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Abstract 

In medical treatment and elsewhere, it has become standard to base treatment intensity 

(dosage) on evidence in randomized trials. Yet it has been rare to study how outcomes 

vary with dosage. In trials to obtain drug approval, the norm has been to specify some dose 

of a new drug and compare it with an established therapy or placebo. Design-based trial 

analysis views each trial arm as qualitatively different, but it may be highly credible to 

assume that efficacy and adverse effects (AEs) weakly increase with dosage. Optimization 

of patient care requires joint attention to both, as well as to treatment cost. This paper 

develops methodology to credibly use limited trial evidence to choose dosage when 

efficacy and AEs weakly increase with dose. Manski supposes that dosage is an integer 

choice t ∊ (0, 1, . . . , T), T being a specified maximum dose. He studies dosage choice 

when trial evidence on outcomes is available for only K dose levels, where K < T + 1. Then 

the population distribution of dose response is partially rather than point identified. The 

identification region is a convex polygon determined by linear equalities and inequalities. 

Manski characterizes clinical and public-health decision making using the minimax-regret 

criterion. A simple analytical solution exists when T = 2 and computation is tractable when 

T is larger. 

 

An early draft of this paper, with a slightly different title, was circulated in April 2023. I have benefited from the 

opportunity to present this work in seminars at Cornell University and Northwestern University. John Mullahy and Mark 

Ratain have provided helpful comments. 
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1. Introduction 

 

1.1. Background 

 

 The need to choose a treatment intensity (dosage) arises in many settings. In medicine and elsewhere, 

it has become standard to base dosage on evidence obtained in randomized trials. Yet trial evidence has 

commonly been limited to comparison of at most a few dose levels.  

 Evidence on response to dosage has been particularly limited in the Phase III trials performed to obtain 

U.S. Food and Drug Administration (FDA) approval for marketing new drugs. These trials rarely study 

how patient outcomes vary with dosage. Instead, they typically specify some dose of a new drug and 

compare it with an established therapy or placebo. When evaluating drugs for treatment of cancer, the 

studied dose is often the maximum tolerated dose, a concept defined by National Cancer Institute (2023) as 

“the highest dose with acceptable side effects.” To determine the maximum tolerated dose, pharmaceutical 

firms may compare several dose levels of a new drug in “dose-finding trials” undertaken as part of 

preliminary Phase II studies used to guide the design of Phase III trials (Viele et al., 2015). However, Phase 

II sample sizes in are usually small and the findings not published. 

 

Illustration: Clinicians seeking to achieve optimal adjuvant care for various cancers may choose between 

immunotherapy and surveillance. Immunotherapy aims to lower the risk of disease recurrence, but it may 

have toxicities that generate immune-related adverse effects (AEs), lowering quality of life or even yielding 

fatalities. It is credible to expect that, as dosage increases, the risk of recurrence falls and the risk of AEs 

rises. The reason is that the stimulation of the immune system produced by immunotherapy may destroy 

both malignant and healthy cells. Increasing dosage is also more costly. The optimal dosage appropriately 

weighs these opposing effects, which may be patient specific. The standard practice in Phase III studies has 

been to perform a two-armed trial comparing a specified dose of a new immunotherapy with an existing 

therapy or a placebo. Examples include recent trials that evaluated new immunotherapies for resectable 
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melanoma (Eggermont et al., 2015, Weber et al. 2017, Eggermont et al., 2018). These trials provide no 

direct information about outcomes with alternative dosages that might yield better combinations of efficacy 

and AEs. Mathematical modeling of dose response suggest that the dose levels specified in these trials 

could be lowered by at least fifty percent without reduction of efficacy (Ratain and Goldstein, 2018; Peer 

et al., 2022). □  

 

 I wrote above that Phase III studies provide no “direct” information about alternative dosages. The 

qualifier “direct” stems from the fact that the prevalent design-based analysis of randomized trials views 

each trial arm as qualitatively different. Consider, for example, a three-arm trial comparing treatments (A, 

B, C). In design-based analysis, findings with arm A are not used to draw conclusions about arms B and C, 

and vice versa. 

 Design-based analysis is well-grounded when treatment arms differ qualitatively from one another. 

However, this commonly is not so when comparing dosages of treatments. If A, B, and C are increasing 

dosages of an immunotherapy or another cancer treatment such as chemotherapy or radiation, there is good 

reason to think that efficacy and AEs both increase with dosage. Monotonicity of efficacy and AEs is 

similarly credible with drug treatment of diseases other than cancer. Thus, the findings for arm A provide 

indirect information about arms B and C, in the form of bounds on outcomes. Designed-based analysis does 

not use this information. 

 Beyond drug treatment, it similarly may be credible to assume that efficacy and AEs increase with 

dosage in other aspects of medicine and other realms of treatment. In medicine, the efficacy of radiological 

scans in detecting disease increases with dosage but so do the AEs generated by radiation. In agriculture, 

increasing the dosage of herbicides and pesticides may increase crop yields but produce greater 

environmental AEs and is more costly. In criminal justice, efficacy in preventing crime may increase with 

the intensity of proactive policing activities such as stop and frisk, but increasing these activities may harm 

the community by infringing on the privacy of innocent persons (Manski and Nagin, 2017). 
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 In medical research, a shortcoming of prevalent trial analysis of dosage has been the practice of 

studying efficacy and AEs separately, viewing the former as the primary outcome and the latter as a 

secondary outcome. This is reasonable if efficacy has a much larger effect on patient health than AEs. 

However, this asymmetry may not prevail when considering dosage for treatment of cancers and some other 

diseases. Optimization of patient care requires joint attention to efficacy and AEs. This can be achieved by 

specifying and studying a composite measure of patient health that varies appropriately with both outcomes. 

