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Abstract 

The use of race measures in clinical prediction models and algorithms has become a highly 
contentious issue, driven by concerns that inclusion of race as a covariate exacerbates and 
perpetuates long-standing disparities in quality of health care provided to racial and ethnic 
minority patients. The authors seek to inform and ground this debate by evaluating the 
inclusion of race—even if imperfectly measured—in probabilistic predictions of illness that 
aim to inform clinical decision making. First, adopting a utilitarian framework to formalize 
social welfare, their analysis reveals that patients of all races are better off when clinical 
decisions are jointly guided by patient race and other observable covariates. In this sense, 
race is not a particularly special covariate: Any covariate with predictive power (i.e., one 
that changes conditional probabilities of illness) should be used to optimize clinical 
decisions. The researchers then extend the model to a two-period setting where prevention 
activities that address systemic drivers of disease are relevant and find that the same basic 
conclusions emerge. Finally, they discuss formal non-utilitarian concepts of fairness and 
disparity-aversion that have been proposed to guide societal allocation of health care 
resources.  
 
 
 
 
 
 
 
The authors are grateful for insightful comments and suggestions offered by several colleagues. 
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1. Introduction	

Recent years have seen considerable debate around two related questions that are sometimes 

conflated:  

 

Should the manner in which a clinician treats a patient depend on that patient's race? 
 
Should measures of race be included as covariates in clinical prediction models/algorithms? 
 

Numerous arguments for and against the use of race in clinical settings have been advanced. For a 

concise overview of this debate see the recent contributions by Manski (2022) and Briggs (2022), who 

summarize the main opposing points of view. 

Clear articulation of the goals we wish to achieve with patient care can help clarify the underlying 

disagreement and perhaps even resolve some of it. Two goals appear prominent. The first concerns the 

clinician's role in improving the health of the individual patient in front of them. The second concerns a 

societal objective of eliminating racial disparities in health care and health. Reasonable people may differ 

in how much weight they place on each goal. This matters because efforts to advance achievement of one 

goal may not advance, indeed may hinder, achievement of the other. Regardless of one’s priorities, 

conceptual clarity is required to achieve either or both goals.  

This study aims to lay a clear and rigorous foundation to inform ongoing debates about the use of 

measures of race in clinical settings. We develop a simple model of the effects of considering race on 

clinical prediction and decisions and then generalize it. We begin with a canonical model that uses a 

single-period utilitarian framework wherein a clinician’s sole objective in any clinical encounter is to 

make the treatment recommendation that maximizes the patient’s expected health, conditional on all the 

information available at the time the treatment recommendation is made. The main result is that failure to 

use all available information in clinical prediction models or in a particular clinical encounter results in 

sub-optimal expected health for patients. In particular, statisticians' failure to use observed measures of 

race in developing clinical prediction algorithms or clinicians' failure to use available measures of race in 

treatment decisions will generally result in sub-optimal expected health outcomes for patients of all races. 

This result holds regardless of the extent to which available measures of race correlate with ancestry, 

socioeconomic status, or other drivers of health. Algorithms that use better measures of underlying drivers 

(e.g., direct measures of genotype, social deprivation, or biomarkers that capture these processes) may 

obviate the use of race in specific clinical settings (Powe, 2020; Hsu et al., 2021; Inker et al., 2021). 

However, until such alternate measures are available, algorithms including race would (weakly) 

outperform those that do not, by virtue of capturing a range of important correlates of health, no matter 

how imperfectly. 
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We then extend the canonical model by embedding the clinician's decision in a two-period 

framework wherein the period-two clinical decision is made in a context where social and environmental 

factors differentially affect patients in the first period. This model takes into account theoretical models of 

structural or systemic racism, wherein socially-produced disadvantages over the patient’s life course 

adversely affect their health and well-being (Bailey et al., 2017; O’Brien et al., 2020; Bohren et al., 2022; 

Darity, 2022). As a result, the circumstances of patients seeking care in period two will differ, with some 

patients being more advantaged than others. Specifically, when period two arises, there will be disparities 

across the patient population in economic opportunities, healthcare access, and other determinants of 

health. Despite these disparities, our analysis shows that the clinician's role in period two as a clinician 

should still be to provide optimal care to each patient in the same manner as recommended by our 

canonical model. Increasingly, clinicians are advocating and striving for reductions in health disparities. 

But this is a separate matter than the activities they pursue and decisions they make in a clinical 

encounter. In our two-period utilitarian model, these activities are best pursued in period one, when 

prevention activities addressing social and structural drivers of health can reduce disadvantages in period 

two.  

We recognize that the utilitarian framing of our analysis may not appeal to practitioners and 

policymakers who prioritize non-utilitarian notions of justice and fairness. For example, they may 

prioritize ensuring groups receiving similar (access to) health care resources as a first order goal. To 

situate these perspectives, we formally discuss alternate notions of fairness and disparity-aversion 

proposed to guide societal allocation of resources.  

We also offer an Appendix to highlight two additional, related literatures. First, we note the rapidly 

expanding literature on algorithmic fairness in economics, computer science, and related fields. With 

some exceptions, this recent literature poses criteria for fairness and seeks to empirically measure 

adherence to them, without embedding them in a problem of welfare maximization as we do here. While 

our formal analysis does not link explicitly to this literature, we outline some of its noteworthy features 

(section A.1 of the Appendix). Second, we consider the practice of “race-norming,” and illustrate that it is 

conceptually distinct from the main issue we consider here, which is the use of race measures to inform 

clinical predictions (section A.2 of the Appendix).  

We proceed as follows. Section 2 provides background on the recent concern with and several 

examples of the use of race in medical decision making. Section 3 presents the one-period model of 

utilitarian treatment choice. Section 4 extends the model to a two-period setting in which preventive care 

precedes treatment choice. Section 5 discusses non-utilitarian views on fairness and justice. Section 6 

concludes. 
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2. Background 

2.1 Decision Making Contexts 

 Much of clinical decision-making involves the quantitative prediction of disease risk, treatment 

effectiveness, or other outcomes based on various sources of data. The canonical empirical prediction 

model, sometimes called a clinical algorithm, is an estimate 
  P
!(y x ,z)  of a probability  P(y x ,z)  where y 

is the health outcome of interest and x and z denote vectors of covariates on which the prediction is based 

(Manski, 2019). For the present discussion, we take x to be covariates that will certainly be included in 

the model (e. g., patient age) and z to be variables that may be included at the analyst’s discretion.1 

 The consideration that occupies our attention in this paper is the selection of the z variables. We do 

not endow  P(y x ,z)  with any causal interpretation. The task at hand is to choose z to generate 

conditionally optimal predictions. It will be demonstrated formally in sections 3 and 4 that richer 

specifications of z generally yield superior clinical predictions than do sparser ones. So long as a 

candidate covariate 
 
zk  has some predictive power, its inclusion in the z vector will result in superior 

predictions. 

