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Abstract 

Technological advance is often embodied in capital inputs. This paper develops a model 
where capital innovations occur on two margins: (1) vertically, where a capital input 
becomes more productive at a given task; and (2) horizontally, where a capital input 
replaces labor at a given task. These two forms of technological advance engage in a 
macroeconomic “tug of war” when capital and labor have less than a unitary elasticity of 
substitution, and the resulting framework can meet numerous macroeconomic regularities. 
First, it can produce a balanced growth path and satisfy the Uzawa Growth Theorem—
even though all technological progress occurs in capital inputs. Second, it can produce 
intuitive macroeconomic dynamics, adding perspectives on the apparent productivity 
slowdown and declining labor share of income. Third, it can produce rich industry dynamics 
and inform structural change, including declining GDP shares of agriculture and 
manufacturing, sectoral bottlenecks, the role of general purpose technologies, and the 
limited macroeconomic impacts of computing. Overall, this tractable framework can help 
resolve puzzling tensions between micro-level observations of technological advance and 
macroeconomic features of economic growth. 
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1 Introduction

This paper provides a conceptual framework to address key tensions between microeconomic

descriptions of technological progress and the macroeconomic features of economic growth. Specif-

ically, the model connects three features that usually have trouble sitting together: (1) capital-

embodied technical change; (2) balanced growth; and (3) a non-unitary elasticity of substitution

between capital and labor. The model provides a tractable and intuitive approach for thinking

about growth rates, income shares, industry dynamics and structural change, all based in forms

of capital-embodied technical change. At the heart of the model is a surprise: a framework that

can feature purely capital-embodied innovations at a micro level yet, at a macro level, purely

labor-augmenting technological change.

To motivate this paper, consider first that major forms of technological progress appear to

be embodied in physical capital. For example, advances in transportation have followed inno-

vations in capital equipment (e.g., engines; also trains, automobiles, and airplanes). Advances

in agriculture appear to follow capital-embodied innovations in machines (e.g., tractors, threshers,

combine harvesters) and other non-labor inputs (e.g., seeds, fertilizers, and pesticides). Advances in

manufacturing also appear in many capital-embodied forms (e.g., lathes, robots, photolithographic

machines, 3D printers). Mokyr’s classic Lever of Riches more generally studies productivity-

enhancing innovations through human history, and it would be hard from this telling not to

conclude that capital-embodied innovations are at the heart of technological progress (Mokyr 1990).

Indeed, the major “general purpose technologies” (Bresnahan and Trajtenberg 1995, Helpman 1998)

since the Industrial Revolution – engines, electrification, computing – are all embodied in capital

equipment. See Figure 1.

While the importance of capital-embodied technical change seems self-evident, it creates sur-

prising tensions for models of economic growth. To match the key stylized facts of a balanced

growth path (Kaldor 1961), the Uzawa Growth Theorem shows that technological progress in the

aggregate production function must be purely labor-augmenting (Uzawa 1961). Namely, write

aggregate production as

Yt = F (BtKt, AtLt) (1)
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Figure 1: Top: Agricultural laborers working with limited tools (left). An early tractor with a steam engine

(middle). A modern combine harvester (right). A single Lexion 760 Terra Trac combine harvester in 2018

harvested 2.6 million kilograms of corn in 12 hours. Bottom: “Computers” at NASA in the 1950s (left).

The IBM 7090 computer in 1958 (middle). The 10−12 decline in the cost of computer operations per second

from Nordhaus (2001). (right).

where Yt, Kt, and Lt are aggregate output, capital, and labor, respectively. The Uzawa Growth

Theorem requires the capital-augmenting technology term to be constant, Bt = B, with per-capita

income growth following only from an increasing labor-augmenting technology term, At. This

result is surprising, even paradoxical, given that technological advance at a micro level appears

substantially embodied in capital and yet a balanced growth path seems a reasonable description

of the economy as a whole.

The traditional “fix” in growth models has been to utilize a Cobb-Douglas aggregate production

function, a special case where capital-augmenting technological advance can be recast as labor-

augmenting and balanced growth is indifferent to the source of technological advance. However,

this special case raises additional tensions. Namely, there is substantial evidence for a non-unitary

elasticity of substitution between capital and labor, and especially for an elasticity that is less than

1 (e.g., Antras 2004, Chirinko 2008, Oberfield and Raval 2021, Grossman et al. 2021). Further,
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a Cobb-Douglas approach locks the labor share of income to an exogenous parameter, limiting its

capacity to inform pertinent contemporary issues, including the apparent decline in the labor share

(e.g., Elsby et al. 2013, Karabarbounis and Neiman 2014, Dao et al. 2017).