 It is concerning that medical literature makes frequent references to optimal patient care, without 

clearly defining optimality. Consider, for example, a new Food and Drug Administration (2023) draft 

Guidance for Industry with the title “Optimizing the Dosage of Human Prescription Drugs and Biological 

Products for the Treatment of Oncologic Diseases.” The document does not clearly explain what it means 

to optimize dosage. It states (page 1, footnote 2): “Optimal dosage is the dosage that can maximize the 

benefit/risk profile or provide the desired therapeutic effect while minimizing toxicity.” This brief attempt 

to define optimal dosage does not recognize that efficacy and toxicity both increase with dosage, in a 

manner that may be patient specific. The tension between these forces makes it impossible to find a dosage 

that simultaneously maximizes therapeutic effect while minimizing toxicity. The optimal dosage must 

appropriately weigh these opposing forces. 

 

1.2. This Paper 

 

The long-run solution to the current dearth of trial evidence on dose response should be to design and 

execute new trials that enrich the available data. For now, it is important to use the existing data effectively. 

This goal motivates the present paper, which develops methodology to credibly use limited trial evidence 

to choose treatment dosage when efficacy and AEs weakly increase with dose. I bring to bear principles of 

partial identification analysis and minimax-regret (MMR) decision making described in Manski (2018, 

2019). 
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I suppose that dosage is an integer choice variable t ∊ (0, 1, . . . , T) among feasible dose levels, where 

T is a specified maximum dose. I assume that the objective is to maximize expected patient welfare, which 

is a function of treatment efficacy and AEs, minus expected treatment cost. To simplify the analysis, I 

consider illness and adverse effects to be binary events (yes/no), rather than outcomes that vary in severity. 

I also suppose that dosage is a one-time choice rather than a dynamic decision.  

The central difficulty addressed in the paper is that trial evidence on outcomes is available for only K 

dose levels, where K < T + 1. Assuming only that efficacy and AEs are weakly increasing in dosage, the 

population distribution of dose response is partially rather than point identified. I find that the identification 

region is a convex polygon determined by linear equalities and inequalities. 

The identification problem makes it logically infeasible to choose dosage to maximize expected 

welfare. Nevertheless, a clinician or public-health planner can make a reasonable dosage choice under 

ambiguity. Whereas a clinician chooses a treatment for a single patient, a planner allocates a population of 

patients across dose options. I study decision making using the minimax-regret criterion. I find that a simple 

analytical solution exists when T = 2 and computation is tractable when T is larger. 

 Section 2 sets up the dosage-choice problem. Section 3 introduces the central maintained assumption 

that efficacy and AEs weakly increase with dosage. I study identification of the distribution of dose response 

under this assumption, considering the sample size in the trial to be large enough to make sampling 

imprecision negligible. Section 4 analyzes dosage choice in this setting, with brief consideration of decision 

making when sampling imprecision is not negligible. Section 5 discusses extensions of the analysis that 

warrant future research. 

 The analysis of identification in this paper differs in several respects from the study of monotone 

treatment response in Manski (1997). That article analyzed partial identification using observational data 

when a univariate outcome varies monotonically with treatment intensity. It did not study decision making. 

The present identification setting differs because the (efficacy, AE) outcome is bivariate, with increasing 

dosage improving the former outcome but worsening the latter one. It also differs because trial data are 
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more informative than observational data. A further difference is that outcomes are binary here, whereas 

they were only required to be bounded in the earlier paper. 

 The present work differs substantially from the large body of research that assumes a parametric dose 

response model of a univariate outcome in order to point-identify and estimate dose response. A leading 

case in pharmacology is nonlinear least squares estimation of a certain three-parameter version of the Hill 

equation predicting a univariate biological response generated by a scalar drug concentration. See Gesztelyi 

et al. (2012), equation 8. I am not aware of studies that specify and estimate a parametric model of the 

bivariate (efficacy, AE) outcome. The norm has been to study efficacy and AEs separately. 

 It may appear that point estimation of a parametric model of the bivariate outcome would be valuable 

to patient care, as one might then aim to approximately optimize dose choice using the point estimate. The 

value is real if the specified parametric dose response model is known to be correct, but it is illusory 

otherwise. Concern with the credibility of such a model motivates the present research on dosage choice 

under ambiguity. The decision criterion used to formalize choice under ambiguity is consequential. Section 

4 gives several reasons that motivate focus on MMR rather than alternatives such as subjective Bayes and 

maximin decisions. 

 The analysis in this paper has potential application to diverse non-medical problems of dosage choice 

in settings with monotone response of (efficacy, AEs) to dosage. For concreteness, I use medical language 

throughout, considering a clinician who treats a patient or a public health planner that treats a population. 

Within the medical realm, I sometimes specifically refer to treatment with drugs, this being a highly 

important area of application. 

 

2. The Dosage-Choice Problem 

 

 Letting j label a patient, I suppose that two dose-dependent treatment outcomes [dj(t), ej(t)] determine 

the patient’s health, or more generally, welfare. Given dose t, patient j may experience a disease [dj(t) = 1 

if yes, dj(t) = 0 if no] and/or an AE [ej(t) = 1 if yes, ej(t) = 0 if no]. Thus, the bivariate outcome [dj(t), ej(t)] 
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takes one of the four values [(0, 0), (1, 0), (0, 1), (1, 1)]. The simplifying assumption that disease and AEs, 

are binary outcomes rather than more complex phenomena enables transparent analysis of the tension 

between efficacy and AEs that arises in dosage choice. 