 

2.2 Inclusion of Race in Prediction Models 

 There is presently considerable debate around the inclusion in prediction models of a particular 
 
zk : 

patient race. In the clinical literature, Vyas et al. (2020) and Cerdeña et al. (2020) represent notable 

examples of calls to remove the consideration of race in prediction models, while Powe (2020) 

summarizes a range of arguments. In economics, Manski (2022) and Briggs (2022) summarize the key 

arguments supporting (Manski) and criticizing (Briggs) the inclusion of measures of race in clinical 

prediction models. 

Manski (2022)  describes and then questions four assertions that have been advanced as arguments 

against the inclusion of race in prediction models. These assertions are: (1) race is a social, not biological, 

concept; (2) race should not be considered if there is no established causal link between race and the 

illness; (3) using race may perpetuate or worsen racial health inequities; and (4) many persons are 

offended by the use of race in risk assessment. With the stated goal of making clinical decisions that 

would be expected to yield the best outcome for each patient, Manski concludes his paper with this 

observation: 

																																								 																					
1 Section A.2 of the Appendix discusses the relationship between such clinical prediction models and 

the so-called race-norming of outcomes. 
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If an alternative perspective is to have a compelling foundation, it should explain why society 
should find it acceptable to make risk assessments using other patient characteristics that 
clinicians observe, but not race. It should explain why the social benefit of omitting race from 
risk assessment is sufficiently large that it exceeds the harm to the quality of patient care. 

 
In a somewhat similar vein, Powe (2020) states: 

There is no time more important than now to understand how race and social and biological 
factors interact to affect health. Estimation of essential physiologic processes, such as kidney 
function, with variables that do not incorporate race and are more accurate than race is a worthy 
aspiration. Those estimating tools should have equal or greater precision, be soundly grounded 
in evidence on health outcomes, and be acceptable to patients. 
  
A common concern voiced by those arguing against the inclusion of race in prediction is that its very 

definition is complex and elusive. Many writers note that measured race historically has reflected a social 

rather than biological concept. When they argue that this precludes the use of race in making clinical 

predictions, they may have in mind that there is not a one-to-one mapping between a specified racial 

categorization and elements of ancestry or epigenetic modifications – e.g., a particular set of genotypes or 

stress-led differences in patterns of gene expression – that predict disease risk (Vyas et al., 2020). Another 

argument against the inclusion of race stems from a belief that, no matter how race is defined, including 

race as a predictor of outcomes will result in inferior health care for racial and ethnic minority populations 

relative to the care received by others. Health care that is sensitive to a patient's race, it is asserted, risks 

exacerbating systemic racial biases that are argued to prevail (Jones, 2021). Briggs captures this sentiment 

concisely: 

 
…while it is difficult to refute the central contention that optimal decision making requires the 
use of all covariates that are associated with outcome, the assumption that racial covariates, and 
their application within the medical arena, are sufficiently free from bias (structural, 
institutional or personal) misses the point of the underlying argument: that race is not the same 
as every other covariate in our arsenal. It is a covariate that is acting as a proxy for a wide range 
of other explanatory variables that could be genetic/biological but in many circumstances are 
more likely to be sociological/socioeconomic. 
 

 As we consider the controversy regarding inclusion of race in clinical prediction and decision-

making, we think it important to recognize that the two sides of the debate do not simply differ in 

advocating different strategies for attaining the same goal. Rather, the core differences also concern the 

attainment of different goals, though these goals are often not explicitly or clearly articulated. Advancing 

the debate will thus require clarity around the desired goals and the measurements necessary to assess 

whether or not these goals are being achieved. Improved patient health is a straightforward goal to define 

and measure. It is less obvious how to conceptualize clearly and measure other objectives that have often 

been stated, which include the achievement of equity and elimination of disparities in health care (e.g., 

Sen, 2002). It is understandable that different parties may have different goals, reflecting different values. 
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This is all the more reason that a clear articulation of such goals is a necessary antecedent of productive 

discussion and policymaking. 

 One notable example of the lack of clarity in the literature concerns the common use of the term 

"bias." This term can mean different things to different people in different contexts. Bias in the sense 

typically encountered in discussions or race has little or nothing to do with how the expectation of a 

statistical estimator compares to its true value. Bias has a relatively clear meaning in the study of  

“algorithmic bias,” an area of inquiry kindred to but distinct from what we pursue in this paper 

(Obermeyer et al., 2019).2 Beyond this literature, we find that bias is often weakly conceptualized. 

Careful scrutiny of statements about the presence of racial bias is essential for advancing understanding. 

 

2.3 Examples 

 The issues raised above are of more than just academic methodological interest. Across an 

increasingly broad spectrum of clinical decision-making contexts, debates about whether to include race 

measures—however defined—in clinical decision making are shaping clinical practice. Examples include 

the treatment and management of kidney disease (Delgado et al. 2021), the assessment of osteoporosis 

and fracture risk associated with osteoporosis (Kanis et al., 2020), the use of spirometry to assess lung 

function (Bonner and Wakeam, 2022), and the determination of appropriate X-ray radiation doses (Bavli 

and Jones, 2022).3 Vyas et al. (2020) and Cerdeña et al. (2020) review clinical contexts wherein such 

considerations have arisen. Decisions to include or exclude race in clinical prediction are already 

affecting the health care being delivered to patients of all races. 

In some fields, leading institutions have formally recommended race-free risk assessment. A notable 

case is Delgado et al. (2021), which presents the recommendations of the National Kidney Foundation-

American Society of Nephrology (NKF-ASN) Task Force on Reassessing the Inclusion of Race in 

Diagnosing Kidney Disease. The Task Force considered the prevailing use of race in computation of 

estimated glomerular filtration rate(eGFR), a measure of kidney function. It recommended removal of 

race as a determinant of eGFR, writing (pp.5-6): 

																																								 																					
2 Briefly, a prominent version of algorithmic bias arises when proxy outcome measures are used 

instead of true measures in prediction models and when the gap between the proxy and the true measures 
depends on some variable of interest, e.g. race. See section A.1 of the Appendix for further discussion. 