This paper works to resolve these tensions, developing a conceptual framework where techno-

logical advance can be embodied in capital inputs at a micro level yet match the macroeconomic

regularities. The key idea is that there are two types of capital-embodied technological advance.

Both margins operate in a task-based model of the economy. The first margin lies in automating

activities or tasks that were formerly performed by labor (Zeira 1998, Acemoglu and Restrepo 2018,

2020). The second margin lies in improving the productivity of capital at the already-automated

tasks. Ultimately the economy depends on two technology state variables. The first, βt, is the

share of tasks in the economy that are automated (i.e., performed by capital inputs). The second,

Zt, is an index of productivity across these capital inputs. So, for example, a new application of

computers, replacing labor at a task, causes βt to go up, while faster computers cause Zt to go

up. Ultimately the capital share proves to be a remarkably simple outcome based on these two

technology indices:

Capital Share = βtZ
−1
t (2)

which situates the key intuition. Automation causes the capital share to rise (Acemoglu and

Restrepo 2018, 2020). However, advances in the productivity of the capital inputs cause the capital

share to fall (Aghion et al. 2019). This latter effect follows from the final key to the model: that

the elasticity of substitution between capital and labor is less than 1.1 In this context, advances

in productivity of a given input cause its price to fall relatively quickly so that its share in GDP

declines. Thus the two technology indices end up pushing in opposite directions with regard to the

capital share and can lead to balanced growth.2

The approach builds on recent advances in the growth literature. The first advances are models

of automation, which have extended how we conceptualize technological progress (e.g., Zeira 1998,

1The elasticity of substitution between capital and labor is debated (e.g., Chirinko 2008, Karabarbounis and

Neimann 2014), but the balance of the empirical literature appears to favor an elasticity of substitution less than 1

(e.g., reviews by Hamermesh 1993 and Chirinko 2008; Antras 2004, Oberfield and Raval 2021, among others). See

also Grossman et al. (2021).
2The possibility that a balanced growth path might emerge along these lines was first suggested, to our knowledge,

in Aghion, Jones, and Jones (2019).
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Acemoglu and Restrepo 2018). In contrast to the classic vertical approaches where innovations are

modeled as directly productivity enhancing (i.e., a technology term weighting the quantity of the

input, or the cost of producing the input), automation allows us to consider a horizontal form of

innovation where one input (capital) replaces another (labor). It is the combinination of the classic

view and the automation view that makes the model in this paper work. A second new strand of

literature, which focuses more precisely on the Uzawa Theorem, introduces human capital into the

production function in a way that holds the capital-augmenting term constant along the balanced

growth path (Grossman et al. 2017, 2021). In the Grossman et al. approach, there is capital-

augmenting technological progress, but human capital in a sense eats this physical capital with

the result that the capital-augmenting term Bt can remain constant as both capital technology

advances and human capital deepens.

This paper relates to both ideas, but with distinct foundations, forces, and intuitions, and

a wide set of applications and results. First, at the aggregate level, the two forms of capital

advancement acts as neutralizing forces in the aggregate production function. In particular, when

aggregating from the task level up to total output, the technology indexes enter the aggregate

production function in the form

Yt = F ((βtZ
−1
t )θ)Kt, (1− βt)

θLt) (3)

where θ < 0, which further demonstrates key intuition. Essentially the two margins of technical

progress are in a “tug of war” with each other in the aggregate. Balanced growth emerges when

advances in automation (e.g., computers take over more tasks) and advances in the productivity of

capital inputs (e.g., computers get faster) proceed at the same rate. This holds the capital share

constant in (2), and, as we see in (3), meets the key Uzawa condition that the capital-augmenting

term be constant in the production function to achieve balanced growth. Further, while these two

capital-technology indices neutralize each other in the overall capital technology index, the balanced

growth path is still driven by the capital-embodied improvements, as labor focuses on and increases

production in the remaining non-automated tasks and capital deepens overall.