 Welfare is a function of these outcomes, denoted wj[dj(t), ej(t)]. Treatment cost, including the monetary 

and non-monetary costs of administering treatment, is a function gj(t) of the dose level, with cost measured 

in the same units as welfare. In medical contexts, welfare is often measured as quality-adjusted life years 

(QALYS); see Loomis and McKenzie (1989). 

 I index outcomes, welfare, and cost by j, permitting full heterogeneity across the population. It is 

realistic to suppose that disease and AEs both lower welfare; thus, wj(0, 0) > max [wj(0, 1), wj(1, 0)] ≥ min 

[wj(0, 1), wj(1, 0)] > wj(1, 1) for all patients j. It is also realistic to suppose that treatment cost is non-

negative and weakly increases with dosage. My analysis does not require these conditions, but I use them 

when reporting illustrative computational findings. 

 I assume that the objective is to maximize welfare net of cost. Interpretation of optimal dosage depends 

on the knowledge that a clinician of other planner possesses. A highly idealized interpretation supposes that 

the planner has perfect foresight, knowing wj[dj(t), ej(t)] and gj(t) for all t ∊ {0, 1, 2, . . . , T}. Then an 

optimal dose solves the problem max t = 0, . . , T wj[dj(t), ej(t)] – gj(t). 

 Perfect foresight is too unrealistic an assumption to provide a useful benchmark for decision making. 

It has been common in medical economics to study optimal care supposing that a clinician has objectively 

correct probabilistic expectations; see, for example, Phelps and Mushlin (1988). Assume that the clinician 

observes certain patient attributes, such as age, sex, and health history. Viewing j as a member of a 

population J of patients who have the same observable attributes, assume that the clinician knows the dose-

dependent distributions p{w[d(t), e(t)], g(t)}, t ∊ {0, 1, 2, . . . , T} of (welfare, cost) over J and chooses a 

dose that maximizes expected net welfare. Then an optimal dose solves max t = 0, . . , T E{w[d(t), e(t)]} – 

E[g(t)]. 

 The above knowledge scenario is still typically unrealistic. The standard protocol for data collection 

in randomized clinical trials yields empirical evidence only on patient disease and adverse-effect outcomes, 
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not on welfare as a function of these outcomes. Medical economists conduct separate studies that sample 

patients and aim to learn their welfare functions, by questioning them about the choices they would make 

if they were to experience hypothetical disease and AEs; e.g., Basu and Meltzer (2007) and Devlin and 

Brooks (2017). However, the patients in these studies typically are different persons than the subjects in 

clinical trials. 

 Estimation of dose-dependent expected welfare may be feasible if it is credible to assume that welfare 

functions are mean-independent of disease and adverse-effect outcomes; that is, E[w(h, i)|d(t) = h, e(t) = i] 

=  E[w(h, i)], h = 0, 1 and i = 0, 1. Then expected welfare with dose t is  

 

(1)  E{w[d(t), e(t)]}  =  E[w(0, 0)]⋅p[d(t) = 0, e(t) = 0] + E[w(1, 0)]⋅p[d(t) = 1, e(t) = 0] 

                                          + E[w(0, 1)]⋅p[d(t) = 0, e(t) = 1] + E[w(1, 1)]⋅p[d(t) = 1, e(t) = 1] – E[g(t)]. 

 

A study of patient choice in hypothetical scenarios enables estimation of the outcome-specific expected 

welfare function E[w(⋅, ⋅)] = {E[w(1, 1)], E[w(1, 0)], E[w(0, 1)], E[w(0, 0)]}. A randomized trial with T + 

1 arms t ∊ {0, 1, 2, . . . , T} enables estimation of the dose-dependent outcome distributions p[d(t), e(t)], t 

∊ {0, 1, 2, . . . , T}. The prevalent practice in articles presenting trial findings has been to report only 

marginal outcome distributions p[d(t)] and p[e(t)], not bivariate distributions p[d(t), e(t)]. I will ignore this 

inadequacy of the literature, as it can be remedied with access to subject-specific trial data. 

  I henceforth assume that (1) holds and that research has revealed E[w(⋅, ⋅)]. I also assume that mean 

treatment cost E[g(t)] is known. My concern is that it has been rare to perform the aforementioned (T + 1)-

armed trial. Instead, for some integer K with 1 < K < T + 1, the standard practice has been to perform a K-

armed trial, assigning subjects to K specified dosages, tk, k = 1, . . , K. With this design, a trial directly 

enables one to estimate only the outcome distributions p[d(tk), e(tk)], k = 1, . . . , K, not p[d(t), e(t)] for other 

dosages. Supposing that the trial is large enough that sampling imprecision is negligible, design-based trial 
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analysis enables solution of the dose-constrained optimization problem max k  = 1, . . , K E{w[d(tk), e(tk)]}− 

E[g(tk)], but not the unconstrained problem max t = 0, . . , T E{w[d(t), e(t)]}− E[g(t)]. 

 The incompleteness of design-based analysis may be only a minor concern when the K treatment arms 

(tk, k = 1, . . . , K) well-approximate the range t ∊ {0, 1, 2, . . . , T} of feasible dose levels. It can become a 

major difficulty when K is small relative to T + 1. Particularly incomplete are standard Phase III drug trials 

where K = 2, with t1 = 0 and t2 being a specified positive dose level. Then it becomes important to explore 

credible extrapolation beyond the trial design, enabling informative conclusions to be drawn about 

outcomes with dose levels that are not in the design. This is the subject addressed below. 

