , λ, ρ) is point identified.
18For simplicity here, we are restricting attention to the case with βM = 0. Chadwick and Solon (2002)

compute two parameters: the assortative mating parameter ρ0, and the total effect parameter β̃F = βF +λβM .
Appendix (A.8) shows how the analysis is the same when βM ̸= 0, and you also get ρ0 = D/B.
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4.3 Identification Using Three Generations

We now show that we can get point identification on (βF , βM , λ, ρ) when we only make a mild
assumption on the nuisance parameters, if we have information on three generations. Unlike
in the previous sections, we can now relax the strong assumptions on the nuisance parameters,
i.e., a = b = c = d, if we have information on three generations, i.e., information on the son
Si. With this fourth variable, we get the full six empirical relationships (a, A, B, C, D, E)
and we only need to impose one restriction on the nuisance parameter. In particular, we
assume that the correlation among grandparents across genders is equal to the product of
the standard deviations, i.e., E [PGFiMGMi] = E [MGFiPGMi], or b = d. This is, in our
opinion, the weakest assumption on the nuisance parameters.Proposition 4 shows how this
assumption generates point identification.

Proposition 4. Suppose Si, Fi, PGFi and MGFi are observed. If we assume b = d, then
(βF , βM , λ, ρ) is point identified.

The proof for Proposition 4 is simple. If we combine equations (8) and (9), we get an
equation that depends only on βF and βM and data. This equation is the black line on the
right panel on Figure (4). Using the assumption that b = d, we can combine equations (10)
and (11) and get an independent equation that depends only on βF and βM and data. This
equation is the red line on the right panel on Figure 4. Thus, using these four moments and
the restriction on the nuisance parameters, we can identify βF and βM . Identification on λ

and ρ follows using the other moments.

4.4 Identification Using Maternal Uncles

In this section, we discuss identification when we have information on one maternal uncle.
In addition to the six moments that we showed above, using data on (S, F, MGF, PGF ),
we can get additional moments if we have information on one maternal uncle. The equation
determining the status of a maternal uncle is

MUi = βF MGFi + βMMGMi + ϵMU
i (17)

With this new equation, we have a new parameter γ ≡ E
[
ϵM

i ϵMU
i

]
that measures house-

hold fixed effects. Moreover, identification is much simpler now because we have E [FiMUi] =
ρ. Assortative mating can be computed directly from the data.

Propositions 5 and 6 show identification results when we do not observe PGFi. In Propo-
sition 5, point identification of the parameters of interest requires strong assumptions on the
nuisance parameters and λ = ρ. However, if we also have information on one maternal uncle,
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Proposition 6 shows that we can get identification of all parameters without any assumption.
Moreover, we can also estimate household fixed effects γ. Notice that adding one maternal
uncle to a sample of (S, F, MGF ) adds more identification restrictions than adding one pa-
ternal grandfather. The reason is that the maternal uncle is closely related to the mother,
which is the object here.

Proposition 5. Suppose Si, Fi and MGFi are observed. If we assume a = b = c = d and
λ = ρ, then (βF , βM , ρ, a) is point identified.

Proposition 6 below shows that we can get identification of all parameters, without any
assumption, including household fixed effects γ. Typically one needs to observe the status of
two siblings in order to estimate household fixed effects. Here, we can do it without observing
the status of a pair of siblings. We observe the status of one sibling, the maternal uncle and
some relatives of the other sibling, the mother.

Proposition 6. Suppose Si, Fi, MUi and MGFi are observed. Then (βF , βM , λ, ρ, γ) is
point identified.

Proposition 6 uses only four variables and generates six equations and six empirical mo-
ments (A, C, D,E [FiMUi] ,E [MGFiMUi] ,E [MUiSi]). We can use six of these equations,
where there are no nuisance parameters and estimate five structural parameters (βF , βM , λ, ρ, γ).
Unlike in the case in Proposition 4, where we have information on the paternal grandfather,
but not on the maternal uncle, here we can estimate all structural parameters and γ, with
six empirical moments. The difference is that the equations using the paternal grandfather
typically involve nuisance parameters, but the equations that we get using the uncles do not.
Therefore, for a researcher interested in the structural parameters, the information provided
by a maternal uncle is much more valuable.

Proposition 7. Suppose Si, Fi, MUi and PGFi are observed. Then (βF , βM , λ, ρ, γ) is point
identified.

Proposition 7 uses all the information available and shows that we can identify all the
parameters of interest and still have two extra degrees of freedom. With information on
five variables (S, F, MU, PGF, MGF ), we can generate empirical moments: the six empirical
relations discussed above in Table 2 (A, B, C, D, E, a) and the new four moments with ma-
ternal uncles (E [FiMUi] ,E [MGFiMUi] ,E [MUiSi] ,E [PGFiMUi]) and ten equations. Out
of the ten equations, we can get eight independent equations to estimate eight parameters
(βF , βM , λ, ρ, γ, b, c, d).

Finally, Proposition 8 below shows how we can still get identification on our main pa-
rameters of interest (βF , βM , ρ), having data only on (S, F, MU). This result requires some
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assumptions on the structural parameters. However, no assumptions are needed on the nui-
sance parameters. The reason is that we are not using any data and any equation involving
any grandparents.

Proposition 8. Suppose Si, Fi, MUi are observed and λ = ρ and γ = 0, then (βF , βM , ρ) is
point identified.

4.5 Gendered Effects

In the baseline model in Section 3, we were implicitly imposing that the effects, even when
they were different from the father and from the mother, were the same when the child was
a son or a daughter. In this subsection, we present identification results when we allow for
gendered effects, but impose restrictions on the nuisance parameters. The system of equations
that we are considering is the following

Si = βS
F Fi + βS

MMi + ϵS
i

Fi = βS
F PGFi + βS

MPGMi + ϵF
i

Mi = βD
F MGFi + βD

MMGMi + ϵM
i

(18)

where βS
F and βS

M are the effects of the father and mother on a son, respectively and βD
F

and βD
M are the effects of the father and mother on a daughter, respectively.

Proposition 9. Suppose Si, Fi, PGFi and MGFi are observed. If we assume a = b = c = d,
then

(
βS

F , βS
M , βD

F , βD
M , λ, ρ

)
is point identified.

Proposition 9 above shows that we can identify all six parameters of interest, in the model
with gendered effects, if we are willing to impose that all correlations among grandparents’
incomes are equal to the observed correlation between the two grandfathers, i.e., a = b = c =
d. Proposition 10 below shows a similar result, but imposing b = d = 0 and a = c instead.

Proposition 10. Suppose Si, Fi, PGFi and MGFi are observed. If we assume b = d = 0
and a = c, then

(
βS

F , βS
M , βD

F , βD
M , λ, ρ

)
is point identified.

4.6 Generational Effects

In the baseline model in Section 3, we were implicitly imposing that the mobility effects
were the same in both generations. In this subsection, we present identification results when
we allow for different generational effects effects, but impose restrictions on the nuisance
parameters. The system of equations that we are considering is the following
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Si = βF Fi + βMMi + ϵS
i

Fi = αF PGFi + αMPGMi + ϵF
i

Mi = αF MGFi + αMMGMi + ϵM
i

(19)

where βF and βM are the effects of the father and mother in the second generation, re-
spectively and αF and αM are the effects of the father and mother in the first generation,
respectively.

We now show several results showing sufficient conditions for identification of effects that
differ across generations in our model.

Proposition 11. Suppose Si, Fi, PGFi and MGFi are observed. If we assume b = d, then
(βF , βM , ρ) and α (with α ≡ αF + αM) is point identified. However, λ, αF and αM are not
point identified.

Proposition 11 shows that imposing assumptions on the nuisance parameters, but no
assumptions on the structural parameters, is not enough to get point identification here.
Nonetheless, identifying (βF , βM , α) could be of interest in many settings. For example, the
econometrician might be willing to assume that the coefficients for father and mother for the
first generations are equal to each other, i.e., αF = αM . Corollary 1 below shows that, with
this extra assumption, all parameters are identified.