3 In some clinical contexts attention has been paid to whether diagnostic accuracy using traditional 
diagnostic standards may depend not per se on race but rather on skin tone. Examples include pulse 
oximetry and assessment of pressure injuries or ulcers. Many of the issues raised herein with respect to 
race inclusion would appear equally applicable to skin tone, with a key distinction being that there are 
accepted objective measures of skin tone (e.g. McCreath et al., 2016). 
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For U.S. adults (>85% of whom have normal kidney function), we recommend immediate 
implementation of the CKD-EPI creatinine equation refit without the race variable in all 
laboratories in the U.S. because it does not include race in the calculation and reporting, 
includes diversity in its development, is immediately available to all labs in the U.S., and has 
acceptable performance characteristics and potential consequences that do not 
disproportionately affect any one group of individuals. 
 

Research related to this recommendation is documented by Williams, Hogan, and Ingelfinger (2021).  the 

underlying concern being that the use of race predictions may increase eGFR for Black patients, 

potentially reducing the likelihood of receiving therapy for chronic kidney disease or being listed for 

transplantation. The recommendation has already been implemented in multiple major medical centers. 

Powe (2020) urged caution, noting that calls to de-adopt race-inclusive algorithms did not consider “all of 

the ramifications and long-term health consequences,” some of which may introduce harm. For example, 

the move from using race-free measures of serum creatinine to race-adjusted eGFR measures helped 

reduce racial disparities in receipt of metformin, a diabetes medication with well-established short- and 

long-term benefits, by increasing use among patients who otherwise would have been contraindicated 

from receiving it under race-free measures (Shin et al., 2020). Some writers have argued that removal of 

race-adjustment may also increase rates of rejection of Black kidney donor candidates and lead to 

reductions in doses of chemotherapies (Levey et al., 2020). A recent analysis found a greater degree of 

misclassification in many race-free eGFR algorithms relative to algorithms including race, with the 

exception being a newly developed race-free algorithm that relies on an alternate biomarker, cystatin, 

instead of the more widely collected biomarker creatinine (Hsu et al., 2021).  

Another prominent example is the use of race in models that predict fracture risks, with a particular 

focus on osteoporosis. For example, the FRAX algorithm (Fracture Risk Assessment Tool; 

https://www.sheffield.ac.uk/FRAX/index.aspx) for the U.S. population has four different versions to 

assess fracture risk for Black, Caucasian, Hispanic, and Asian patients. The use of these differential 

algorithms has been criticized for reasons that include the possibility that, ceteris paribus, lower fracture 

risk predictions for Black than White, Asian, and Hispanic patients may result in the former being 

undertreated to prevent osteoporosis or slow its progression if diagnosed (Vyas et al., 2020). In response 

to these criticisms, Kanis et al. (2020) note that there are indeed racial differences in osteoporosis 

treatment even after adjusting for fracture risk. Kanis et al. argue that racial differences in treatment 

gaps—the fraction of a population indicated for but not receiving treatment—are best understood and 

acted upon when risks are predicted accurately: "The quantification afforded by FRAX has allowed 

inequalities in the treatment gap to be identified." While Kanis et al. urge that FRAX not be used 

uncritically, they conclude that its use ultimately "helps to resolve, rather than exacerbate, racial 

inequalities." 



 7 

2.4 The State of the Debate 

Across the many clinical contexts where these issues have arisen, perspectives like those offered by 

Powe (2020), Kanis et al. (2020), and Manski (2022) are heard far less than calls to proceed with the 

removal of race from clinical decision-making (Vyas et al., 2020; Briggs, 2022). This dynamic holds even 

as arguments have been advanced to explicitly consider race in other (more population-level) settings. For 

example, there have been calls to allocate COVID-19 vaccines on the basis of existing and predicted 

disparities in disease risk (e.g. Schmidt et al, 2020) and for greater inclusivity in clinical trials of subjects 

from sub-populations that have been typically underrepresented (e.g. racial minorities) in such studies 

(U.S. Food and Drug Administration, 2020).4 These tensions are borne out in statements such as those by 

Bhakta et al (2022): 

Research should continue to ascertain and use race, not as an explanatory variable, but rather in a 
manner that highlights where racial health disparities exist, that reduces enrollment bias, and that 
maximizes the generalizability of the results. 
 
The lack of clarity and agreement in when and how race should be considered illustrates the need for 

a common, rigorous foundation to fix ideas and clarify goals. We demonstrate in the next sections that the 

application of one conceptually rigorous—and, we would argue, familiar and broadly applicable—

foundation leads to the conclusion that the health and welfare of patients of all races is likely to suffer if 

the use of race in prediction models is proscribed. We offer this framework to help both sides of the 

debate identify incorrect, misguided, or unacceptable assumptions and to underscore that clear articulation 

of goals is indispensable. We thereafter describe alternative frameworks whose properties, assumptions, 

and implications can be similarly discussed and debated. 

 

3. Utilitarian Patient Care   

This section presents a standard medical-economics framing of utilitarian patient care as a single-

period problem of treatment choice with predetermined risks of illness. Section 4 extends the framework 

to encompass preventive efforts that reduce risks of illness. 

 

 

 

																																								 																					
4 U.S. Food and Drug Administration (2020) states: "Differences in response to medical products 

(e.g., pharmacokinetics, efficacy, or safety) have been observed in racially and ethnically distinct 
subgroups of the U.S. population. These differences may be attributable to intrinsic factors (e.g., genetics, 
metabolism, elimination), extrinsic factors (e.g., diet, environmental exposure, sociocultural issues), or 
interactions between these factors. Analyzing data on race and ethnicity may assist in identifying 
population-specific signals."  
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3.1. Optimal Care with Predetermined Illness Risk 

Medical economists have commonly studied clinical decision making in a static setting of individual 

patient care. This setting supposes that a clinician must choose how to treat each person in a population of 

patients. The clinician observes certain predetermined covariates for each patient, with associated 

predetermined risks of illness. The objective is to maximize a utilitarian welfare function, one that sums 

up the benefits and costs of treatment across the population of patients. A utilitarian welfare function 

formalizes the idea of “patient-centered care.” The assumption of individualistic care means that the care 

received by one patient may affect that person but does not affect other members of the population. This 

assumption is generally realistic when considering non-infectious diseases. 

A common problem in clinical decision making is that treatments must be chosen with incomplete 

knowledge of their potential outcomes. A central idealization of the setting usually studied by medical 

economists has been to assume that the clinician knows the probability distribution of health and welfare 

outcomes that may potentially occur if a patient with specified observed attributes is given a specified 

treatment – i.e., the clinician has rational expectations. The assumption of rational expectations does not 

assert that the clinician can predict patient outcomes with certainty. Instead, it means that the clinician 

makes accurate probabilistic predictions conditional on observed patient covariates. 