 

3. Identification with Monotone Dose Response 

 

3.1. Monotone Dose Response 

 

 As discussed in the Introduction, there often is good reason to expect that efficacy and AEs increase 

with dosage. Disease being a binary outcome, a patient who remains free of disease with a low dose would 

remain free of disease with a higher dose. AEs being a binary outcome, a patient who has an adverse effect 

with a low dose would have one with a higher dose. Formally, I pose these assumptions of monotone dose 

response:  

 

Monotone Dose Response: Consider dose levels (s, t) with t > s. For each patient j ∊ J, 

Monotone Efficacy (ME): dj(s) = 0 ⇒ dj(t) = 0. 

Monotone AEs (MT): ej(s) = 1 ⇒ ej(t) = 1. 

 

A less concise but analytically helpful way to express monotone dose response uses the concept of patient-

specific threshold dose levels.  
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Monotone Dose Response Expressed Through Threshold Dose Levels: For each patient j ∊ J, 

 

Monotone Efficacy (ME): Either dj(t) = 1, all t ∊ {0, 1, 2, . . . , T}, or there exists a threshold dose tdj ∊ {0, 

1, 2, . . . , T} such that dj(t) = 1 for t < tdj and dj(t) = 0 for t ≥ tdj. To concisely express when dj(t) = 1, all t ∊ 

{0, 1, 2, . . . , T}, it suffices to define an infeasible threshold dose tdj = T + 1.  

 

Monotone AEs (MT): Either ej(t) = 0, all t ∊ {0, 1, 2, . . . , T} or there exists a threshold dose tej ∊ {0, 1, 2, 

. . . , T} such that ej(t) = 0 for t < tej and ej(t) = 1 for t ≥ tej. To concisely express when ej(t) = 0, all t ∊ {0, 

1, 2, . . . , T}, it suffices to define an infeasible threshold dose edj = T + 1.  

 

The two versions of (ME)−(MT) are equivalent, as dj(t) = 1[t < tdj] and ej(t) = 1[t ≥ tej]. 

 

3.2. Identification with Limited Trial Evidence 

 

 I consider identification with limited trial evidence. Let q(td, te) denote the population distribution of 

threshold dose levels. In the absence of trial evidence, q(td, te) may be any bivariate distribution on {0, . . . 

, T + 1} x {0, . . . , T + 1}. Thus, there are (T + 2)2 component probabilities. The non-negativity of 

probabilities and the Law of Total Probability imply that q(td, te) satisfies these basic conditions: 

 
(2)   q(td = h, te = i)  ≥  0, h ∊ {0, 1, 2, . . . , T + 1}, i ∊ {0, 1, 2, . . . , T + 1}. 
 

                  T + 1     T + 1 
(3)   1  =       ∑          ∑ q(td = h, te = i). 
                  h = 0      i = 0  
 

The outcome distributions p[d(t), e(t)], t ∊ {0, 1, 2, . . . , T} have 4(T + 1) component probabilities. 

Equations (4a)−(4d) express the outcome probabilities in terms of q(td, te). For t ∊ {0, 1, 2, . . . , T}, 
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                                                                            t         T + 1 
(4a)   p[d(t) = 0, e(t) = 0]  =  q(td ≤ t, te > t)  =   ∑          ∑ q(td = h, te = i). 
                                                                         h = 0      i = t + 1  
 
                                                                           T + 1         T + 1 
(4b)   p[d(t) = 1, e(t) = 0]  =  q(td > t, te > t)  =     ∑              ∑ q(td = h, te = i). 
                                                                           h = t + 1     i = t + 1  
 
                                                                            t          t 
(4c)   p[d(t) = 0, e(t) = 1]  =  q(td ≤ t, te ≤ t)  =   ∑        ∑ q(td = h, te = i). 
                                                                         h = 0    i = 0  
 
                                                                             T + 1            t  
(4d)   p[d(t) = 1, e(t) = 1]  =  q(td > t, te ≤ t)  =       ∑             ∑ q(td = h, te = i). 
                                                                             h = t + 1    i = 0 
 

Given limited trial evidence, the above preliminaries immediately yield the identification regions for 

q(td, te), p[d(t), e(t)], and E{w[d(t), e(t)]}. Proposition 1 gives the findings. I denote the identification region 

for q(td, te) as Q. The findings for identification of p[d(t), e(t)] and E{w[d(t), e(t)]}, t ∊ {0, 1, 2, . . . , T} 

follow immediately from determination of Q. The identification regions for p[d(t), e(t)], t ∊ {0, 1, 2, . . . , 

T} and E{w[d(t), e(t)]}, t ∊ {0, 1, 2, . . . , T} are denoted P and W. 

 

Proposition 1: Let (ME) and (MT) hold. Let a K-armed trial assigning subjects to dosages, tk, k = 1, . . , K 

reveal the outcome distributions p[d(tk), e(tk)], k = 1, . . . , K. Then Q comprises all threshold-dose 

distributions q(td, te) that satisfy (2), (3), and, for k = 1, . . , K, 
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                                                                                 tk     T + 1 
(5a)   p[d(tk) = 0, e(tk) = 0]  =  q(td ≤ tk, te > tk)  =   ∑        ∑ q(td = h, te = i), 
                                                                              h = 0   i = tk + 1  
 
                                                                                T + 1           T + 1 
(5b)   p[d(tk) = 1, e(tk) = 0]  =  q(td > tk, te > tk)  =     ∑                ∑ q(td = h, te = i), 
                                                                                h = tk + 1     i = tk + 1  
  
                                                                                tk         tk 
(5c)   p[d(tk) = 0, e(tk) = 1]  =  q(td ≤ tk, te ≤ tk)  =  ∑        ∑ q(td = h, te = i), 
                                                                             h = 0   i = 0  
 