Second, in addition to being able to meet the requirements of the Uzawa Growth Theorem,

this tractable framework provides novel and intuitive perspectives for how technology dynamics

and economic dynamics can relate. For example, a decline in the labor share follows naturally if
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automation accelerates or vertical improvements slow. Further, a slowdown in vertical technological

progress leads both to a labor share decline and a growth slowdown, providing a potentially

straightforward conceptual linkage between the observation that innovation may be getting harder

(e.g., Jones 1995, Jones 2009, Bloom et al. 2020) and recent U.S. growth and income share

observations.

Third, viewing different intervals of the economy’s tasks as representing different sectors,

capital automation and capital quality advances (and the tug-of-war between them) can occur

differently within different sectors, allowing for distinct industry dynamics and structural change

along a steady growth path. This process occurs in line with Baumol’s cost disease, where high-

productivity sectors tend to shrink as a share of GDP and laggard sectors grow as a share of GDP

(Baumol 1967, Aghion et al. 2019). For example, if agriculture and manufacturing see relatively

rapid technological advance compared to services, then the GDP share of agricultural outputs and

manufacturing outputs will go down and the GDP share of services will go up. Yet the capital

share in agriculture or manufacturing need not go up or down compared to services, and the capital

share in the economy can remain steady. Thus this model can speak to structural change as well

as balanced growth.

As another application, take computers. Moore’s Law, which has increased floating-point

operations per second by 1011 since World War II, is often seen as an essential technological

force of our age, and yet overall productivity growth has been modest, and perhaps puzzlingly so

(Solow 1987). A Baumol perspective can naturally help: Capital-embodied tasks (e.g., floating

point operations) that advance rapidly become a smaller share of GDP, and growth becomes

more determined by productivity at other, bottleneck tasks. Thus, the very success of Moore’s

Law engenders its ultimate impotence in the aggregate production function, if it only applies to

a limited set of tasks (see also Aghion et al. 2019). However, at the same time, and unlike

agriculture, computing equipment has not become a smaller share of GDP. Rather ICT capital

equipment investment tends to sustain at high levels in advanced economies (OECD 2021). The

model suggests that this sustained GDP share occurs through increasing automation: if computers

are simultaneously taking over more tasks (e.g., search, machine control, artificial intelligence, etc.).

This increasing breadth of tasks undertaken by computers can balance computer quality advances
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and sustain computers’ GDP share. The model may then also address both the power and the

limits of computing, among other general purpose technologies.

This paper proceeds as follows. Section 2 develops the baseline model with exogenous tech-

nological advances on both the automation and productivity margins and considers conditions for

a balanced growth path. Section 3 uses this model to examine broader technology dynamics and

economic outcomes, with applications to dynamics in the overall growth rate and income shares,

structural change, and general purpose technologies. Section 4 then develops an endogenous growth

model, where R&D investment and rates of progress on both technology margins are choices by

firms and a balanced growth path emerges based on fundamental economic parameters. Additional

applications are then discussed, including further interpretations for the apparent productivity

slowdown and declining labor share of income. Section 5 concludes.

2 Baseline Growth Model

Here we present the growth model with exogenous technological progress. We first lay out the

assumptions regarding production and preferences, and consider equilibrium based on consumer

and firm optimization. We then consider a balanced growth path. Namely, we will show the

existence of a BGP – even though all technological progress is embodied in capital goods and the

elasticity of substitution is less than 1.

2.1 Production Technology

The production technology features a unit interval of tasks, i ∈ [0, 1]. Final output Yt is given

as

Yt = υ

[∫ 1

0
yt(i)

ρdi

]1/ρ
, ρ < 0 (4)

where yt (i) is an intermediate good. By assumption, ρ < 0, so that intermediates are gross

complements. The price of final output is the numeraire.

Intermediate good production is as follows. Each intermediate good can be produced with

labor. However, intermediate goods on the interval i ∈ [0, βt] can also be produced by capital.
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The production possibilities for the intermediates are

yt (i) =

 Alt(i)

zt (i)
ρ−1
ρ xt(i)

for all i ∈ [0, 1]

for all i ∈ [0, βt]
(5)

where lt (i) is a labor input, xt (i) is a capital input, and zt(i) is a capital-input specific productivity

term. The capital input can be made at a marginal cost of ψ units of the final good. Following

standard vertical growth models (e.g., Aghion and Howitt 1992), we assume capital inputs depre-

ciate fully with their use, and we will normalize the cost of machine production such that ψ = υ.

The exponent on the capital-productivity term is for notational convenience (and is positive, since

ρ < 0).