Analysis shows that if a clinician has rational expectations, the problem of optimizing patient care 

has a simple solution: patients should be divided into groups having the same observed covariates and all 

patients in a such a group should be given the care that yields the highest within-group mean utility. Our 

analysis with a utilitarian social welfare function suggests that it is optimal to differentially treat patients 

with different observed covariates if different treatments maximize their within-group mean utility. In our 

model, patients with the same observed attributes should be treated uniformly. 

Analysis also shows that achievable utilitarian welfare across the population weakly increases as 

more patient covariates are observed. Observing more covariates enables a clinician to refine the 

probabilistic predictions of treatment outcomes on which decisions are based. Refining these predictions 

is beneficial to the extent that doing so affects optimal treatment choices. 

These findings have been documented extensively. Abstract analyses, not specific to medical 

applications, include Good (1967), Manski (2007), and Kadane, Schervish, and Seidenfeld (2008). 

Analyses in the literature on medical economics include Phelps and Mushlin (1988), Meltzer (2001), Basu 

and Meltzer (2007), and Manski (2013). We prove the findings here in the simple instructive setting of 

choice between two treatments. Section 3.2 presents well-known findings. Section 3.3 develops a new 

finding that strengthens the conclusion drawn about the value of covariate information to treatment 

choice. 
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3.2. Optimal Choice Between Two Treatments  

3.2.1. Treatments, Covariates, and Illness Probabilities 

Suppose that a clinician must choose between treatments A and B. The choice is made without 

knowing a patient’s illness outcome, y = 1 or 0. We assume throughout that y measures accurately the 

health state on which a patient's welfare depends; that is, y is not a proxy of the sort considered by 

Obermeyer et al. (2019) in their investigation of algorithmic bias (see Appendix A.1). The clinician 

observes predetermined patient covariates (x, z). Having rational expectations, the clinician knows a 

patient’s probability of illness conditional on these covariates. Thus, the clinician knows px = P(y = 1|x) 

and pxz = P(y = 1|x, z). 

Consider patients who have the same value of x but who vary in their values of z. Assume that z 

takes values in a finite set Z. Each value of z occurs for a positive fraction of patients; thus, P(z|x) > 0 for 

all z ∊ Z. Assume that pxz varies with z. To relate this setup to the concern with use of race in medical 

decision making, one may take z to be an observable measure of race. However, our abstract analysis 

does not require this specific interpretation of z. It holds when z is any observable covariate.  

We show that maximum utilitarian welfare using pxz to predict illness is always at least as large as 

using px. We note that this captures cases such as the prediction problem for kidney disease, where better 

predictors (of underlying drivers) of kidney function (eGFR) for all groups z have been identified, 

potentially obviating the need to include z as a covariate. We also note that maximum utilitarian welfare 

is strictly larger if optimal treatment choice varies with z. In the latter case, we characterize the 

determinants of the magnitude of the improvement. 

 

3.2.2. Maximizing Expected Utility 

Patient outcomes with each treatment depend on whether a patient has the disease. Patients are 

heterogeneous, so treatment response may differ across patients. Let Ux(y, t) denote the expected utility 

that a patient with covariates x would experience with treatment t, should the illness outcome be y. We 

suppose for simplicity that this expected utility does not vary across patients with different values of z. 

However, illness probabilities may vary with z. A utilitarian clinician with rational expectations need not 

know the personal utility function of each individual patient, but is assumed to know expected utility 

Ux(y, t) for each possible value of (x, t, y). 

A clinician making a treatment decision does not know a patient’s illness outcome but does know the 

illness probabilities px and pxz. With this knowledge, the clinician can compute expected utility in two 

ways, as px·Ux(1, t) + (1 – px)·Ux(0, t) or as pxz·Ux(1, t) + (1 – pxz)·Ux(0, t). Presuming that the objective is 

to maximize expected utility, the clinician may therefore use the criterion 
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(1a)  choose treatment A if     px·Ux(1, A) + (1 – px)·Ux(0, A)  ≥  px·Ux(1, B) + (1 – px)·Ux(0, B), 

(1b)  choose treatment B if     px·Ux(1, A) + (1 – px)·Ux(0, A)  ≤  px·Ux(1, B) + (1 – px)·Ux(0, B), 

 

or the criterion 

 

(2a)  choose treatment A if     pxz·Ux(1, A) + (1 – pxz)·Ux(0, A)  ≥  pxz·Ux(1, B) + (1 – pxz)·Ux(0, B), 

(2b)  choose treatment B if     pxz·Ux(1, A) + (1 – pxz)·Ux(0, A)  ≤  pxz·Ux(1, B) + (1 – pxz)·Ux(0, B). 

 

With criterion (1), the maximized value of expected utility for patients with covariates x is 

 

(3)                  max [px·Ux(1, A) + (1 – px)·Ux(0, A), px·Ux(1, B) + (1 – px)·Ux(0, B)]. 

 

With criterion (2), the maximized value of expected utility for patients with covariates (x, z) is 

 

(4)                  max [pxz·Ux(1, A) + (1 – pxz)·Ux(0, A), pxz·Ux(1, B) + (1 – pxz)·Ux(0, B)]. 

 

In this case, the maximized value of expected utility for patients with covariates x is the mean of (4) with 

respect to the distribution of z conditional on x; that is, 

 

(5)                  Ez|x{max [pxz·Ux(1, A) + (1 – pxz)·Ux(0, A), pxz·Ux(1, B) + (1 – pxz)·Ux(0, B)]}.  

 

3.2.3 Comparison of the Criteria Using Jensen’s Inequality 

Jensen’s inequality shows that the magnitude of (5) weakly exceeds that of (3), implying that 

criterion (2) performs at least as well as (1) from the utilitarian perspective. In particular, 

 

(6)   Ez|x{max [pxz·Ux(1, A) + (1 − pxz)·Ux(0, A), pxz·Ux(1, B) + (1 − pxz)·Ux(0, B)]} 

       ≥  max {Ez|x(pxz)·Ux(1, A) + [1 − Ez|x(pxz)]·Ux(0, A), Ez|x(pxz)·Ux(1, B) + [1 − Ez|x(pxz)]·Ux(0, B)]} 

       =   max [px·Ux(1, A) + (1 − px)·Ux(0, A), px·Ux(1, B) + (1 − px)·Ux(0, B)]. 

 

The first inequality follows from Jensen’s inequality because max(⋅, ⋅) is a convex function. The 

second equality holds because Ez|x(pxz) = px. The first inequality in (6) is strict if there exist some values 

of z for which criterion (2) yields a different treatment than criterion (1). The inequality is an equality if 

criteria (2) and (1) have the same solution for all values of z. 
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3.3. Direct Comparison of the Criteria 

Jensen’s inequality provides a simple proof of the qualitative result that a utilitarian clinician should 

use all observed covariates to predict illness. However, it does not reveal quantitatively the extent to 

which criterion (2) outperforms criterion (1). We can do this through direct comparison of the criteria. As 

far as we are aware, the derivation presented here is new. 