Corollary 1. Suppose Si, Fi, PGFi and MGFi are observed. If we assume a = b = d and
αF = αM , then (βF , βM , αF , λ, ρ) is point identified.

Proposition 12 below shows that we can get identification on all the structural parameters
without imposing any restrictions on them, if we impose slightly different restrictions on the
nuisance parameters. The new restrictions break the dependency across moments that was
created by the restrictions imposed in Proposition 11.

Proposition 12. Suppose Si, Fi, PGFi and MGFi are observed. If we assume b = d = 0
and a = c, then (βF , βM , αF , αM , λ, ρ) is point identified.

One reasonable assumption that one can make is to assume that the degree of assortative
mating is constant across generations, i.e., λ = ρ. Proposition 13 shows that this assumption
provides point identification in all the other structural parameters.

Notice that this result contrast with the negative results shown at the beginning of this
section. In the simple model, assuming λ = ρ did not add any identification to our model,
but here, it provides an independent equation, with respect to the results in proposition
11. The reason behind this somewhat surprising result is that in the baseline case, we were
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imposing that the mobility parameters βF and βM were constant across generations. Thus,
imposing that also the mating parameters were constant did not add more degrees of freedom.
Here, we are allowing the mobility parameters to differ across generations, i.e., βF ̸= αF and
βM ̸= αM . Thus, assuming that the mating parameters are constant, i.e., λ = ρ, does add
more identification power here.

Proposition 13. Suppose Si, Fi, PGFi and MGFi are observed. If we assume a = b = d

and ρ = λ, then (βF , βM , αF , αM , ρ), is point identified.

Propositions 11 and 12 are two different ways to get point identification in the structural
parameters. In both cases, we are adding three restrictions to the nuisance parameters
and that allows us to form a system with six equations and six parameters of interest. In
Proposition 12 the six equations are independent and thus we can get point identification in
all six parameters of interest. In Propositions 11, however, the equations are not independent
and we get point identifications in all parameters but αF and αM . We get identification in
their sum α and we end up with a system of over-identifying restrictions. Proposition 14 below
extends this intuition and shows how we can also get point identification on (βF , βM , λ, ρ),
with a weaker assumption on the nuisance parameters: b = d =

√
ac. The downside is that

now we cannot point identify the mobility parameters in the older generation αF and αM , or
the nuisance parameter c, but we can identify α̃ ≡ αF

√
a + αM

√
c.

Proposition 14. Suppose Si, Fi, PGFi and MGFi are observed. If we assume b = d =
√

ac,
then (βF , βM , ρ) and α̃ (with α̃ ≡ αF

√
a + αM

√
c) is point identified. However, αF , αM , and

λ are not point identified.

Proposition 14 presents a negative result when we use the assumption b = d =
√

ac.
Corollary 1 above shows how the negative result in Proposition 11 can be overcome by a
simple restriction on the structural parameters such as αF = αM . Corollary 2 below shows
how the same assumption does not solve the identification issues from Proposition 14.

Corollary 2. Suppose Si, Fi, PGFi and MGFi are observed. If we assume b = d =
√

ac

and αF = αM , (βF , βM , ρ) and α̃ (with α̃ ≡ αF (
√

a +
√

c)) is point identified. However, αF ,
αM , and λ are not point identified.

5 Results

In this section, we first produce reduced-form estimates, and then estimate the structural
models developed in Section 4.

27



5.1 Reduced-form Results

In this subsection, we discuss the usual reduced-form (or proxy) estimates in the literature
and how they relate to our structural estimates. The importance of these biases is particularly
relevant when one is estimating changes in mobility or assortment over time. The changes in
the proxy measure could be due to changes in other structural parameters of interest, such
as βM . In those cases the econometrician would mistake changes over time on the effects of
mothers for changes over time on the effects of father or the degree of assortment. First, as
we have noted above most of the literature takes the correlation of father and son A (or B)
as a measure of βF (or αF ). In our simple model, we have A = βF +ρβM (or A = βF +ρβM).
This means that A typically overestimates βF when ρ > 0 and βM > 0. The larger the
assortment and the larger the mother’s effect, the large the bias.

Second, some recent papers (Craig et al., 2019; Althoff et al., 2022) compute the correla-
tion between grandparents a as a measure of assortative mating in the parents generation ρ.
In our simple model, we have ρ = β2

F a + β2
Mc + βF βM (b + d). If we assume a = b = c = d,

we have ρ = (βF + βM) a. This means that–even after assuming all nuisance parameters are
equal–a is a proxy for ρ but will typically be much smaller. The larger the father or mother’s
effects, the more severe the bias.

Third, some recent papers (Chadwick and Solon, 2002; Curtis, 2022) write the assortative
mating as a causal relationship (the mother causing the status of the father). This creates
a measure of assortment equal to D/B. We show in Appendix A.8 that assuming a reverse
causal relationship (the father causing the status of the mother) creates a measure of assort-
ment equal to B/D. Our approach, taking the mating relationships as non-causal, is robust
to this type of interpretation. Moreover, the closest results (Prop. 2) show that ρ = BD.

In Table 4, we show the coefficients from a regression using the two older generations; that
is, our fathers and grandparents.19 We show how even if we regress the father (PGFi) and
father-in-law (MGFi) on an individual (Fi), we would still not get the proper estimates. In
other words one cannot run an OLS regression and identify any of the structural parameters
of interest. In our notation that is

Fi = β1PGFi + β2MGFi + ϵ

In simple terms, the reduced-form regression creates two moments

B = β1 + β2a

D = β1a + β2

19For simplicity we restrict attention to the linked sample in which we have linked the son with his father
and both grandparents.
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Table 4: Intergenerational Mobility: 1900 to 1920
Father Log Occscore

(1) (2)
PGF 0.443∗∗∗ 0.332∗∗∗

(0.007) (0.008)

MGF 0.253∗∗∗

(0.008)
N 23,735 23,735

Notes: Coefficients from regression of standardized income of the fathers on that of his father and his father-
in-law. Incomes are adjusted as described in Section 2.2. Sample contains all individuals for whom the father
and both grandparents were successfully linked. Standard errors are robust. *, ** and *** represent p < 0.1,
p < 0.05 and p < 0.01 respectively.

Assuming a = b the two relevant moments in Proposition 1 are

B = βF + λM

D = βF a + βMa

To make the first two moments coincide we need βF = β1, β2a = ρβM and β2 = βMa.
This is true when β1 = βF and β2 = βMa and λ = a2. The formulas for β1 and β2 are a
particular case of our formulas for βF and βM in Proposition 1, with β1 = βF and β2 = βMa,
only when λ = a2. When λ = ρ, Proposition 1 shows that ρ = D2/a. This means that the
reduced-form regression consistently estimates βF in the particular case where a3 = D2. This
is unlikely to hold in reality, except in the case where βM = 0. In that case, a3 = D2 = 0
and β1 = βF = B and β2 = βM = 0.20 In summary, just by looking at the two coefficients
from the regression above, we cannot estimate any of the structural parameters. We need to
use our proposed GMM method to do so.

5.2 Structural results

In this subsection, we present the structural model estimates. In all the results, we have a
system with exactly identified parameters which we estimate using GMM (Hansen, 1982).
We use efficient standard errors by using the inverse of the Jacobian of the moments matrix
as weighting matrix.