Capital-embodied technology in this model is thus described on two key margins. First, there

is the share of tasks, βt, that have been automated. Second, there is the productivity, zt (i), of each

automated task. Note as well that we are fixing the labor productivity via the constant A. This

feature can easily be relaxed, but we fix labor productivity here to emphasize that all technological

progress in this model can be embodied in capital – and yet we will have a balanced growth path.

Figure 2 depicts the two capital-embodied technology frontiers, in productivity and automation, in

this model.

Finally, it will be useful to summarize the capital-productivity terms using the index

Zt =

[
1

βt

∫ βt

0

1

zt (i)
di

]−1

(6)

which is the harmonic average of the capital-embodied technology terms.

2.2 Preferences

A representative household has (CRRA) preferences,

U (t) =

∫ ∞

t

c (τ)1−θ − 1

1− θ
e−ω(τ−t)dτ (7)

where ω is the discount rate and θ ≥ 0. A household supplies one unit of labor inelastically to

production, earning a wage rate wt. Households earn wages as well as earn any capital income,

holding a balanced portfolio of the firms in the economy. We assume the usual transversality

condition. Consumption will proceed according to the Euler equation

gc =
1

θ
(rt − ω) (8)
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Figure 2: The two technology frontiers in the model.

2.3 Resource Constraints

The total supply of labor is Lt, where

Lt =

∫ 1

0
lt(i)di (9)

and Lt grows at rate n. The total investment cost for capital is

It =

∫ 1

0
ψxt(i)di (10)

Output is either consumed or used to make capital inputs, giving the economy-wide constraint

It + Ct = Yt

where Ct = Ltct is total consumption.

2.4 Firm Optimization

Competitive final goods firms maximize profits using the final goods production function (4)

and taking prices as given. These producers’ demand for intermediate goods will thus take the
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form

pt (i) = υρ
(

Yt
yt (i)

)1−ρ

(11)

Intermediate firms maximize profits using the production possibilities (5), taking intermediate

output prices, pt (i), and input prices for labor and capital, as given.

2.4.1 Non-Automated Tasks

Given the intermediate production technology (5) and competitive markets, the intermediate

price for any non-automated task is

pt (i) = wt/A (12)

Intermediate prices are thus the same across all labor-performed tasks. From (11), it then follows

that yt (i) is the same for these labor-performed tasks. We will be interested in the equilibrium

where automated tasks (on the interval i ∈ [0, βt]) will indeed use capital inputs, so that labor

input are used only on tasks i ∈ (βt, 1]. Anticipating this feature, and using the labor resource

constraint (9) we then have the equilibrium labor allocation

lt (i) =
Lt

1− βt
, i ∈ (βt, 1] (13)

and thus the intermediate outputs

yt (i) =
ALt

1− βt
, i ∈ (βt, 1] (14)

for labor-produced tasks.

2.4.2 Automated Tasks

For tasks i ∈ [0, βt], firms can use capital inputs or labor inputs. For the exogenous growth

model, these intermediate producers will be competitive and earn zero profits. If firms use capital

inputs, the prices are

pt (i) = ψzt (i)
1−ρ
ρ , i ∈ [0, βt] (15)

To focus on the equilibrium of interest, where these firms do indeed use capital inputs, we require

as a technical condition that automated-production is lower cost than labor-based production for

automated tasks; i.e.,

wt ≥ ψAzt (i)
1−ρ
ρ (16)
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for all automated technologies i ∈ [0, βt]. We will validate this technical condition later.

For automated tasks, the equilibrium capital allocation to each task is, using (11), (15), and

the production technology (5),

xt (i) = υ−1 Yt
zt (i)

, i ∈ [0, βt] , (17)

the intermediate outputs are

yt (i) = υ−1zt(i)
− 1

ρYt, i ∈ [0, βt] , (18)

and the GDP share for a given automated task is

pt (i) yt (i)

Yt
=

1

zt (i)
, i ∈ [0, βt] . (19)

Thus productivity advances in a given automated task cause its output to go up but its GDP share

to go down. This effect is part of Baumol’s cost disease, where the GDP share falls for outputs the

economy becomes especially good at producing.

2.5 Aggregation

A key feature of the model is how automated intermediates aggregate. Using the capital

resource constraint, (10), and the equilibrium capital allocation to each task, (17), we have

It = YtβtZ
−1
t

where we recall that Zt is the harmonic average of the tasks-specific productivity terms (see (6)).