                                                                                  T + 1            tk  
(5d)   p[d(tk) = 1, e(tk) = 1]  =  q(td > tk, te ≤ tk)  =       ∑               ∑ q(td = h, te = i). 
                                                                                  h = tk + 1    i = 0 
 
 
P comprises all collections of distributions p[d(t), e(t)], t ∊ {0, 1, 2, . . . , T},  t ∊ {0, 1, 2, . . . , T} that satisfy 

(4a)−(4d) for some element of Q. W comprises all vectors of means E{w[d(t), e(t)]}, t ∊ {0, 1, 2, . . . , T} 

that satisfy (1) for some element of P.   □  

 

Proposition 1 shows that q(td, te) is partially identified. Recall that q(td, te) has (T + 2)2 component 

probabilities. These solve one linear equation by The Law of Total Probability (3) and 4K more by 

(5a)−(5d). For each k, the Law of Total Probability implies that only three of the four equations are linearly 

independent. Hence, q(td, te) solves 3K + 1 non-redundant linear equations in (T + 2)2 unknowns, plus the 

linear inequalities (2), making Q a (T + 2)2 – (3K + 1) dimensional convex polygon. q(td, te) is partially 

identified even when the trial design includes all feasible dose levels. Then K = T + 1 and q(td, te) solves 

3T + 4 linear equations, which is less than (T + 2)2 for all T ≥ 1. 

 The trial evidence point-identify p[d(tk), e(tk)], k = 1, .  . . , K. The problem of concern is identification 

of outcome distributions at dose levels t not included in the trial design. p[d(t), e(t)] is a linear function of 

q(td, te) and Q is a convex polygon. Hence, P is a convex polygon. 
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3.3. Restricting the Distribution of Threshold Doses 

 

 The above analysis of identification assumes only monotone dose response, without restricting the 

distribution q(td, te) of threshold doses. Assumptions on this distribution may have identifying power and 

be credible in some applications. I will briefly discuss some possibilities here. 

 

No AEs Without Treatment: A highly credible assumption is that AEs cannot occur when the dose level is 

zero. Formally, assume that q(td = h, te = 0) = 0, h ∊ {0, 1, 2, . . . , T + 1}. The assumption fixes T + 2 

components of q(td, te), reducing the number of unknown components from (T + 2)2 to (T + 2)(T + 1). It 

implies that p[d(0) = 0, e(0) = 1] = p[d(0) = 1, e(0) = 1] = 0. 

 

Concurrent Thresholds for Efficacy and AEs: In some contexts, it is credible to pose assumptions on the 

cross-patient association between thresholds td and te. A positive association is credible in the treatment of 

cancer with immunotherapy because stimulation of the immune system increases with dose level, making 

both tumor reduction and AEs more likely. Patient immune systems vary genetically and epigenetically, so 

the degree to which immunotherapy generates immune responses may vary across patients. 

There are many ways to formalize positive association as an assumption on q(td, te). A polar case 

assumes that each patient has one threshold dose that jointly prevents disease recurrence and generates an 

AE. That is, there exists a patient-specific dose t*j such that t*j = tdj = tej, all j. Then q(td = h, te = i) = 0 

whenever h ≠ i, reducing the number of unknown components of q(td, te) from (T + 2)2 to T + 2. The 

assumption implies that, for each dose level t, p[d(t) = 0, e(t) = 0] = p[d(t) = 1, e(t) = 1] = 0. 

 

Statistical Independence of Efficacy and AE Thresholds: Whereas the biological mechanism of 

immunotherapy suggests positive association between thresholds, in other treatment contexts separate 

physiological processes may make a treatment efficacious and yield AEs. In these cases, it may be 
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reasonable to assume statistical independence of td and te. Then q(td = h, te = i) = q(td = h)∙q(te = i) for all (h, 

i), reducing the number of unknown components of q(td, te) from (T + 2)2 to 2(T + 2). The assumption 

implies that, for each dose level t, p[d(t), e(t)] = p[d(t)]∙p[e(t)]. 

 

4. Dosage Choice with Monotone Dose Response 

 

 I now consider several versions of the dosage choice problem. As in Section 3, Sections 4.1 and 4.2 

assume that a K-armed trial assigning subjects to dosages, tk, k = 1, . . , K reveal p[d(tk), e(tk)], k = 1, . . . , 

K. Section 4.3 briefly supposes that only sample data are observed.  

 I consider decision making from the perspectives of a clinician treating one patient and a public-health 

planner treating a population with the same distribution of dose thresholds as J. The clinician must choose 

a single treatment t for the patient and is not permitted to randomize the choice. The planner can choose a 

fractional treatment allocation δ(t), t ∊ {0, 1, 2, . . . , T} in the unit simplex Δ on RT+1. Thus, the planner has 

a richer set of treatment possibilities than does the clinician. 

 The central problem for the decision maker is incomplete knowledge of the dose threshold distribution 

q(td, te). The familiar Bayesian prescription for coping with uncertainty is to assert a subjective probability 

distribution on unknown quantities and maximize subjective expected welfare. Objective expected welfare 

E{w[d(t), e(t)]} is linear in q(td, te). Hence, a Bayesian decision maker would assert a subjective distribution, 

say π, on the space of all possible threshold dose distributions, replace the unknown q(td, te) with its 

subjective mean ∫q(td, te)dπ, and choose the dose that would be optimal if ∫q(td, te)dπ were the actual 

threshold dose distribution. 