20An alternative way of looking at this is looking at the estimates from Proposition 4. The estimates from
this reduced-form regression are β1 = B−Da

1−a2 and β2 = D−Ba
1−a2 . The formulas for βF and βM in Proposition

4 are βF = BE−CD
B2−D2 and βM = BC−ED

B2−D2 . Thus, for β1 to be a consistent estimate of βF we need E = 1,
a = C = D and B = 1. Notice that this will also make β2 a consistent estimate for βM . These assumptions
however, will imply β1 = βF = 1 and β2 = βM = 0. In other words, if we use the first two moments from
Proposition 1, β1 and β2 cannot be consistent estimates of βF and βM .
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Table 5: Identification using Two Generations
Parameter Estimate

Prop. 1 Prop. 2 Prop. 3
βF 0.167 0.930 0.465

(0.025) (0.015) (0.007)

βM 0.763
(0.039)

ρ 0.416 0.416 0.416
(0.012) (0.012) (0.007)

Notes: Parameters identified from two-generation which contain a father and grandparents. Proposition
1 assumes that λ = ρ and additionally equality in the nuisance parameters. Proposition 2 assumes that
βM = 0. Proposition 3 assumes that βF = βM and additionally equality in the nuisance parameters.

In Table 5, we examine identification using data from two generations; that is, social
mobility estimates using the father and both grandfathers. Using our baseline specification
in Prop. 1, we find a contribution of mothers to social status almost five times larger that that
of fathers (0.763 vs 0.167), and a high degree of assortative mating, at 0.416. Propositions
requiring either zero contribution from mothers (Prop. 2) or equality of fathers and mothers
effects (Prop. 3) show substantially more persistence from fathers. Assuming βM = 0 would
bias the estimate for βF up (Prop. 2). Assuming βM = βF , when βM > βF , would bias the
estimate for βF up (Prop. 3). Prop. 2 uses three moments to estimate two parameters. The
estimates displayed in Table 5 use the second and third moment. The missing moment is
B = 0.484 = βF . This estimate is much lower than the estimate reported in Table 5 (0.484
vs 0.930), this is further evidence that the assumption βM = 0 is rejected in our data.

In both cases, the estimate for ρ is the same as in Prop. 1, because we are using the same
moments to identify ρ. We conclude from this that allowing for effects to differ by gender is
critical for recovering plausible effects of social mobility. Seemingly innocuous assumptions
commonly found in the literature, such as βM = βF or βM = 0,would produce very different
estimates and hide the true size of the mother’s contribution.

In Table 6, we show the parameter estimates from point identification of (βF , βM , ρ, λ)
from Prop. 4, assuming non-gendered effects and equality in two nuisance parameters. We
show estimates for the modified OCCSCOREs described in Section 2.2. Using the preferred
adjustments, the direct effect of the father is 0.272 vs 0.220 for the mother. However, the
point estimate for λ, the degree of assortative mating in the grandparents’ generation, is
implausibly high, with near perfect assortative mating. We interpret this result as a joint
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Table 6: Identification using Three Generations
Parameter Estimate

Prop. 4
Adjustment Unadj. State Farm State and Farm
βF 0.336 0.445 0.328 0.272

(0.055) (0.101) (0.072) (0.080)

βM 0.210 0.170 0.108 0.220
(0.055) (0.101) (0.072) (0.081)

λ 0.320 0.892 1.000 0.963
(0.180) (0.096) (0.142) (0.064)

ρ 0.000 0.000 0.000 0.437
(0.259) (0.594) (0.662) (0.207)

Notes: Set identifed parameters. Identification is from the assumtion on the nuisance parameters that b = d.
Adjustments are to occupational scores as described in Section 2.2.

rejection of the assumptions of the model as specified, in particular the assumption of constant
effects across generations (βF = αF and βM = αM). The raw correlation between fathers and
sons (A = 0.3685) is significantly lower than that between fathers and paternal grandfathers
(B = 0.4841). Because equations (7) and (8) only differ on A for B and ρ for λ, the solution
implies a low ρ and a high λ. Table 9 below shows αM to be very high, and much greater than
βM . This is further evidence that the assumption of equal mobility across two generations is
rejected by the data. Moreover, this reconciles the high values for βM obtained in Prop. 1
which uses data from 1900-1920.

In Table 7 we show the results for identification with information on maternal uncles.
Prop. 5, which assumes that the nuisance parameters are all identical and the assortative
mating parameter is identical across generations to identify using sons, fathers and maternal
grandfathers only, delivers reasonable estimates for the main parameters of interest, although
the estimate of the nuisance parameter a is large. Prop. 6, using additionally maternal uncles
and without these restrictions, delivers implausibly large estimates for the assortative mating
parameter in the grandparents generation. This is, similarly as before, due to the relatively
high value for E [MGFiMUi] = 0.4592, the solution to the system of equations, given the
estimates for βF and βM implies a very high λ.21 This again suggests a joint rejection of the
assumptions of the model as specified, in particular the assumption of constant effects across

21See equation (28) in Appendix (A).
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Table 7: Identification from Maternal Uncles
Parameter Estimate

Prop. 5 Prop. 6 Prop. 7 Prop. 8
a 0.808

(0.026)

βF 0.307 0.303 0.249 0.166
(0.012) (0.017) (0.028) (0.025)

βM 0.246 0.151 0.274 0.479
(0.025) (0.032) (0.061) (0.075)

γ 0.435 0.191
(0.015) (0.023)

λ 1.000 0.855
(0.163) (0.115)

ρ 0.248 0.417 0.414 0.426
(0.007) (0.012) (0.013) (0.012)

Notes: Estimates from identification based on maternal uncles. Proposition 5 assumes that λ = ρ and
additionally equality in the nuisance parameters. Proposition 6 and 7 require no assumptions. Proposition 8
assumes that λ = ρ and additionally that γ ≡ E

[
ϵM

i ϵMU
i

]
= 0.

generations.
Prop. 7, which uses instead paternal uncles, yields the same issue of a high λ, using

equations (7) and (8), as in Prop. 4. Table 9 shows results relaxing the assumption of
constant effects across generations.

Prop. 8 shows a substantially higher effect of mothers than fathers. Note that identifi-
cation here comes from the assumption of no household fixed effects (γ = 0), which may be
implausible for a variety of reasons and contrasts with our estimates for γ from Prop. 5 and
6.

In Table 8, we show the results from Prop. 9 and Prop. 10 allowing for differences in
the status transmission parameters based on the gender of the child. The first, assuming
joint equality of the nuisance parameters (a = b = c = d), results in reasonable estimates
for the assortative mating parameters and high estimates for the maternal contribution to
assortative mating. The second, which assumes that the cross moments are zero (b = d = 0),
delivers very implausible estimates for most parameters, leading us to conclude that in our
data, it is unlikely that assortative mating can be described by a process without grandparent
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Table 8: Identification Allowing Heterogeneous Effects by Child Gender
Parameter Estimate

Prop. 9 Prop. 10
βD

F 0.093 0.000
(0.012) (5.027)

βS
F 0.281 0.474

(0.011) (0.013)

βD
M 0.209 1.000

(0.032) (5.308)

βS
M 0.649 0.013

(0.019) (0.051)

λ 0.313 1.000
(0.015) (4.795)

ρ 0.135 0.005
(0.012) (1.089)

Notes: Estimates from propositions allowing for heterogeneous effects by gender. Proposition 9 assumes
equality in the nuisance parameters. Proposition 10 assumes that b = d = 0 and additionally that a = c.

cross-moments.
In Table 9, we show the results from allowing the status transmission parameters to differ

across generations. Recall that sons and fathers are less highly correlated in our sample than
fathers and grandfathers (A < B). Hence, it is reasonable to expect that the structural esti-
mates may be more accurate and stable when allowing for different effects across generations.
The estimates for (βF , βM , ρ) in Prop. 11, Prop. 13 and Prop. 14, are identical to each other
and identical to the estimates in Prop. 4. This is because in all four cases we are using the
same moments in the data to identify these three parameters (see Appendix A for details).
Prop. 13 then shows the much higher mobility estimates for the earlier generation, attribut-
ing the most of the high value of B to a very high effect of mothers αM . In Propositions
11 and Prop. 14, we cannot individually point-identify αF and αM , but we can identify a
combined mobility estimate in each case, α and α̃ respectively. As expected, because sons
and fathers are less highly correlated in our sample than fathers and grandfathers (A < B),
the combined estimates–α or α̃–are smaller than β̃ = βF + ρβM .
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Table 9: Identification Allowing Heterogeneous Effects by Generation
Parameter Estimate