The capital share is then

sKt =
ψXt

Yt
= βtZ

−1
t (20)

and the labor share is

sLt =
wtLt

Yt
= 1− βtZ

−1
t (21)

in terms of the exogenous technology variables.

Meanwhile, aggregate output, (4), follows from summing across the equilibrium intermediate

outputs. Equilibrium aggregate output is

Yt = υA
(
1− βtZ

−1
t

)−1/ρ
(1− βt)

1−ρ
ρ Lt (22)
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in terms of the exogenous variables.

Equilibrium wages are, from (21) and (22)

wt = υA
(
1− βtZ

−1
t

) ρ−1
ρ (1− βt)

1−ρ
ρ (23)

and consumption per capita is the same as wages, ct = wt.
3

2.6 Technology Adoption

Finally, recall that we require automated technologies to be sufficiently productive to be

adopted. This condition is (16). Given the equilibrium wage, the technology assumption takes

the form

zt(i) ≥ zmin
t =

1− βt

1− βtZ
−1
t

(24)

for all i ∈ [0, βt], where z
min
t is the minimum productivity level at which an automated task produces

the intermediate output at lower cost than labor. Note that, since the index Zt is the harmonic

average and therefore must be greater than its minimum possible value, Zt ≥ zmin
t , it then follows

directly from (24) that

Zt ≥ 1 (25)

along the economy’s equilibrium path. The adoption condition (24) thus also guarantees that

βtZ
−1
t ≤ 1, so that the capital share in (20) is well defined.

2.7 The Balanced Growth Path

We now focus on a balanced growth path (BGP). The BGP is defined as the equilibrium that

can match the Kaldor facts. Namely, aggregates Yt, Kt, and Ct grow at a constant rate, while the

interest rate rt and the capital share of income are constant.

Looking at the aggregate results above, it is apparent that there are two technology conditions

for the BGP. First, the BGP requires a constant capital (or labor) share. From (20), we therefore

require

βtZ
−1
t = sKt = s (BGP1)

3In this exogenous growth model there are no profits and capital depreciates fully in use. Thus gross investment

and capital income are equivalent, and consumption thus tracks wage income.
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Here we see directly the role of the two forms of technological advance. The capital share is

rising in the fraction of sectors that are automated (βt) and declining in an index of these sectors’

productivity (Zt). These offsetting pressures are exactly why this model can maintain a constant

capital share – even though all technological progress is embodied in capital. Note that the capital-

share-reducing role of capital-embodied productivity gains (Zt) follows because ρ < 0. That is,

because intermediate outputs are gross complements, advancing productivity in a sector causes

the GDP share of that sector to decline. Thus the BGP features declining GDP shares of each

automated sector. Yet because the share of automated tasks (βt) is rising, the total share of capital

in GDP can remain constant. We will discuss this intuition further below, in light of the Uzawa

Theorem.

Second, looking at (22), we see that growth in GDP per capita, g, will also take a simple

form. With a constant capital share, g = [(1− ρ) /ρ] g1−βt , where g1−βt is the rate of growth in

1 − βt. The BGP thus requires a second technology condition. Steady-state growth occurs when

the fraction of non-automated sectors is declining at a constant rate. We write this condition as

g1−βt = −qh (BGP2)

where the h superscript denotes the “horizontal” nature of this innovation, a process of automating

tasks. We use a negative sign to emphasize that the fraction of tasks that are not automated,

1 − βt, is decreasing as the automation advances. While we will use “horizontal” as an evocative

shorthand, note that this mechanism corresponds closely to models of automation and much less

to the features and intuition of love-of-variety growth models.

A natural way to think about the condition (BGP2) is that automation is getting harder

as it proceeds. The fewer tasks that remain to be automated, the smaller the measure that

are successfully automated each period. Anticipating the endogenous growth model, steady-state

growth rates will follow from a simple process where innovators seek to automate non-automated

tasks and succeed with probability qh.

Under the two BGP technology conditions, (BGP1) and (BGP2), the steady-state growth rate

of the economy is therefore

g =
ρ− 1

ρ
qh (26)
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Putting the pieces together, on a balanced growth path the automation rate determines the steady-

state growth rate, while the advance of productivity on automated tasks acts to neutralize the

effect of automation on the capital share.4

We can encapsulate the technology conditions for balanced growth and the balanced growth

path as follows.

Condition 1 Let βt and Zt grow at the same rate (BGP1). Let 1− βt decline at the rate qh

(BGP2). Further, let the zt(i) be sufficiently large to satisfy the technology adoption condition

(24), and let ω − n > (1− θ)ρ−1
ρ qh to satisfy the transversality condition.