Without loss of generality, let treatment A be optimal in (1). Let A be optimal in (2) for all z ∊ ZA 

and let ZB be the complement of ZA. Thus, inequality (2a) holds for z ∊ ZA, some non-empty proper 

subset of Z, and does not hold for z ∊ ZB, also a non-empty proper subset of Z. Criterion (2) yields better 

outcomes than (1) for persons with z ∊ ZB and the same outcomes as (1) for persons with z ∊ ZA. 

Now use the decomposition of Z into (ZA, ZB) to rewrite (3) and (5) as 

 

(7)   max [px·Ux(1, A) + (1 − px)·Ux(0, A), px·Ux(1, B) + (1 − px)·Ux(0, B)] 

        =  px·Ux(1, A) + (1 − px)·Ux(0, A) 

        =  P(z ∊ ZA|x)⋅E[pxz⋅Ux(1, A) + (1 – pxz)·Ux(0, A)| x, z ∊ ZA] 

         +  P(z ∊ ZB|x)⋅E[pxz·Ux(1, A) + (1 – pxz)·Ux(0, A)|x, z ∊ ZB] 

 

and 

 

(8)   Ez|x{max [pxz·Ux(1, A) + (1 − pxz)·Ux(0, A), pxz·Ux(1, B) + (1 − pxz)·Ux(0, B)]} 

     =  P(z ∊ ZA|x)⋅E[pxz⋅Ux(1, A) + (1 – pxz)·Ux(0, A)| x, z ∊ ZA] 

         +  P(z ∊ ZB|x)⋅E[pxz·Ux(1, B) + (1 – pxz)·Ux(0, B)|x, z ∊ ZB], 

 

Subtracting (7) from (8) yields 

 

(9)    P(z ∊ ZB|x)⋅E{[pxz·Ux(1, B) + (1 – pxz)·Ux(0, B)]  −  [pxz·Ux(1, A) + (1 – pxz)·Ux(0, A)]|x, z ∊ ZB}. 

 

The inequality pxz·Ux(1, B) + (1 – pxz)·Ux(0, B) > pxz·Ux(1, A) + (1 – pxz)·Ux(0, A) holds for all z ∊ 

ZB. Hence, (9) is positive. This qualitative finding repeats the earlier one using Jensen’s inequality. What 

is new here is that (9) quantifies the extent to which criterion (2) outperforms criterion (1). The magnitude 

of (9) is the product of two factors. One is the fraction P(z ∊ ZB|x) of patients for whom treatment B 

yields strictly larger expected utility than treatment A. The other is the mean gain in expected utility that 

criterion (2) yields for the subset ZB of patients. 
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3.4. Utilitarian Care and Disparities in Treatment and Health 

Utilitarian treatment choice aims to maximize patient well-being, optimizing care within groups of 

patients who share common observed covariates. In this sense, it embeds a specific, clear idea that clinical 

decision making should be fair and just, expressing the idea that the primary concern of a clinician is to 

do best by each individual patient. Nevertheless, it does not imply that patients with different observed 

covariates receive the same treatments or experience the same health. In this sense it yields treatment, 

although not necessarily health, disparities across groups of patients (see Box 1). 

Consider persons with covariates (x, z). The optimal utilitarian treatment of these persons is A if 

(2A) holds and is B if (2B) holds. The value of the maximized expected utility of these persons is given 

by (4), which varies with the illness probability pxz and expected utility function Ux(⋅, ⋅). Cross-covariate 

disparities in treatment and health are well-motivated from the utilitarian perspective if clinicians have 

rational expectations and act accordingly. Of course, if P(y|x,z)=P(y|x), then there is no compelling reason 

to include z in a prediction model. For example, use of race measures does not additionally improve 

predictions of kidney function in newly developed algorithms that use the biomarker cystatin (Hsu et al., 

2021). 

Cross-covariate disparities may not be well-motivated if, not having rational expectations, clinicians 

act based on imperfect knowledge of illness probabilities and expected utilities. Then clinical decisions 

may be sub-optimal. Moreover, the degree of sub-optimality may vary across patients with different 

observed covariates. For example, research suggests that clinicians' assessments of physical pain or 

cardiac risk among Black patients may be noisier or more prone to bias than those among White patients 

(Schulman et al., 1999; Hoffman et al., 2016; Sun et al., 2022) or that take-up of preventive services 

among Black patients may increase markedly if their doctor is also Black (Alsan et al., 2019). Sub-

optimality of clinical decision making is always undesirable from the utilitarian perspective, regardless of 

which specific groups of patients most suffer the consequences. The utilitarian prescription to improve 

decision making is to improve knowledge of patient illness probabilities and expected utilities. One could 

do so by addressing biases in medical education (Burgess et al., 2007) or developing enhanced decision-

support tools (Pierson et al, 2021). The utilitarian perspective implies that these solutions would dominate 

solutions that discard information from clinical prediction and decision-making on race entirely.  

Some have deemed disparities undesirable from non-utilitarian perspectives on fairness and justice, 

particularly when z measures race or ethnicity. We discuss these alternate perspectives in Section 5. 
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4. Optimal Prevention and Treatment in a Two-Period Model 

We now consider a two-period problem of utilitarian patient care. Period 2 remains as in Section 3, 

with a clinician choosing treatments for patients having predetermined risks of illness. The change is that 

we introduce an earlier period 1, in which society may undertake preventive efforts that reduce illness risk 

in period 2. If preventive care were costless, it would be optimal to provide it to all patients. However, 

such care is costly. Hence, the decision to provide it in period 1 is non-trivial. 

To formalize the preventive-care decision in a simple manner, let s = 1 if a patient receives such care 

in period 1 and s = 0 otherwise. Suppose that society can personalize such care, choosing s separately for 

patients with different observed covariates. Let Cxz > 0 be the social cost of providing preventive care to 

patients having covariates (x, z), with cost expressed in units commensurate with patient utility. Let psxz 

denote the probability of illness in period 2, which now varies with s as well as with (x, z). We assume 

that preventive care reduces the risk of illness; thus, p1xz < p0xz. 