Prop. 11 Prop. 12 Prop. 13 Prop. 14
α 0.465

(0.015)

αF 0.568 0.138
(0.013) (0.295)

αM 0.098 0.792
(1.094) (0.299)

α̃ 0.465
(0.007)

βF 0.272 0.346 0.272 0.272
(0.080) (0.022) (0.080) (0.080)

βM 0.220 0.169 0.220 0.220
(0.081) (0.024) (0.081) (0.081)

λ 0.010 0.041
(0.125) (0.021)

ρ 0.437 0.157 0.437 0.437
(0.207) (0.105) (0.207) (0.207)

Notes: Estimates from propositions allowing for heterogeneous effects of parents across different generations.
Proposition 11 assumes b = d . Proposition 12 assumes that b = d = 0 and a = c. Proposition 13 assumes
that λ = ρ and a = b = d. Prop. 14 assumes that b = d =

√
ac.
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6 Conclusions

In this article we show that women matters for social mobility, both through their direct effect
on their children and indirectly through the high correlation on status between spouses. Our
framework could be easily extended in a number of dimensions, three of which we discuss
briefly here:

1. The current model does not allow for direct grandparent effects. The effects are indirect
through the correlation between grandparents and how grandparents affect the parents, and
how parents affect the children. Our techniques could be used to add direct grandparents’
effects. This could be done using data on great-grandparents. Similar to our results using
data on two generations (marriage data), we would only need data on three generations (Son,
Father, MGF, PGF) to estimate direct grandparent effects.

2. In the sixth moment of our main specification (equation (12)) we assume that the error
terms in the equation for the father and the mother are uncorrelated, i.e., we are assuming
that mating is done only on observables (income). We do not really use this assumption in
most of our results, which means that we could relax it and estimate this correlation. This
will give us a measure of mating on unobservables. This estimate would be similar in spirit
to the household fixed effects γ we estimate using maternal uncles.

3. The literature usually assumes that all nuisance parameters are zero. Our results show
how this is rejected by the data. Moreover, we see how even seemingly innocuous assumptions
such as b = d = 0 (no correlations between PGM and MGF and between PGF and MGM),
could lead to extreme and implausible estimates (Prop. 10).

Just in its current form, however, our framework delivers results that shed new light on
how different assumptions on the parameters of an econometric model of mobility, especially
the often unstated assumptions on nuisance parameters, can affect mobility estimates. We
find strong effects on mobility from the maternal side of the family line even without directly
observing female labor market outcomes. We observe underlying patterns of assortative
mating that generate non-linear links across generations. And we identify a number of
previous studies that embody assumptions that we find are rejected by our data and methods.

Our model is econometric, not economic, in nature. We are agnostic here on how house-
holds choose investment in their children, or how parents bargain over their resources. This
is intentional, as we envision our methodology as one that can be applied to a large class of
models of the intergenerational transmission of human capital and intrahousehold bargaining.
Finally, our current results are for the whole US, but they could be estimated for different
regions and different population subgroups and of course to other countries and periods. We
hope that this new technique will be applied to other settings and thereby help us paint a
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more nuanced picture of social mobility, especially the roles of women and prior generations.

References

Abramitzky, Ran, Leah Boustan, Elisa Jácome, and Santiago Pérez, “Intergenera-
tional mobility of immigrants in the United States over two centuries,” American Economic
Review, 2021, 111 (2), 580–608.

, , Katherine Eriksson, James Feigenbaum, and Santiago Pérez, “Automated
linking of historical data,” Journal of Economic Literature, 2021, 59 (3), 865–918.

Althoff, Lukas, Harriet Brookes Gray, and Hugo Reichardt, “Intergenerational Mo-
bility and Assortative Mating,” 2022.

Arellano, Manuel and Stephen Bond, “Some tests of specification for panel data: Monte
Carlo evidence and an application to employment equations,” Review of Economic Studies,
April 1991, 58 (2), 277–297.

Bailey, Martha, Connor Cole, and Catherine Massey, “Simple strategies for improving
inference with linked data: A case study of the 1850–1930 IPUMS linked representative
historical samples,” Historical Methods: A Journal of Quantitative and Interdisciplinary
History, 2020, 53 (2), 80–93.

Becker, Gary S and Nigel Tomes, “An equilibrium theory of the distribution of income
and intergenerational mobility,” Journal of political Economy, 1979, 87 (6), 1153–1189.

and , “Human capital and the rise and fall of families,” Journal of labor economics,
1986, 4 (3, Part 2), S1–S39.

Chadwick, Laura and Gary Solon, “Intergenerational income mobility among daugh-
ters,” American Economic Review, 2002, 92 (1), 335–344.

Clark, Gregory, “The inheritance of social status: England, 1600 to 2022,” PNAS, 2023,
120 (27).

and Neil Cummins, “Assortative Mating and the Industrial Revolution: England, 1754-
2021,” CEPR, 2022, (17074).

, , and Matthew Curtis, “The Mismeasure of Man: Why IntergenerationalOccupa-
tional Mobility is Much Lower thanConventionally Measured, England, 1800-2021,” CEPR
workin papers, 2022, (17346).

36



Craig, Jacqueline, Katherine Eriksson, and Gregory T. Niemesh, “Marriage and
the Intergenerational Mobility of Women: Evidence from Marriage Certificates 1850-1910,”
Working Paper, 2019.

Curtis, Matthew, “The her in inheritance: how marriage matching has always mattered,
Quebec 1800-1970,” 2022, (2022-38).

Durlauf, Steven N, Andros Kourtellos, and Chih Ming Tan, “The great gatsby
curve,” Annual Review of Economics, 2022, 14, 571–605.

Espín-Sánchez, José-Antonio, Salvador Gil-Guirado, and Chris Vickers, “La
“Doña” è Mobile: The Role of Women in Social Mobility in a Pre-Modern Economy,”
The Journal of Economic History, 2022, 82 (1), 1–41.

Ferrie, Joseph P., “A new sample of males linked from the public use microdata sample
of the 1850 US federal census of population to the 1860 US federal census manuscript
schedules,” Historical Methods: A Journal of Quantitative and Interdisciplinary History,
1996, 29 (4), 141–156.

Hansen, Lars Peter, “Large sample properties of generalized method of moments estima-
tors,” Econometrica, 1982, 50 (4), 1029–1054.

Jácome, Elisa, Ilyana Kuziemko, and Suresh Naidu, “Mobility for all: Representative
intergenerational mobility estimates over the 20th century,” Technical Report, National
Bureau of Economic Research 2021.

Lam, David and Robert F Schoeni, “Family ties and labor markets in the United States
and Brazil,” Journal of Human Resources, 1994, pp. 1235–1258.

Long, Jason and Joseph Ferrie, “Intergenerational Occupational Mobility in Great
Britain and the United States Since 1850,” American Economic Review, jun 2013, 103
(4), 1109–1137.

Mazumder, Bhashkar, “Fortunate sons: New estimates of intergenerational mobility in
the United States using social security earnings data,” Review of Economics and Statistics,
2005, 87 (2), 235–255.

and Miguel Acosta, “Using occupation to measure intergenerational mobility,” The
ANNALS of the American Academy of Political and Social Science, 2015, 657 (1), 174–
193.

37



Olivetti, Claudia and M. Daniele Paserman, “In the Name of the Son (and the Daugh-
ter): Intergenerational Mobility in the United States, 1850 –1940,” American Economic
Review, aug 2015, 105 (8), 2695–2724.