Proposition 1 (Balanced growth path). Under condition 1, a balanced growth path exists where

the growth rate in per-capita output, per-capita consumption, the per-capita capital stock, and the

wage are g = ρ−1
ρ qh. The capital share is sKt = s. The discount rate is r = ω + θ ρ−1

ρ qh.

Proof. See Appendix.

2.7.1 Balanced Growth and the Uzawa Theorem

To gain further insight into the balanced growth path and how the model satisfies the Uzawa

steady-state growth theorem, it is helpful to write aggregate output in the form Yt = F (BtKt, AtLt).

The Uzawa Theorem tells us that, for a balanced growth path with a non-unitary elasticity of

substitution between labor and capital, all technological progress must be labor augmenting. That

is, we require the labor-augmenting technology term, At, to grow at a steady-state rate. Yet the

capital-augmenting technology term, Bt, must be constant.

In the model, we can rewrite aggregate output as

Yt = υ
[(

(βt/Zt)
1−ρ
ρ υ−1Kt

)ρ
+
(
(1− βt)

1−ρ
ρ ALt

)ρ]1/ρ
(27)

This formulation shows us directly how the two technology conditions above produce a balanced

growth path. First, we see that the condition βtZ
−1
t = s has the effect of making the capital-

augmenting technology term constant. Second, the condition g1−β = −qh has the effect of making

4The technology index Zt is an aggregation of the zt(i) (see (6)), and we will consider specific innovation processes

for zt(i) that produce a balanced growth path in Zt further below.
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the labor-augmenting technology term grow at a constant rate. In this way, although all technolog-

ical advance is embodied in capital, aggregate production appears to have purely labor-augmenting

technological progress and we can satisfy the Uzawa Theorem (and match the Kaldor facts). A

key distinction between this approach to a BGP and others in the literature is that, in equilibrium,

the production function above does not become Cobb-Douglas. Rather, we continue to have an

elasticity of substitution between capital and labor that is less than 1.

2.7.2 Balanced Growth and Technology Limits

The central feature driving the balanced growth path is the behavior of the two forms of

technological progress. These technology pathways are also interesting compared to standard

theories and intuitions. Namely, the technology indices, Zt and βt, are not growing at exponential

rates on the balanced growth path. Instead, they are approaching finite limits. Yet, despite these

limits, a balanced growth path can continue forever.

Specifically, balanced growth requires, via (BGP2), that 1 − βt declines at a constant rate.

That is, the automation limit occurs as βt → 1, and the share of non-automated tasks 1 − βt

shrinks proportionally with time. Further, from (BGP1), balanced growth requires that the capital

quality index Zt follows the same dynamics as βt. This implies that Zt must also shrink toward a

limit at a constant rate along a balanced growth path. In particular, the limit of Zt on a balanced

growth path is 1/s, as seen directly from (BGP1). A balanced growth path thus occurs not when

βt and Zt grow at a constant rate; rather it occurs when 1− βt and 1/s− Zt decline at a constant

rate.5

Intuitively, steady-state growth emerges here because, as labor focuses on a proportionally

smaller share of tasks, labor can produce proportionally more of each. This feature follows Aghion,

Jones, and Jones (2019), who consider the growth implications of proportional declines in the share

of non-automated tasks. However, the rise in βt alone also raises the capital share of income. To

achieve balanced growth, we must further consider the dynamics in Zt. When Zt rises, it acts

to reduce the capital share of income, other things equal. If Zt follows the same dynamics as βt,

5This is the rate qh (see (BGP2)).
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then balanced growth is achieved (and when βt and Zt follow alternative dynamics, the economy

experiences non-balanced growth, as investigated in Section 3).

These technology processes recall Zeno’s Paradox. In such processes, one takes an infinite

number of steps yet never completes a journey of finite length, because each step is a fraction of the

distance that remains. Here, even though the technology indices approach finite limits in this way,

growth can continue forever. The model thus has a “limited innovation, limitless growth” feature.

In a sense, one can be an extreme techno-pessimist and still see steady-state growth. While limits

in technological progress are non-standard in growth theory, such limits may also be appealing if

one believes that there is some kind of fishing out process at work in innovation, or if there are

natural laws, like Carnot’s efficiency maximum, that put finite limits on technological possibilities.