We have found that, in period 2, it is optimal to condition illness risk on (x, z) when choosing a 

treatment, yielding (4) as the maximized value of expected utility. From the perspective of period 1, two 

versions of (4) are feasible, one setting s = 1 and the other setting s = 0. The resulting feasible maximized 

values of expected utility respectively are: 

 

(10a)   max [p1xz·Ux(1, A) + (1 − p1xz)·Ux(0, A), p1xz·Ux(1, B) + (1 − p1xz)·Ux(0, B)]  −  Cxz, 

(10b)   max [p0xz·Ux(1, A) + (1 − p0xz)·Ux(0, A), p0xz·Ux(1, B) + (1 − p0xz)·Ux(0, B)]. 

  

Providing preventive care is optimal if and only if (10a) exceeds (10b). This inequality holds if preventive 

care reduces illness risk sufficiently and if such care is not too costly. 

We present this model to connect our analysis to the emerging literature on systemic racism and its 

onward consequences on health and health disparities (Bailey et al 2017; O’Brien et al., 2020; Bohren et 

al., 2022; Darity, 2022). In that literature, long-standing discriminatory processes harm health over the 

life-course by increasing stress, reducing economic opportunities and financial security, and reducing 

access to health care. With this in mind, the term “preventive care” as used here can be interpreted either 

as direct preventive health care or more broadly to include any number of social activities or policies that 

reduce disease risk in period 2. Such policies may include broad economic or social interventions (e.g., 

minimum wage policy, social safety net policies, environmental policies, reparations) or interventions 

specifically targeted to address discrimination in period 1 (e.g., legal standards, affirmative action).  

The key point is that while assessing the costs and benefits of such policies may be valuable, the 

clinician's optimal period 2 treatment decision remains as above, given whatever hand period 1 has dealt. 

Engaging clinicians to work on ameliorating problematic systemic drivers of health may be laudable. But 
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our analysis shows that such work is generally separate from the care a clinician provides to a specific 

patient in period 2.   

Consideration of a specific clinical setting may further elucidate these points. A clinician may be 

interested in prescribing insulin for a hospitalized patient with Type I diabetes, a condition for which 

failure to take insulin will result in death. That patient is experiencing economic precarity, thereby leading 

him to hold less generous health insurance. The clinician may want to prescribe a contemporary insulin 

regimen that most closely mimics physiology and thus now represents standard of care. However, despite 

the clinician’s best efforts, coverage for the contemporary regimen is denied, while coverage for an older 

type of insulin regimen is provided. The clinician correctly discharges the patient with the older regimen, 

because this particular patient can afford it and thereby is more likely to adhere to it. However, outside 

this immediate encounter, the same clinician may advocate for policies that broaden population access to 

the latest medical technology (e.g., Essien et al, 2021) or, in a longitudinal relationship with the same 

patient, lay the groundwork for future care by address the patient’s social needs in period 1.  

 

5. Non-Utilitarian Concepts of Fairness  

We showed in Section 3 that, if clinicians have rational expectations, utilitarian treatment choice 

optimizes care within groups of patients who share common observed covariates. This expresses a 

specific version of the idea that clinical decision making should be fair and just, without implying that 

patients with different observed covariates should receive the same treatments or will experience the same 

health. We observed that cross-covariate disparities may not be well-motivated from the utilitarian 

perspective if clinicians make sub-optimal decisions based on imperfect knowledge. The utilitarian 

prescription to cure sub-optimality is to improve clinical knowledge, thereby improving decisions for all 

groups of patients. 

Writers arguing for removal of race from medical risk assessment appear to have something other 

than a utilitarian perspective in mind. Vyas et al. (2020) call for a general reconsideration of the use of 

race in risk assessments, stating: “Many of these race-adjusted algorithms guide decisions in ways that 

may direct more attention or resources to white patients than to members of racial and ethnic minorities.” 

Cerdeña et al. (2020) states: “race-based medicine…perpetuates health-care disparities.” Briggs (2022) 

states: “race is not the same as every other covariate in our arsenal.” Unfortunately, 

such statements are typically too nebulous to enable readers to either reconcile or contrast them with the 

principles of utilitarian decision making. 

 However, here we do take note of two bodies of work that have sought to generate well-defined 

non-utilitarian concepts and measures of fairness, with particular application to racial equity. We discuss 
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ideas developed in the economics literature presently. We describe computer-science work on algorithmic 

fairness in section A.1 of the Appendix. 

 

5.1. Fairness in the Economics Literature 

A simple framework illustrates key points, made originally by Foley (1968) and extended by Varian 

(1974). In the present health context, an allocation of resources in an N-member population is an 

allocation of treatments,  T , where, as above, each individual's treatment  tn  is either A or B. Consider a 

population of N = 2, comprising of one Black patient (denoted J) and one White patient (denoted K), so 

that   T = (tJ , tK )  where T is one of (A,A), (A,B), (B,A), or (B,B). Treatments result in scalar health 

outcomes, or expected outcomes if treatment response is uncertain, via individual-specific health 

production functions  h = hn(tn ) . We initially consider fairness of treatments rather than outcomes since, 

in general, the clinician—whose fairness is in question—is likely to have greater control over the former. 

The treatment that results in the greatest health for J may or may not be the same as the treatment 

that is best for K; that is,   sign(hJ (A)− hJ (B)) !  sign(hK (A)− hK (B)) . An algorithm that recommends 

uniform treatment for J and K when the signs are opposite implies that either J or K is not maximally 

healthy. 

When there are no consumption externalities, T is said to be envy-free if   tJ !J tK  and   tK !K tJ ; 

that is J and K each (weakly) prefers the treatment they receive under T to the treatment received by the 

other individual. It is natural to assume that the preference relationship corresponds directly to each 

individual's own h, although this is reconsidered below. If T is also Pareto efficient, then T is said to be 

fair. An algorithm that recommends a fair allocation to a clinician might be considered to be a fair 

algorithm. (Note however that the term “algorithmic fairness” is often used in a different sense - see 

section A.1 of the Appendix). 

Suppose now that there are externalities in consumption (Thomson, 2011) or interdependent 

preferences (Pollack, 1976), wherein J and K care not just about the treatment they receive but also care 

about the treatment received by the other; that is, they have preferences over the allocations T. Such 

externalities might take many different forms, but one that is perhaps particularly relevant to recent 

discussions of racial equity is where individuals are disparity-averse. 

Disparities of concern might imaginably be with respect to treatment allocations themselves or to the 

health outcomes arising from different treatment allocations. (See Box 1 for an example that underscores 

the distinction between treatment and outcome disparities.) Suppose for instance that  hJ (A) > hJ (B) . If J 
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is disparity-averse with respect to outcomes, it may be that J's preferences over the possible T outcomes 

nonetheless are: 

 

   (A,A)!J (B,B)!J (A,B)!J (B,A)    (strong disparity aversion, SDA) 

or  

   (A,A)!J (A,B)!J (B,B)!J (B,A)    (weak disparity aversion, WDA) 

 

Now J's preference ordering over treatment allocations depend on more than just J's own health; for 

example,   (B,B)!J (A,B)  under SDA. 