Ruggles, Steven, Catherine A Fitch, and Evan Roberts, “Historical census record
linkage,” Annual review of sociology, 2018, 44, 19–37.

Saavedra, Martin and Tate Twinam, “A machine learning approach to improving occu-
pational income scores,” Explorations in Economic History, 2020, 75, 101304.

Sobek, Matthew, “The comparability of occupations and the generation of income scores,”
Historical Methods: A Journal of Quantitative and Interdisciplinary History, 1995, 28 (1),
47–51.

Strauss, Frederick and Louis Hyman Bean, Gross farm income and indices of farm
production and prices in the United States, 1869-1937 number 703, US Department of
Agriculture, 1940.

U.S. Census Bureau, Historical Statistics of the United States, GPO, 1960.

U.S. National Archives and Records Administration (NARA) , Numerical Identifi-
cation (NUMIDENT) Files. Record Group 47 U.S. National Archives and Records Admin-
istration 2018.

38



A Proofs of propositions in the paper

A.1 Model Derivation

We now use equations (4), (5) and (6) and exclusion restrictions 1, 3, 5 and 7 above. We get
the GMM analog:

E [Fi (Si − βF Fi − βMMi)] = 0
E [PGFi (Fi − βF PGFi − βMPGMi)] = 0 (20)

E [MGFi (Mi − βF MGFi − βMMGMi)] = 0

E [Fi (Si − βF Fi)] = E [Fi (βMMi)]
E [PGFi (Fi − βF PGFi)] = E [PGFi (βMPGMi)] (21)

E
[
MGFi

(
Si − βF Fi

βM

)]
− βF = E [MGFi (βMMGMi)]

we now use that all variables are normalized, i.e., E [XiXi] = 1 and get

E [FiSi] − βF = βME [FiMi] = βMρ

E [PGFiFi] − βF = βME [PGFiPGMi] = βMλ (22)
E [MGFiSi]

βM

− βFE [MGFiFi]
βM

− βF = βME [MGFiMGMi] = βMλ

Notice that the first two equations in the system in (21) come directly from equations (4)
and (5), while in the last equation we have substituted equation (4) in (6). The dependent
variable in equation (6) (Mi) is unobservable but could be expressed as observable variables
and estimated parameters using equation (4). Also, instead of writing the equations equal
to zero we have written them equaling them to the bias due to unobservable variables to
emphasize both that equations (4), (5) and (6) have unobservables and that the bias is the
same in equations (4), (5) and (6) when ρ = λ. The system in (22) reflects a system of
three independent equations to estimate four parameters. The expectations in the system
are the product of just two variables, which means that all the parameters can be expresses
analytically as a function of elements that are easily computed from the data.

We now show the estimator for βF cannot be identified using patrilineal data only. In
particular, if we solve the first two equations, those using only patrilineal data we get

E [FiSi] = βF + ρβM

E [PGFiFi] = βF + λβM

39



This result show that the first two equations are just two ways to estimate the direct
effect of a father on his son βF together with the indirect effect or bias ρβM (or λβM for
the first generation). However, no parameter can be identified using only patrilineal data in
this simple setting. If we assume λ = ρ, we do not get an extra identifying assumption. We
would just impose E [FiSi] = E [PGFiFi], which might not be true in the data and we will
make the first two moment equations linearly dependent. That is, this assumption reduces
the number of parameters by one but also reduces the number of independent equations by
one.

We now show how, using all the exclusion restrictions and matrilineal male data, we can
get six independent identifying restrictions, to estimate seven parameters. That is, matrilineal
male data is the key to get any identification. We would still need an extra assumption to
get point identification.

In addition to using the three “standard” moments, we can make a more efficient use
of the data that we have. In the previous equations there are only four empirical relations
from the data, e.g., A, B, C and D. Notice, however, that there are six empirical relations
that we can get from the data, i.e., there are six possible ways to get cross products on the
four variables that we have: (Si, Fi, PGFi, MGFi). Thus we are not using information on
the other two empirical relations that we have from the data, e.g., a and E. Moreover, if
the model specified above in equations (4), (5) and (6) is correct, there are other exclusion
restrictions that we can use.

A.2 Set Identification

Lemma. 1 If we know (βF , βM , ρ), then equations (11), (10) and (12) identify all nuisance
parameters (b, c, d).

Proof. First, notice that equations (11), (10) and (12) are independent. Second, λ does not
appear in any of them. If we know (βF , βM , ρ) and the relevant empirical moments from the
data, we have a system with three independent equations and three unknowns (b, c, d).

Figure 5 below shows set identification restrictions when the equation βM = C
B

− βF
D
B

is
partially out of the unit box. In that case, we can get some tighter identification set if we
impose that the structural parameters should be positive but smaller than 1. We show the
identified set with the following cumulative assumptions on the bottom panels in Figure (5).
i. If we assume 0 ≤ βM ≤ 1.
ii. If we also assume 0 ≤ βF ≤ 1.
iii. If we also assume 0 ≤ ρ ≤ 1.
The width of the identified set gets smaller as E [MGFiFi] gets larger relative to E [SiFi]

40



Figure 5: Set Identification.
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A.3 Identification Using Two Generations

Proposition. 1. Suppose Fi, PGFi, and MGFi are observed. If we assume a = b = c = d
and λ = ρ, then (βF , βM , ρ) is point identified.

Proof. With the stated assumptions we can write the system of equations as
B = βF + ρβM

D = (βF + βM) a

ρ = (βF + βM)2 a

With the second equation, we can directly get the sum of the mobility effects as a function
of the data (βF + βM) = D/a. Using this and the third equation, we get

ρ = D2/a.

We can now solve for βF as a function of βM and data using the second equation. Plugging
in this and the formula for ρ in the first equation we get

B = D

a
− βM + D2

a
βM

rearranging we get
βM = −aB − D

a − D2

βF = D

a
+ aB − D

a − D2

Proposition. 2. Suppose Fi, PGFi, and MGFi are observed. If we assume βM = 0, then
(βF , ρ) is point identified.

Proof. With the stated assumptions we can write the system of equations as
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Figure 6: Empirical Relations in Two-generation Records.

Notes: The solid circles represent individuals (males) with observed income while the dashed circles represent
individuals (females) with unobserved income. The thick black solid thick lines represents all three possible
pair-wise relations (empirical relations) between the three male members of the family tree.

B = βF

D = βF a

ρ = β2
F a

This is a system with two unknowns and three equations, so it is overidentified. Similar to
Prop. 1, we can use the second and third moment and we have ρ = D2/a. The second
moment then gives us βF = D/a. The system is overidentified, and the first equation implies
βF = B. If in the data we have B ̸= D/a. We should reject the assumption βM = 0.

Proposition. 3. Suppose Fi, PGFi, and MGFi are observed. If we assume a = b = c = d
and βF = βM , then (βF , λ, ρ) is point identified.

Proof. With the stated assumptions we can write the system of equations as
B = βF (1 + λ)

D = 2βF a

ρ = (2βF )2 a

This is a system with three unknowns (βF , λ, ρ) and three independent equations, so it is
identified. Similar to Prop. 1, we can use the second and third moment and we have
ρ = D2/a. From the second equation we get βF = D/2a. We can then plug this in the first
equation to get λ = B/βF − 1 = 2aB/D − 1.
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A.4 Identification Using Three Generations

Proposition. 4. Suppose Si, Fi, PGFi and MGFi are observed. If we assume b = d, then
(βF , βM , λ, ρ) is point identified.