The Bayes decision criterion is attractively simple, but it presumes that the decision maker is able to 

place a credible subjective distribution on q(td, te). Bayesians have long struggled to provide guidance on 

specification of subjective distributions and the matter continues to be controversial. When one finds it 

difficult to assert a credible subjective distribution, Bayesians may suggest use of some default subjective 

distribution, called a “reference” or “conventional” or “objective” prior; see Berger (2006). However, there 



14 
 

is no consensus on the prior that should play this role. The chosen prior critically affects decisions. 

Inability to credibly specify a prior motivates study of criteria for decision making under ambiguity, 

which do not place subjective distributions on unknown quantities. Two prominent approaches are maximin 

and minimax regret (MMR). I evaluate decisions by their maximum regret. Section 4.1 explains this focus. 

 

4.1. Minimax-Regret Decisions 

 

 I first pose the MMR criterion abstractly and then apply it to dosage choice. Consider a planner who 

faces a choice set C and believes that the true state of nature lies in a specified state space S. An objective 

function f(∙, ∙): C × S ⇾ R1 maps actions and states into welfare. The planner wants to maximize true 

welfare, but he does not know the true state. In settings without sample data, the minimax-regret (MMR) 

criterion solves the problem 

 

(6)       min    max    [max f(d, s) − f(c, s)]. 
           c ∈ C     s ∈ S      d ∈ C 
 

Here max d ∊ C w(d, s) − w(c, s) is the regret of action c in state s; that is, the degree of suboptimality. 

 In the present setting, the state space indexes the feasible distributions of threshold doses derived in 

Proposition 1; thus, S = Q. In the clinical case, the choice set comprises all feasible dose levels; thus, C = 

{0, 1, 2, . . . , T}. In the public-health case, the choice set comprises all fractional allocations; thus, C = Δ. 

 In the clinical case, the objective function in state s is f[t, qs(td, te)] = Es{w[d(t), e(t)]}, where qs(td, te) 

is the distribution indexed by state s and Es denotes expectation with respect to this distribution. In the 

public-health case, the objective function is the mean of the expected welfare function with respect to the 

treatment allocation; thus, f[δ(⋅), qs(td, te)]  = ∑ t δ(t)⋅Es{w[d(t), e(t)]}. 

 I study dosage choice using the MMR criterion because, as discussed elsewhere (e.g., Manski, 2018, 

2019, 2021), this criterion has attractive properties when decision makers must make choices under 

ambiguity. MMR should not be confused with maximin, which solves the problem max c ∈ C min s ∈ S f(c, s). 
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The two differ except in special cases, particularly when optimal welfare is invariant across states. Whereas 

maximin considers only the worst outcome that an action may yield across states, MMR considers the worst 

outcome relative to what is achievable in a given state. Thus, MMR does not express the ultra-pessimism 

characteristic of the maximin criterion. 

 A conceptual appeal of using maximum regret to measure performance is that it quantifies how lack 

of knowledge of the true state of nature diminishes the quality of decisions. The term “maximum regret” is 

a shorthand for the maximum sub-optimality of a decision rule across feasible states of nature. A decision 

rule with small maximum regret is uniformly near-optimal across all states. This is a desirable property. 

 

4.2. Computation of MMR Decisions 

 

 Exact computation of the MMR solution is tractable in the clinical case when T is not extremely large. 

An alternative expression of (6) reverses the two max operations to obtain 

 

(6´)       min    max    max [f(d, s) − f(c, s)]. 
            c ∈ C     d ∈ C    s ∈ S 
 

Holding c and d fixed, consider the inner maximization over s. When c = d, the maximum is 0 as f(d, s) = 

f(c, s) for all values of s. When c ≠ d, f(d, s) − f(c, s) is a linear function of qs(∙, ∙) in the setting of this 

paper. The feasible distributions Q satisfy the linear inequalities (2) and equations (3) and (5a)−(5d). Hence, 

max s ∈ S [f(d, s) − f(c, s)] is a linear programming problem, which can be solved exactly using standard 

algorithms.  Considering all c ≠ d, determination of the MMR dosage requires solution of T∙(T + 1) linear 

programming problems. This is tractable when T is not extremely large. 

 In the public-health case, max s ∈ S [f(d, s) − f(c, s)] remains a linear programming problem, but f(d, s) 

− f(c, s) is a different linear function of qs(∙, ∙). The set of feasible dosage allocations is the entire simplex 

Δ on RT+1 rather than only the vertices, each of which places probability one on a single treatment. When T 

> 2, this makes exact computation of the MMR dosage allocation infeasible. However, it is feasible to 
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numerically approximate the solution by using a suitable finite grid to approximate Δ and then solving the 

associated finite number of linear programming problems. 

 

4.2.1. Public-Health Dosage Allocation when T = 2 

 Exact computation of public-health MMR dosage allocation is feasible, indeed simple, when T = 2, K 

= 2, t1 = 0, and t2 = 2. Thus, there is no trial evidence for t = 1. This special case is important in dosage 

choice for cancer drugs. As discussed in the Introduction, Phase III drug trials commonly compare zero 

dose and a maximum tolerable dose, without evaluating a smaller positive dose. 

 In this case, welfare net of treatment cost is point identified for t = 0 and t = 2. Let them be denoted ω0 

≡ E{w[d(0), e(0)]} – E[g(0)] and ω2 ≡ E{w[d(2), e(2)]} – E[g(2)]. Welfare net of treatment cost is partially 

identified for t = 1, being known to lie in a computable interval, say [ω1L, ω1U], determined by the 

identification analysis of Section 3. There is no ambiguity if ω1L ≥ max (ω0, ω2) or ω1U ≤ max (ω0, ω2). I 

focus on settings with ω1L < max (ω0, ω2) < ω1U, where there is ambiguity. 