An alternative characterization of disparity aversion would take a societal perspective rather than the 

perspective of a given member of society. Without privileging any individual's treatment preferences, one 

might arrive at a societal ("S") partial ordering of the treatment allocations if social disparity aversion is 

with respect to treatments 

 

  

(A,A)
(B,B)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
!S

(A,B)
(B,A)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
   

 

Corresponding health outcomes might be reasonable partial tie-breakers if both individuals are, say, better 

off under A than B: 

 

  
(A,A)!S (B,B)!S

(A,B)
(B,A)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
. 

 

While the Foley-Varian notions of envy and fairness are not obviously applicable in this externality 

context, recognition that real-world individual and/or social preferences may sometimes have elements of 

disparity aversion could help us understand why some may view "fair" allocations in clinical contexts to 

differ from ones that are, by the above definitions, envy-free and Pareto efficient. Indeed, some recent 

calls for the removal of race measures in clinical predictions hint strongly at authors' disparity aversion. 

For instance, Vyas et al. (2020) write: "If doctors and clinical educators rigorously analyze algorithms 

that include race correction, they can judge, with fresh eyes, whether the use of race or ethnicity is 

appropriate.…They can discern whether the correction is likely to relieve or exacerbate inequities. If the 

latter, then clinicians should examine whether the correction is warranted." 
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6. Conclusions 

 One characterization of patient-centered care and personalized medicine (NEJM Catalyst, 2017) 

holds that:  

Not only are care plans customized, but medications are often customized as well. A patient’s 
individual genetics, metabolism, biomarkers, immune system, and other “signatures” can now 
be harnessed in many disease states—especially cancer—to create personalized medications and 
therapies, as well as companion diagnostics that help clinicians better predict the best drug for 
each patient. 
 

Marshaling data that provide informative measures of these "signatures" is an important empirical task. 

These signatures' measures may not be perfect. Nevertheless, as we show formally in sections 3 and 4, 

they have the potential to improve clinical predictions and, therefore, patients' health and well-being.5  

A familiar mantra conceives healthcare quality as the delivery of the right care at the right time in the 

right place (e.g. Nowak et al., 2012). Strongly implied in this statement is that "the right care" means "the 

particular care that's best for each patient." Consider a thought experiment wherein two otherwise-

identical healthcare delivery systems (say R and S) differ only in how clinical prediction models are used 

to inform clinicians' treatment decisions. In R treatment decisions are guided by race-inclusive models 

P(y|x,z), while in S treatment decisions are guided by race-exclusive models P(y|x). In which system 

would fully informed patients choose to enroll? In which system would fully informed clinicians choose 

to practice? While we cannot pretend to understand patients’ and clinicians' motives for the choices they 

would make, we submit that questions of this nature are worth contemplating. 

If implemented in practice, the arguments we have offered here ultimately support better quality care 

being delivered to patients of all races. While the model we outline meets a well-known mantra of 

healthcare quality, in practice, the way forward when making decisions around whether and how to 

consider race in clinical-decision making will require a much clearer sense of policymaker and public 

goals than has been achieved through the public debate to date. The present contribution is a step towards 

putting these debates on firmer and more transparent footing. 

Our results have immediate and potentially widespread policy implications. For example, the U.S. 

Dept. of Health and Human Services (DHHS) has recently undertaken efforts to revise Section 1557 of 

the Affordable Care Act (“Nondiscrimination”). Among other things, these efforts include proposing a 

new § 92.210 that focuses on discrimination and clinical algorithms: 
																																								 																					
5 Kanis et al. (2020) write: "...risk factors should be chosen according to established criteria 

irrespective of our understanding of their basis or their accuracy. A good example is consumption of 
alcohol, which is notorious for being inaccurately reported. In general, people who drink alcohol tend to 
neglect or underestimate their alcohol consumption.... It matters not whether the return is accurate—only 
that it provides a consistent indication of risk, which it does. Thus, we are more interested in association 
than causality. The same goes for race, location, and ethnicity." 
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Proposed § 92.210 states that a covered entity must not discriminate against any individual on 
the basis of race, color, national origin, sex, age, or disability through the use of clinical 
algorithms in its decision-making.…The intent of proposed § 92.210 is not to prohibit or hinder 
the use of clinical algorithms but rather to make clear that discrimination that occurs through 
their use is prohibited.…The Department notes that the use of algorithms that rely upon race 
and ethnicity-conscious variables may be appropriate and justified under certain circumstances, 
such as when used as a means to identify, evaluate, and address health disparities. (U.S. DHHS, 
2022) 
 

It is for lawyers and regulators to offer suitable definitions of "discriminate against" and "identify, 

evaluate, and address health disparities." Our analysis suggests that if the goal of the health care system is 

to deliver optimal care by the standards developed in section 3, clinical appropriateness—what is best for 

the patient—must figure centrally in the deliberations. To this end clear distinctions must be drawn 

between differences in health care and differences in health outcomes. 

We note in closing that there has been and remains considerable controversy regarding the definition 

of race. Race has been defined by ancestry, biology, social context, or a combination thereof. Race has 

also been defined based on self-identification or external perception. Moreover, these definitions may be 

fluid over time, even at the individual level. The challenges that definitional considerations like these 

pose for the preceding analysis are subtle but potentially important. Specifically, suppose a clinical trial is 

used as the basis of the evidence on which a clinician's decisions will be made, and suppose further that in 

the trial's data each participant's race was coded in some manner (the particular manner is unimportant). 

The evidence at hand for the clinician will then be a set of estimated prediction models 
  P
!(y x,z = zt ) , 

one for each race category  zt  and each x represented in the trial. The clinician now encounters a patient 

seeking treatment, observing their x characteristics and conceiving their race in some manner, say  zc . 

The question is whether the race category that serves as the basis of the clinician's treatment decision,  zc , 

is the same race category that would have been coded for this patient had they been a participant in the 

clinical trial. If so, the preceding analysis goes through without modification. If not, a more complex 

analysis must be pursued that is beyond this paper's scope. 
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Appendix 

 

A.1. Algorithmic Bias and Algorithmic Fairness 

In recent years considerable attention has been devoted to notions of algorithmic bias. Obermeyer et 

al. (2021) have authored a plain-language "playbook" that decision makers might consult to determine 

whether algorithms on which they rely are susceptible to bias. For these authors, biased algorithms are 

defined as follows: 

 
More generally, in many important social sectors, algorithms guide decisions about who gets 
what. In these situations, we believe that if an algorithm scores two people the same, those two 
people should have the same basic needs—no matter the color of their skin, or other sensitive 
attributes…We consider algorithms that fail this test to be biased. [page 1] 
 
Algorithmic fairness is not defined merely by the absence of bias in an algorithm. Barocas et al. 