Proof. We now use three moments to get identification
- E

[
PGFiϵ

S
i

]
= 0 and E

[
PGFiϵ

M
i

]
= 0 - Multiplying equations (4) and (6) by PGFi and

then substituting the definition of Mi,and taking expectations, we get:
E [PGFiSi] − βFE [PGFiFi] = βM (βF a + βMb) (23)

- E
[
MGFiϵ

F
i

]
= 0 - Multiplying the second equation by MGFi and taking expectations and

using b = d, we get:
E [MGFiFi] = βF a + βMb (24)

By imposing b = d, we can now identify the model. First, we can take equation (24) and
insert it in equation (23). This way we get

E [PGFiSi] − βFE [PGFiFi] = βME [MGFiFi] (25)

Now we have four equations ((7), (8), (9) and (25)) and four unknowns (βF , βM , λ, ρ). The
solution to this system is

βF = BE−CD
B2−D2

βM = BC−ED
B2−D2

ρ = A(B2−D2)−(BE−CD)
BC−ED

λ = B(B2−D2)−(BE−CD)
BC−ED

Notice that equations (8) and (9) combine create an equation on βF and βM only. This
together with equation (25) above, creates a system with two equations and two unknowns
βF and βM . We can then use equation (7) to solve for ρ and equation (8), to solve for λ.

A.5 Identification Using Maternal Uncles

Using similar assumptions as above can get the following moments using MUi

E [MUiSi] = βFE [FiMUi] + βM

(
β2

F + β2
M + 2λβF βM + γ

)
(26)

E [FiMUi] = ρ (27)

E [MGFiMUi] = βF + λβM (28)

E [PGFiMUi] = βF a + βMd (29)

where γ ≡ E
[
ϵM

i ϵMU
i

]
measures household fixed effects.
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With the full set of five variables we can observe ten empirical moments: the six empirical rela-
tions discussed above in Table 2 (A, B, C, D, E, a) and the new four moments with maternal
uncles (E [FiMUi] ,E [MGFiMUi] ,E [MUiSi] ,E [PGFiMUi]); and compute ten equations:
the original six moments plus the new four above.

Proposition. 5. Suppose Si, Fi and MGFi are observed. If we assume a = b = c = d and
λ = ρ, then (βF , βM , ρ, a) is point identified.

Proof. First, we impose a = b = c = d and ρ = λ in the system of equations above and we
get

A = βF + ρβM

C = βF D + βM (βF + ρβM)

D = (βF + βM) a

ρ = (βF + βM)2 a

Notice that now, because we do not observe PGF , we do not observe B, E and a. We can
take the last two equations and write ρ = D (βF + βM). This equation and the first two
form a system of three independent equations and three unknowns (βF , βM , ρ). Thus, we can
identify all three structural parameters. If the reader is interested, we can then use the third
or second equations above to estimate a. The reason we can get four independent equations
here with only three empirical moments (A, C, D) is that the fourth equation is quadratic,
non linear, in the parameters.

Proposition. 6. Suppose Si, Fi, MUi and MGFi are observed. Then (βF , βM , λ, ρ, γ) is
point identified.

Proof. The moments that do not use PGFi are equations (7), (9) and (10). Equation (10)
includes two nuisance parameters that are unobserved here (a, b). There are two unobservable
nuisance parameters in the same equation so we cannot identify them. Since we are not
interested in the nuisance parameters, we do not need to use this equation.
In addition to equations (7), (9), we can use equations (26), (27) and (28). This is a system
of five independent equations and five unknowns. We now show that the equations are indeed
independent and how to solve the system.
We can substitute ρ, which is directly observable in equation (27) into equation (7). We can
also substitute βF + λβM from equation (28) into the equation (9). Equations (7) and (8)
become

A = βF + βME [FiMUi]

C = βF D + βME [MGFiMUi]

This is a system with two equations and two unknowns βF and βM , so they are both identified.
With these two parameters we can go to equation (28) and solve for λ. We can use equation
(26) and identify the household fixed effects γ.
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Proposition. 7. Suppose Si, Fi, MUi and PGFi are observed. Then (βF , βM , λ, ρ, γ) is
point identified.

Proof. The moments that do not use MGFi are equations (7), (8) and (11). Equation (9)
includes two nuisance parameters that are unobserved here (a, d). However, this would not
be a problem as we see below.
In addition to equations (7), (8) and (11), we can use equations (26), (27) and (29). These six
equations form a system of five independent equations, when we substitute equation (29) into
the equation (11). Thus, this is a system of five independent equations and five unknowns.
We now show that the equations are indeed independent and how to solve the system.
We can substitute ρ, which is directly observable in equation (27) into equation (7). We can
also substitute βF a + βMd from equation (29) into the equation (11). Equations (7) and (11)
become

A = βF + βME [FiMUi]

E = βF B + βME [PGFiMUi]

This is a system with two equations and two unknowns βF and βM , so they are both identified.
With these two parameters we can go to equation (8) and solve for λ. We can use equation
(26) and identify the household fixed effects γ.

Proposition. 8. Suppose Si, Fi, MUi are observed and λ = ρ and γ = 0, then (βF , βM , ρ)
is point identified.

Proof. We can generate three moments (26), (27) and (28). Assuming λ = ρ and γ = 0 we
get

A = βF + ρβM

E [FiMUi] = ρ

E [MUiSi] = βFE [FiMUi] + βM

(
β2

F + β2
M + 2ρβF βM

)
This is a system with three equations and three unknowns (βF , βM , ρ). The second equation
identifies ρ directly. We can then use the first equation to write βF as a function of βM and
substitute that into the last equation. Then we only need to solve for a cubic equation on
βM .
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A.6 Gendered Effects

Figure 7: Family Trees for Gendered and Generational Effects.

A. Gendered Effects.

B. Generational Effects.

Notes: The horizontal lines in red represent the degree of assortative matching; the vertical relations in
green (arrows) represent the masculine effect on mobility; the vertical relations in blue (arrows) represent the
feminine relations on mobility. The solid circles represent individuals (males) with observed income while
the dashed circles represent individuals (females) with unobserved income.

Following the same steps as before, we get the following set of moments.
A = βS

F + ρβS
M (30)
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B = βS
F + λβS

M (31)

C = βS
F D + βS

M

(
βD

F + λβD
M

)
(32)

D = βS
F a + βS

Mb (33)

E = βS
F B + βS

M

(
βD

F a + βD
Md
)

(34)

ρ = βS
F βD

F a + βD
F βS

Mb + βS
F βD

Md + βS
MβD

Mc (35)

The system above shows six equations and nine parameters: six structural parameters(
βS

F , βS
M , βD

F , βD
M , λ, ρ

)
and three nuisance parameters (b, c, d). Thus the system is not point

identified. To get point identification we need at least three independent restrictions in the
parameters. Proposition 9 below shows a set of sufficient conditions for point identification
of gendered effects in our model.

Proposition. 9. Suppose Si, Fi, PGFi and MGFi are observed. If we assume a = b = c = d,
then

(
βS

F , βS
M , βD

F , βD
M , λ, ρ

)
is point identified.

Proof. First, we impose a = b = c = d in the system of equations above. Notice that a is
observable. Second, take the system of six equations above and notice that: ρ only appears
in equations (30) and (35); and λ only appears in equations (31) and (32). We can take
equation (30), solve for ρ and substitute it in equation (35) and take equation (31), solve for
λ and substitute in equation (32). We get

A − βS
F

βS
M

=
(
βS

F + βS
M

) (
βD

F + βD
M

)
a

C = βS
F D + βS

MβD
F +

(
B − βS

F

)
βD

M

The two equations above, together with equations (33) and (34) form a system of four
independent equations with four unknowns

(
βS

F , βS
M , βD

F , βD
M

)
. Once we solve this system, we

can just use equation (30) to solve for ρ and equation (31) to solve for λ.

Proposition. 10. Suppose Si, Fi, PGFi and MGFi are observed. If we assume b = d = 0
and a = c, then

(
βS

F , βS
M , βD

F , βD
M , λ, ρ

)
is point identified.