Manski (2009) studied MMR allocation of a population between two undominated treatments. The 

analysis applies here, where dose t = 1 and either t = 0 or t = 2 are undominated. Manski (2009), equation 

(8) shows that the MMR allocation assigns positive fractions of patients to t = 1 and to the other dose with 

the higher value of ω. If ω2 > ω0, dose t = 0 is dominated and so receives zero allocation. The fraction of 

the population assigned to t = 1 is (ω1U − ω2)/(ω1U – ω1L) and the fraction assigned to t = 2 is (ω2 − ω1L)/(ω1U 

– ω1L). Symmetrically, if ω2 < ω0, t = 2 is dominated and receives zero allocation. The fraction assigned to 

t = 1 is (ω1U − ω0)/(ω1U – ω1L) and the fraction assigned to t = 0 is (ω0 − ω1L)/( ω1U – ω1L). If ω2 and ω0 both 

equal some value ω, the fraction assigned to t = 1 is (ω1U − ω)/( ω1U – ω1L), with the remainder assigned in 

any proportions to t = 0 and t = 2. 

The finding that the MMR criterion assigns a positive fraction of patients to t = 1 demonstrates the 

difference between MMR and maximin decision making. When ω1L < max (ω0, ω2) < ω1U, a maximin 

planner does not allocate anyone to t = 1. A planner using the MMR criterion does so. 
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4.2.2. Numerical Illustrations 

 I use a specific case of the design with T = 2, K = 2, t1 = 0, and t2 = 2 to illustrate numerically. Let 

expected patient welfare with each (d, e) outcome be as follows: 

  E[w(0, 0)] = 1, E[w(1, 0)] = 0.25, E[w(0, 1)] = 0.75, E[w(1, 1)] = 0. 

This quantifies the usual situation where it is best to experience neither disease nor an adverse event, and 

worst to experience both. Experiencing one or the other is intermediate, disease being more harmful on 

average than an adverse event. 

Let the threshold dose distribution be as follows: 

      q(td = h, te = 0) = 0, h ∊ {0, 1, 2, 3};   q(td = h, te = i) = 1/12, h ∊ {0, 1, 2, 3}, i ∊ {1, 2, 3}. 

The first part of the specification expresses the credible assumption that AEs cannot occur without 

treatment. The uniform distribution in the second part of the specification is only intended to be illustrative, 

as the actual distribution will be context specific. 

 The outcome probabilities implied by this threshold dose distribution are 

p[d(0) = 0, e(0) = 0] = 0.25                  p[d(0) = 0, e(0) = 1] = 0 
p[d(0) = 1, e(0) = 0] = 0.75                  p[d(0) = 1, e(0) = 1] = 0. 
 
p[d(1) = 0, e(1) = 0] =  0.333               p[d(1) = 0, e(1) = 1] =  0.167 
p[d(1) = 1, e(1) = 0] =  0.333               p[d(1) = 1, e(1) = 1] = 0.167. 
 
p[d(2) = 0, e(2) = 0] = 0.25                  p[d(2) = 0, e(2) = 1] = 0.5 
p[d(2) = 1, e(2) = 0] = 0.083                p[d(2) = 1, e(2) = 1] = 0.166. 
 

The values of expected welfare unconditional on (d, e) are 

E{w[d(0), e(0)]} = 0.4375,  E{w[d(1), e(1)]} = 0.542, E{w[d(2), e(2)]} = 0.6458. 

 The values for p[d(0), e(0)], p[d(2), e(2)], E{w[d(0), e(0)]}, and E{w[d(2), e(2)]} are point-identified 

by the trial evidence. Application of Proposition 1 shows that the identification region for p[d(1), e(1)] is a 

convex polygon in R4, whose projections on the four axes are these bounds: 

p[d(1) = 0, e(1) = 0] ∊ [0 ,0.75]           p[d(1) = 0, e(1) = 1] ∊ [0, 0.5] 
p[d(1) = 1, e(1) = 0] ∊ [0.083, 0.75]    p[d(1) = 1, e(1) = 1] ∊ [0, 0.67]. 
  

The identification region for E{w[d(1), e(1)]} is the interval [0.2708, 0.8125].  
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 Now consider MMR clinical and public-health dosage choice with various cost functions g(t). Here 

are some illustrative findings: 

g(t) = 0, all t: The MMR clinical dose is t = 2, with MMR value 0.167. The public-health dose 
allocation is (0, 0.308, 0.692) to doses (0, 1, 2), with MMR value 0.116.  

  
g(t) = (0.05)t: The MMR clinical dose is t = 2, with MMR value 0.217. The public-health dose 
allocation is (0, 0.4, 0.6) to doses (0, 1, 2), with MMR value 0.13.  

 
g(t) = (0.1)t: The MMR clinical dose is t = 2, with MMR value 0.267. The public-health dose allocation 
is (0, 0.49, 0.51) to doses (0, 1, 2), with MMR value 0.136.  

 
g(t) = (0.15)t: The MMR clinical dose is t = 0, with MMR value 0.225. The public-health dose 
allocation is (0.59, 0.41, 0) to doses (0, 1, 2), with MMR value 0.132. 

 
g(0) = g(1) = 0, g(2) = 0.30: The MMR clinical dose is t = 1, with MMR value 0.167. The public-
health dose allocation is (0.308, 0.692, 0) to doses (0, 1, 2), with MMR value 0.115. 

 

 Observe that the clinical decision is t = 2 or t = 0 with each of the four linear cost functions, but it is t 

= 1 with the nonlinear cost function. Thus, a clinician using the MMR criterion may choose a dose level 

excluded from the trial design. 