(2021) outlines challenges in defining algorithmic fairness: 

 
We should not expect work on fairness in machine learning to deliver easy answers. And we 
should be suspicious of efforts that treat fairness as something that can be reduced to an 
algorithmic stamp of approval. At its best, this work will make it far more difficult to avoid the 
hard questions when it comes to debating and defining fairness, not easier. It may even force us 
to confront the meaningfulness and enforceability of existing approaches to discrimination in 
law and policy, expanding the tools at our disposal to reason about fairness and seek out justice. 
[page 34] 

 
These authors underscore such definitional challenges by offering nineteen distinct algorithmic fairness 

criteria (table 6 on page 75). 

To investigate how algorithms may be unfair, Rambachan et al. (2020) suggest a decomposition of 

the difference in an algorithm's estimated predictions between two groups, 
  E
![Y" G1]− E![Y" G 2] , where 

  Y!  is the measured outcome predicted by the algorithm. They write:  

 
A raw difference in predictions across groups may arise for three reasons: differences in base 
rates, differences in measurement error, or differences in estimation error across groups. 
Intervening at the level of the algorithm may address only the last two components of the 
disparity by investing in better training data and collecting a better proxy for the outcome of 
interest. In contrast, the base rate difference is a product of the underlying socioeconomic 
context itself, not the algorithm. [page 92] 
 
While the growing literature on algorithmic fairness is challenging to summarize succinctly, we 

mention here a few recent contributions. One is the e-book by Barocas et al. (2021) that explores a large 

set of criteria for algorithmic fairness. Another is Chen and Hooker (2021) who approach algorithmic 

fairness (which they call fairness in AI systems) via welfare optimization approaches that involve 
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definition of relevant social welfare functions and corresponding considerations of computational issues 

involved in their optimization. Liang et al. (2022) focus on algorithmic fairness and algorithmic predictive 

accuracy, exploring in particular when there will and will not tend to be tradeoffs (e.g., when greater 

fairness can be attained only at the expense of reduced predictive accuracy).  

 

A.2. Race-Normed Outcomes 

Distinct from this paper's focus is the issue of race norming of outcomes. While widely used, the 

term race norming does not to our knowledge have a commonly accepted technical definition. It does, 

however, claim a Wikipedia page (https://en.wikipedia.org/wiki/Race-norming) that offers this definition: 

"Race-norming, more formally called within-group score conversion and score adjustment strategy, is the 

practice of adjusting test scores to account for the race or ethnicity of the test-taker." This definition 

suggests transformation of an observed health outcome y that is measured in a uniform manner across 

races into a race-specific adjusted outcome, say w(y, z) for a specified function w(⋅, ⋅). Then the 

conditional probability distribution of interest becomes P[w(y, z)|x, z] rather than the P(y|x, z) that has 

been our concern.  

Race norming of clinical outcomes has been controversial. A prominent recent example is the 

National Football League's financial settlement with former players for concussion-related brain injuries 

(Hobson, 2021). The original settlement that denied compensation to some Black players was based on 

race-normed cognitive test outcomes that indicated Blacks to have different baseline cognitive capabilities 

than non-Blacks. Original settlements have been reconsidered given the questionable credibility of these 

baselines. 

An important yet distinct issue in the NFL case is whether cognitive test scores are appropriate 

outcome measures on which to base compensation. It may be that what these tests measure is at best a 

proxy for true health status with the gaps between proxy and truth being race dependent. The use of such 

problematic proxies is one of the main concerns in the algorithmic bias work discussed earlier (e.g. 

Obermeyer et al., 2019).  



 

Box 1: Optimal Treatments and Health Outcome Disparities 

 
Suppose there is credible evidence that the optimal treatment for Black patients (who are denoted J) is 
treatment B and optimal treatment for White patients (who are denoted K) is treatment A. Assume that 
treatments A and B are different dosages of the same drug or intensities of the same intervention, with 
treatment intensity denoted t. Suppose the respective health production functions are: 
 

  hJ (tJ ) = 8− (tJ − 4)2
 and  hK (tK ) = 10− (tK − 2)2   

 
Then A is  tK = 2  and B is  tJ = 4 . Thus, Black patients must receive higher-intensity treatment than 
White patients to attain optimal health. 
 
Define health disparity as  D(tJ , tK ) = hJ (tJ )− hK (tK ) . When no patient receives treatment ( tJ = tK = 0 ), 
health is worse for Black patients than for White patients, with  D(0,0) = −14 .  
 
The treatment allocation that is optimal by the utilitarian criteria developed in section 3 has Black patients 
receive B ( tJ = 4 ) and White patients receive A ( tK = 2 ). The disparity is thus less negative than when 
no treatment is received, with D(4,2) = −2 , although White patients' health is still better than Black 
patients’. 
 
From this baseline, consider the implications for health of four alternative treatment allocations, each of 
which treats Black and White patients with a common intensity: 
 

Alternative 1. Everyone is treated with what evidence indicates is best for White patients. Compared 
with the baseline, the disparity is more negative, with D(2,2) = −6 . 

Alternative 2. Everyone is treated with what evidence indicates is best for Black patients. The 
disparity is now positive, with D(4,4) = 2 .  

Alternative 3. Everyone is treated with a population weighted average of the optimal treatments, 

 C = pA + (1− p)B , where p is Whites' population share). Assume p=.8. Then the common 
intensity is 2.4. Now disparity is more negative than at baseline, with D(2.4,2.4) = −4.4 . 

Alternative 4. Treatments are allocated to eliminate disparity, which occurs if the common intensity 
is 3.5. Then D(3.5,3.5) = 0 . While disparity is eliminated, the health levels of both Black and 
White patients suffer relative to the baseline. 

 
The implications of these treatment allocations for health levels and disparity are summarized in this 
table: 

Scenario t Health D(tJ,tK) Black (J) White (K) Black (J) White (K) 
No Treatment 0 0 -8 6 -14 

Baseline: Optimal 4 2 8 10 -2 
Alternative 1 2 2 4 10 -6 
Alternative 2 4 4 8 6 2 
Alternative 3 2.4 2.4 5.44 9.84 -4.4 
Alternative 4 3.5 3.5 7.75 7.75 0 
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