Proof. First, we impose b = d = 0 and a = c in the system of equations above. Notice
that a is observable. Second, take the system of six equations above and notice that: ρ only
appears in equations (30) and (35); and λ only appears in equations (31) and (32). We can
take equation (30), solve for ρ and substitute it in equation (35) and take equation (31), solve
for λ and substitute in equation (32). We get

A − βS
F

βS
M

=
(
βS

F βD
F + βS

MβD
M

)
a

C = βS
F D + βS

MβD
F +

(
B − βS

F

)
βD

M

The two equations above, together with equations (33) and (34) form a system of four
independent equations with four unknowns

(
βS

F , βS
M , βD

F , βD
M

)
. Once we solve this system, we

can just use equation (30) to solve for ρ and equation (31) to solve for λ.
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A.7 Generational Effects

Following the same steps as before, we get the following set of moments.
A = βF + ρβM (36)

B = αF + λαM (37)

C = βF D + βM (αF + λαM) (38)

D = αF a + αMb (39)

E = βF B + βM (αF a + αMd) (40)

ρ = α2
F a + αF αM (b + d) + α2

Mc (41)

Proposition. 11. Suppose Si, Fi, PGFi and MGFi are observed. If we assume b = d, then
(βF , βM , ρ) and α (with α ≡ αF + αM) is point identified. However, λ, αF and αM are not
point identified.

Proof. First, we impose b = d in the system of equations above. Notice that a is observable.
We can substitute equation (37) into equation (38) and substitute equation (39) into equation
(40). We have now a system with two equations and two unknowns (βF , βM).

C = βF D + βMB

E = βF B + βMD

We can go to equation (36) and identify ρ. This is as far as we can get. In equations (39),
(40) and (41) we can only identify α but not each component. In equations (37) and (38) we
can only identify (αF + λαM). Thus we have two independent equations, say (37) and (39),
for three unknowns λ, αF and αM .

Corollary. 1. Suppose Si, Fi, PGFi and MGFi are observed. If we assume a = b = d and
αF = αM , then (βF , βM , αF , λ, ρ) is point identified.

Proof. We can follow the same steps as in Proposition 11 to get identification on (βF , βM , ρ).
Unlike before, we have now an extra assumption αF = αM . Moreover, we are imposing a = b
now. We can use equation (39) and get D = 2αF a to identify αF . We can then use equation
(37) to identify λ.

Proposition. 12. Suppose Si, Fi, PGFi and MGFi are observed. If we assume b = d = 0
and a = c, then Θ ≡ (βF , βM , αF , αM , λ, ρ) is point identified.
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Proof. First, we impose b = d = 0 and a = c in the system of equations above. Notice
that a is observable. Second, take the system of six equations above and notice that: ρ only
appears in equations (36) and (41); and λ only appears in equations (37) and (38). We can
take equation (36), solve for ρ and substitute it in equation (41) and take equation (37), solve
for λ and substitute in equation (38). We get

A − βF

βM

=
(
α2

F + α2
M

)
a

C = βF D + βMB

With the assumption here, equation (39) identifies αF directly, i.e, αF = D/a. If we substitute
this in equation (40), we get

E = βF B + βMD

This, together with the second equation above forms a system with two equations and two
unknowns and identifies βF and βM . Using the values for αF , βF and βM , together with the
first equation above, we can identify αM . Finally, we can use the mobility parameters αF ,
αM , βF and βM and using equations (36) and (37), we get the mating parameters ρ and λ.

Proposition. 13. Suppose Si, Fi, PGFi and MGFi are observed. If we assume a = b = d
and ρ = λ, then (βF , βM , αF , αM , ρ), is point identified.

Proof. First, we impose a = b = d in the system of equations above. Notice that a is
observable. Second, take the system of six equations above and notice that λ only appears
in equations (37) and (38). We can take equation (37), solve for λ and substitute in equation
(38). We get

C = βF D + βMB

We can take equation (39) and substitute in equation (40) to get
E = βF B + βMD

The previous two equations form a system of two equations and two unknowns (βF , βM). In
fact, this is the same system depicted in Figure 4 (right). Now we can just use equation (36)
to solve for ρ.

A = βF + ρβM

Now imposing ρ = λ means that we can use equations (37) and (39) for form the system
below.

B = αF + ραM

D = (αF + αM) a

The previous two equations form a system of two equations and two unknowns (αF , αM).

Proposition. 14. Suppose Si, Fi, PGFi and MGFi are observed. If we assume b = d =√
ac, then (βF , βM , ρ) and α̃ (with α̃ ≡ αF

√
a + αM

√
c) is point identified. However, αF ,

αM , and λ are not point identified.
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Proof. We can substitute equation (37) into equation (38) and get
C = βF D + βMB

Using b = d we can substitute equation (39) into equation (40) and get
E = βF B + βMD

These two equations above form a system with two equations and two unknowns βF and βM .
Solving for βF and βM and using equation (36) we can solve for ρ.
If we would write ρ = λ we can write equation (37) as

B = αF + ραM

This gives us one equation to identify αF and αM . Notice, however, that αF and αM appear
in all other equations as α̃ ≡ αF

√
a + αM

√
c.22 This means we have only one indepen-

dent equation to estimate α̃ and equation (37) that relates αF and αM . Without further
assumptions on c we do not get point identification.

Corollary. 2. Suppose Si, Fi, PGFi and MGFi are observed. If we assume b = d =
√

ac and
αF = αM , then (βF , βM , ρ) and α̃ (with α̃ ≡ αF (

√
a +

√
c)) are point identified. However,

αF , αM , and λ are not point identified.

Proof. First, we impose b = d =
√

ac and αF = αM in the system of equations above. Notice
that a is observable. Second, take the system of six equations above and notice that: ρ only
appears in equations (36) and (41); and λ only appears in equations (37) and (38). We can
take equation (36), solve for ρ and substitute it in equation (41) and take equation (37), solve
for λ and substitute in equation (38). We get

A − βF

βM

= α2
F

(√
a +

√
c
)2

= α2
F

a

(
a +

√
ac
)2

C = βF D + βMB

The previous two equations, together with equations (39) and (40), below, form a system
with four equations and four unknowns.

D = αF

(
a +

√
ac
)

E = βF B + βMαF

(
a +

√
ac
)

We can take the last two equations and get E = βF B + βMD. This together with the second
equation above (C = βF D + βMB) creates a system of two equations and two unknowns and
identifies βF and βM . With βF and βM and using equation (36), we can identify ρ.
Notice that αF appears three times in the equations above, but each time appears in the
same form αF (a +

√
ac) thus, we only have one independent equation for αF and c. The

other time that αF appears is in equations (12) and 13. In both cases it appears together
with λ as α (1 + λ). Thus, we have two independent equations to estimate three parameters
(αF , λ, c). Thus, without further assumptions, αF , λ and c, are not point identified.

22Equation (39), dividing both sides by
√

a, can be written as D√
a

= α̃ and similarly for equation (40).
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A.8 Chadwick and Solon (2002)

We now relate Chadwick and Solon (2002) analysis and put it into the context of our model.
For simplicity and because they are implicitly assuming this, we look at the case βM = 0.23

There are three equations in Chadwick and Solon (2002). In our notation and removing the
intercepts, they are first,

Mi = βF MGFi + ϵwi (42)

where Mi = logEwi denotes the log earnings of the wife, MGFi = y0i denotes the maternal
grandfather’s log income and βF = βw denotes the effect of a father’s earnings in her daughters
earnings, or the intergenerational elasticity. Second,

ρ0 = Corr (Mi, Fi) (43)

where ρ0 = γ measures the degree of assortative mating and Fi = logEhi. Their final equation
is

Fi = βhMGFi + ϵhi (44)

This last equation comes from combining equation (42) above, with this equation below from
Lam and Schoeni (1994)

Fi = ρ0Mi + ϵ (45)

We then substitute equation (42) into equation (45) and get
Fi = ρ0βF MGFi + (ρ0ϵwi + ϵ)