Nonetheless, steady-state growth continues forever despite these limits, where the growth rate in Zt

and βt fall along the BGP and limit to zero. Effectively, even if technological progress in the overall

quality index of capital inputs and automation continually slow, there is continual and balanced

growth through the use of machines.

We encapsulate these technology pathways on the balanced growth path in the following

corollary.

Corollary 1 (Limited innovation, limitless growth). On the balanced growth path, the technology

indices shrink at constant rates, g1−βt = g1/s−Zt
= −qh, but grow at shrinking rates, gβt = gZt =

1−βt

βt
qh, and approach finite limits, βt → 1 and Zt → 1/s.

Proof. See appendix.

The slowdown in the progress of the aggregate index Zt on a BGP may seem restrictive

or difficult to manage at a micro level. However, this BGP condition does not imply that any

particular capital-embodied technologies face a slowdown and, as we will see next, one can deploy

a more standard micro-level quality ladder approach within this framework.
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2.7.3 Balanced Growth and Task-Level Technological Advance

The description of the balanced growth path has so far focused on aggregates and the BGP

trajectories of βt and Zt. Here we focus on the task-level productivities, zt (i), that constitute the

aggregate technology index Zt. Specifically, we examine task-level technology pathways that can

produce BGP behavior in Zt.

Generally, the evolution of Zt can be understood as being driven by two forces: productivity

advances on already-automated lines and the initial productivity of newly-automated lines. In

practice, there are many ways one can proceed at the task-level so that a balanced growth path

emerges. Using the definition (6), we can rewrite (BGP1) as∫ βt

0
zt(i)

−1di = s (28)

Thus one can consider any innovation processes for which this is true. Natural processes of

technological advance will see zt(i) increase with time on existing, automated lines. Meanwhile,

newly automated technologies will add new initial productivity levels. The balanced growth path

is possible when the productivities aggregate as in (28). To the extent that technology proceeds

differently from (28), the economy will experience capital share dynamics and deviate from the

BGP (which we will discuss in Section 3).

As a specific innovation process, consider a standard vertical innovation model as seen in

the endogenous growth literature. In particular, let an innovation on an existing automated line,

i ∈ [0, βt], increase that line’s productivity proportionally to (1 + ϕ) zt (i). Let such an innovation

occur with hazard rate qv, where the superscript v denotes the “vertical” nature of such innovation.

To satisfy (28), one then needs the new automation to enter as follows.

Case 1 (A micro-innovation process for balanced growth). Let existing tasks increase their produc-

tivity proportionally by an amount ϕ with hazard rate qv. Then a BGP will occur so long as newly

automated tasks have productivity

zt (βt) = h (1− βt) (29)

where h ≥ 1
1−s and s = qh

qvϕh .

Proof. See appendix.
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This corollary provides one set of sufficient conditions for innovation at the task level, allowing

the Zt index to evolve to produce the BGP. In particular, the corollary tells us how newly automated

technologies draw their productivities, when existing automated tasks follow a standard quality

ladder model.

In this micro specification, the basic idea is that one automates the easy things first. Tasks

that are harder to automate (they are automated later) enter initially with lower productivity.

Specifically, in (29), the initial quality of the newly automated technologies is falling along the

growth path, tracking 1 − βt. To further understand this case, note that wages are rising on the

growth path (also tracking along 1−βt). Thus labor becomes an increasingly expensive production

approach, which creates room for these new, lower-productivity automation technologies to still

be adopted. The parametric condition h ≥ 1
1−s ensures that newly-automated technologies are

productive enough to be adopted given the equilibrium wage. The capital share in this technology

process is s = qh

qvϕh .

While the vertical innovation approach above is one way to satisfy (28) and generate a BGP in

the exogenous growth model, it also sets up a tractable approach for an endogenous growth model.

We will return to endogenous growth in Section 4 to further analyze balanced growth.

2.8 Unbalanced Growth

Stepping back from balanced growth, the model more generally develops analytic solutions for

all the endogenous quantities and prices in the economy. Firm and consumer optimization produce

these solutions, so that the results can speak to the relationship between technological change and

economic dynamics, both on and off a balanced growth path. For example, the path of GDP

is determined analytically in (22) in terms of exogenous variables and evolves according to the

development of βt and Zt. We can encapsulate the equilibrium for more general sets of technology

pathways (i.e., without assuming balanced growth) with a weak set of technology conditions as

follows.