 

4.3. Decisions with Finite-Sample Trial Data 

 

 Statistical decision problems suppose that the planner observes data generated by a sampling 

distribution, which varies with the state of nature. To express this, let Ψ denote the sample space; that is, 

the set of samples that may be drawn. Let the possible sampling distributions be denoted (Qs, s ∈ S). The 

literature assumes that the sample space does not vary with s and is known, whereas the sampling 

distribution varies with s and is unknown. A statistical decision function, c(@): Ψ ⇾  C maps the sample data 

into a chosen action. 

 An SDF is a deterministic function after realization of the sample data, but it is a random function ex 

ante. Hence, an SDF generically makes a randomized choice of an action. Statistical decision theory 

evaluates the performance of SDF c(@) in state s by Qs{f[c(ψ), s]}, the ex-ante distribution of welfare across 

realizations ψ of the sampling process. In abstraction, the statistical version of the MMR criterion is 
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(7)              min       max    ( max f(d, s) − Es{f[c(ψ), s]}). 
                 c(@) ∈ Γ      s ∈ S        d ∈ C 
 

In the present setting, the choice set and the objective function are as in Section 4.1. Sample data do 

not reveal the outcome distributions p[d(tk), e(tk)], k = 1, . . . , K; the data only enable estimation. Hence, 

the present state space is larger than in Section 4.1, now comprising all multinomial distributions on {0, 1, 

2, . . . , T + 1} x {0, 1, 2, . . . , T + 1}. The trial design draws N(k) persons at random from J and assigns 

each sampled person to dose level tk. For j ∊ N(k), one observes [dj(tk), ej(tk)]. Thus, ψ = {N(k), pN(k)[d(tk), 

e(tk)], k = 1, . . . , K}. 

Computation of finite-sample MMR decisions is typically a complex problem. I expect this to be so in 

the setting of this paper. I do not address the problem here, but it is an important topic for future research. 

A computationally simple approach to dosage choice with sample data is to estimate p[d(tk), e(tk)], k = 1, . 

. . , K by their sample analogs pN(k)[d(tk), e(tk)], k = 1, . . . , K and then proceed as in Sections 4.1 and 4.2, 

acting as if the estimates are accurate. Manski (2021) discusses this “as-if” approach to decision making in 

abstraction and explains how to compute its maximum regret numerically. 

An interesting question is to learn how the assumption of monotone dose response affects finite-sample 

inference and decision making, relative to what occurs with design-based trial analysis. Even when a 

complete dosing trial has been performed, enabling design-based analysis to point-identify dose response, 

the monotonicity assumption may still improve finite-sample analysis. It may improve the statistical 

precision of point estimates of outcome probabilities used in as-if decision making and thereby reduce the 

maximum regret achieved when estimates are used to choose dosage. 

 

5. Discussion 

 

 I have studied dosage choice based on limited trial data. Medical decision making has relied on such 

data. Indeed, the Phase III evidence used in FDA drug approval is legally required to be trial data. Limited 

trial data are also the main source of evidence for other realms of decision making. A broad theme of this 
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paper is that the standard design-based approach to analysis of trial data is unnecessarily restrictive in 

settings where credible assumptions make empirical findings informative across treatments. The 

assumption of monotone dose response is highly credible in dosage trials. Other assumptions relating 

outcomes across treatments may be credible in other contexts. 

 Observational data is also informative about dose response when assumptions ME and MT hold. 

Consider an observational study where zj ∊ (0, . . . , T) denotes the dose received by patient j. The data for 

this patient are [zj, dj(zj), ej(zj)]. Observation of a random sample of the population enables estimation of 

the population distribution p[z, d(z), e(z)]. For each s ∊ (0, . . . , T), Bayes Theorem gives p[z = s, d(z), e(z)] 

= p[d(s), e(s)|z = s]p(z = s). Knowledge of p(z = s) reveals nothing about q(td, te). However, when p(z = s) 

> 0, knowledge of p[d(s), e(s)|z = s] reveals that 

 

(7a)    p[d(s) = 0, e(s) = 0|z = s]  =  q(td ≤ s, te > s|z = s). 

(7b)    p[d(s) = 1, e(s) = 0|z = s]  =  q(td > s, te > s|z = s). 

(7c)    p[d(s) = 0, e(s) = 1|z = s]  =  q(td ≤ s, te ≤ s|z = s). 

(7d)    p[d(s) = 1, e(s) = 1|z = s]  =  q(td > s, te ≤ s|z = s). 

 

It can be shown that these inequalities yield an easily computed informative bound on q(td, te). However, it 

appears delicate to obtain a sharp bound. Details may be obtained from the author. 

 It would be valuable to extend the analysis of this paper in multiple ways. Section 4.3 mentioned study 

of finite-sample MMR decisions. Another direction for future research is to recognize that disease and AE 

outcomes may vary in severity rather than being binary (yes/no), as assumed here. When outcomes vary in 

severity, the distribution of outcomes may still be characterized by a threshold dose distribution q{td. te), 

but now td and te is each a vector of thresholds for passage into increasingly high levels of severity. 

Yet another direction is to recognize that the one-dimensional dosing decision studied here is often a 

component of a more general problem of choice of a regimen; for example, specification of the (dose, 

schedule, duration) for administration of a drug. The concept of monotone treatment extends to regimens. 
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One regimen is more intense than another if it combines a weakly larger dose, more frequent schedule, and 

longer duration. Analysis of regimens is complex when comparing alternatives that are more intense in 

some components but less intense in others. 

 A further complexity in evaluation of regimens is that the decision process may be dynamic rather than 

static as assumed in this paper. As successive doses are administered, one may observe disease-AE 

outcomes as time passes. This may enable updating of decisions as outcome data accumulate. 
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