In this case, as Chadwick and Solon (2002) argue, βh = ρ0βF and ϵhi = ρ0ϵwi + ϵ.24 In this
equation, we get βh = E [FiMGFi] ≡ D if E [MGFiϵhi] = 0. This implies

ρ0 = D/B

We have E [MGFiϵwi] = 0 by assumption that the equation (42) is well specified. However,
it is not clear that E [MGFiϵ] = 0. First, it is an assumption inconsistent with the exercise
that the mother’s earnings are causing the father’s earnings. E [MGFiϵ] = 0 implies either:
i) that the father’s earnings are not correlated with her own parents earnings (βF = βM = 0);
or ii) that his own parents earnings are not correlated with anything correlated with the
mother’s earnings (a = b = c = d = 0). Since the goal of the exercise is to show social
mobility, we focus on the second case. This hypothesis is testable by computing whether
a = E [PGFiMGFi] ̸= 0. It is rejected in our sample,
In summary, our methodology differs from Chadwick and Solon (2002) in two respects. The
first is an economic distinction. The model assumes that the maternal grandparents transmit
their status to their daughter (Mi) but then the father status is not affected by her parents,
or if it is, that the father family tree is completely orthogonal to the mother and to her side
of the tree. The math is correct, but it is implicitly assuming a = b = c = d = 0. While this
is a common implicit assumption, it may not hold and is rejected in our data.

23When βM ̸= 0 the analysis below is still correct, but using β̃F = βF + λβM instead of βF .
24If βM ̸= 0, we can write Fi = ρ0βF MGFi + ρ0βM MGMi + (ρ0ϵwi + ϵ), multiplying both sides by

MGFi, taking expectations and using the exclusion restrictions we get E [FiMGFi] = ρ0βFE [MGFiMGFi]+
ρ0βME [MGMiMGFi], substituting the values in the expectations we get D = ρ0 (βF + λβM ) = ρ0β̃F . As
shown in the main body of the paper, we have B = β̃F . Therefore, when βM ̸= 0, we have ρ0 = D/B.
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The second distinction is econometric in nature. They model assortative mating as a causal
relation as in equation (45) above. While they model the father status as determined by the
mother status, one could also write the mother status as determined by the father:

Mi = ρ1Fi + ϵ
′ (46)

If we repeat the exercise using equation (46) instead of equation (45) we get.

Fi = 1
ρ1

Mi + ϵ

ρ1
= βF

ρ1
MGFi + ϵwi

ρ1
+ ϵ

ρ1
= βF

ρ1
MGFi +

(
ϵwi

ρ1
+ ϵ

ρ1

)

Multiplying by MGFi and taking expectations we get E [FiMGFi] = βF

ρ1
. Solving for ρ1

we get

ρ1 = B/D

In other words, if we asume that is the mother causing the father status, we also get a
ratio moment, but inverted.
One could think that equations (46) and (45) are equally valid to represent the correlation
between Mi and Fi expressed in equation (43). However, using equation (46) instead of
equation (45) gives us a different equation for the relationship between Fi and MGFi. We
can use equation (43) to represent the assortative mating relationship, which is a horizontal
non-causal relationship. Using either equation (45) or equation (46) is problematic since they
give different results and are implicitly assuming a causal relationship.
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B Data Appendix

In this section, we analyze the representativeness of our sample. We restrict attention to
the sample with both grandparents and the father, but do not impose the requirement to
additionally link any uncles. We then do a logistic regression of the probability of being
successfully linked in the complete count Census for the corresponding year. We restrict the
complete count Census to be males between the ages of 18 and 79, but do not impose any
additional sample restrictions. As controls, we use whether the individual lives in an urban
area, whether they are white, age, dummies for nativity and broad occupational category
dummies for white collar occupations, middle skilled occupations and low skilled occupations,
with farming the excluded category.25 The results are in Table 10, where we report the odds
ratios for the regressions. The linked sample size is 23,737.
In column (1), we report the results for the paternal grandfather’s generation. The matched
sample is more likely to be rural, substantially more likely to be white and more likely to be
a farmer than the overall population. There is no significant difference between the matched
sample and the population in nativity. Column (2), showing the maternal grandparents, is
very similar. In column (3) analyzing the fathers, the proportion of white-collar occupations
is more similar to the rest of the population. Although the requirement to have linked
grandparents of course biases the sample towards being American born, interestingly there
still are individuals who report being born overseas. The overrepresentation of rural and white
individuals remains. In column (4), we look at the representativeness of sons. In contrast to
older generations, here farmers are underrepresented relative to the overall population. The
linked sons are also disproportionately younger.

The most important adjustment to the occupational scores is for farmers, particularly
for the grandfathers’ generation. For the grandfathers of the main sample containing both
grandparents, 59 percent of grandfathers are farmers. In Figure 8, we show a violin plot
displaying the density of the percentile of farmers in the distribution of adjusted occupational
scores for paternal grandfathers. The unadjusted OCCSCORE would be at the 4th percentile,
with farmers a mass point of over half of the distribution, between the 4th and the 63th

percentiles. The adjusted OCCSCORE based on state farm income result in a much wider
spread of farmers within the overall distribution.

25More specifically, for the nativity dummies we use one for whether either or both parents were foreign
born (but they themselves were born in America) and one for whether they themselves were born outside
the United States. Individuals with no foreign born parents and born in the United States are the excluded
category.
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Table 10: Logistic Regression of Probability of Matching
(1) (2) (3) (4)

PGF MGF Father Son
Urban 0.407∗∗∗ 0.417∗∗∗ 0.458∗∗∗ 0.535∗∗∗

(0.008) (0.008) (0.008) (0.007)

White 3.599∗∗∗ 3.679∗∗∗ 3.922∗∗∗ 3.403∗∗∗

(0.155) (0.158) (0.169) (0.131)

Age 1.011∗∗∗ 1.008∗∗∗ 0.956∗∗∗ 0.853∗∗∗

(0.001) (0.001) (0.001) (0.001)

Parents foreign 1.168∗∗∗ 1.191∗∗∗ 0.983 0.274∗∗∗

(0.024) (0.024) (0.018) (0.032)

Born foreign 1.143∗∗∗ 1.065∗∗∗ 0.182∗∗∗ 1.000
(0.022) (0.020) (0.008) (.)

White collar 0.564∗∗∗ 0.560∗∗∗ 0.807∗∗∗ 4.188∗∗∗

(0.015) (0.015) (0.018) (0.103)

Middle skill 0.753∗∗∗ 0.803∗∗∗ 0.817∗∗∗ 3.409∗∗∗

(0.016) (0.016) (0.016) (0.080)

Laborer 0.402∗∗∗ 0.442∗∗∗ 0.387∗∗∗ 2.629∗∗∗

(0.009) (0.010) (0.009) (0.061)

Notes: Odds ratios from logistic population of matching an individual. Sample restricted to males between
18 and 79. *, ** and *** represent p < 0.1, p < 0.05 and p < 0.01 respectively.

Figure 8: Farmers Percentile in Income Distribution, Paternal Grandfathers.
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C Estimates Using Information on Blacks

In this subsection, we show the results for the subsample of linked Blacks. Because of the
small sample size, we are only able to estimate a small number of the propositions with any
degree of precision. Notice that for the overall sample, which is 97.9% white, we have A < B,
which creates estimates for λ close to 1. For Blacks, we have B > A. This creates estimates
for λ close to zero.

Table 11: Black Subsample
Parameter Estimate

Prop. 1 Prop. 2 Prop. 3 Prop. 4
βF 0.335 0.200 0.335 0.397

(0.887) (0.097) (0.040) (0.072)

βM 0.214 0.420
(0.884) (0.216)

λ 0.000 0.000
(4.187) (0.219)

ρ 0.284 0.305 0.037 0.104
(2.976) (0.047) (0.012) (0.068)

Notes: Estimates for Propositions 1-4 for Blacks.
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