Condition 2 Let the zt(i) be sufficiently large to satisfy the technology adoption condition (24),

and let ω − n > (1− θ)g∞ to satisfy the transversality condition.
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Proposition 2 (Unbalanced growth path). Under condition 2, an equilibrium exists with a capital

share sKt = βtZ
−1
t and explicitly determined paths of output, consumption, investment, the wage,

the interest rate, and all other prices and quantities in the economy.

Proof. See Appendix.

Studying more general relationships between technology dynamics and economic outcomes will

be the focus of Section 3.

2.9 Summary

The key features of the model follow from having two margins of capital-embodied techno-

logical advance, creating a balance of forces that drive the trajectory of the economy. We have

an automation process, with state variable βt, featuring horizontal innovation as new tasks are

automated. We separately have a capital-quality process, with state variable Zt, encapsulating

vertical innovation and the evolving productivity of the automated tasks. Thus, the model can

have new capital goods (such as farming equipment, robots, or computers) taking over human tasks,

while also having improvement in the capital goods over time (better farming equipment, better

robots, or better computers). In the tandem of these forces, balanced growth can emerge. In effect,

having two margins of capital-embodied technological progress allows the model to overcome the

tension between capital-embodied technological progress, a non-unitary elasticity of substitution,

and balanced growth. In addition to satisfying the Uzawa theorem and providing a balanced growth

path, the model also provides closed-form solutions to study the economy off of a balanced growth

path and thus engage a broad range of phenomena, which we turn to next.

3 Technology Dynamics and Economic Dynamics

The model allows for rich economic dynamics based in technological progress. We consider

several such dynamic phenomena. Specifically, we develop further intuitions and applications,

where technological progress proceeds in a potentially unbalanced manner. We first examine income

shares and growth rates, showing how the two technological forces can provide a novel technological

view of recent U.S. economic growth and income share dynamics. We then consider structural

19



𝑍𝑡

BGP

1/s

1
0 1

↑ Capital 
Share

↓ Capital 
Share

Automated
tasks

𝛽𝑡

Non-automated 
tasks

Figure 3: Technology dynamics on and off the balanced growth path.

change, showing how the model may inform dynamics in sectoral GDP shares, such as the economic

transformation from manufacturing and agriculture to services. Finally, we consider the role of a

“general purpose technology” from the perspective of the model and the implications of extreme

technological advance through computing.

3.1 Income Shares and Growth Dynamics

Consider first dynamics in the labor share of income and the growth rate. The model provides

closed-form solutions for income shares and growth outside a balanced growth path, with the

equilibrium results for these outcomes given in (20) and (22)). The income share dynamics are

encapsulated in the following corollary.

Corollary 2 (Labor share dynamics). The labor share is decreasing with time if gβt > gZt, constant

if gβt = gZt and increasing with time if gβt < gZt.

Proof. The result follows by inspection of (21).
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The model thus presents two possible technological stories for a declining labor share in recent

decades. First, the labor share will decline if technological progress in automation accelerates.

Second, the labor share will decline if technological progress in capital productivity decelerates. See

Figure 3. Put simply, one form of capital-embodied technological progress (vertical productivity

gains) is good for the labor share, but the other form of capital-embodied technological progress

(increasing automation) is not.

To the extent that there has been a concomitant growth slowdown, this can sharpen the

technological picture.

Corollary 3 (Growth dynamics). The growth rate in income per-capita increases in gβt and gZt.

Proof. See appendix.

While still open to measurement debates, taking the common description of the U.S. economy as

experiencing declines in both (i) the labor share and (ii) the growth rate, the model points toward

a decline in gZt as a force that can deliver both phenomena at once. Slowing growth in Zt can in

turn follow from declining innovation rates on newly automated lines or, alternatively, from new

forms of automation that are of relatively low productivity.

Somewhat more subtly, while Zt is growing on a balanced growth path, outside a balanced

growth path the index Zt may actually decline in equilibrium as automation advances. This can

lead to a sharp decline in the labor share. In particular, newly automated technologies will

be adopted so long as they are marginally lower cost than using labor, and the introduction of

low productivity automation technologies can drag down Zt (the harmonic average of the capital

productivities). Further, if innovation is becoming harder in the sense that vertical improvements in

existing automated technologies are small, or rare, then there is little pushing up on the productivity

index and the newly-automated technologies becomes the central force in driving the evolution of

Zt. In this sense, weak vertical innovation rates and weakly successful automation technologies

(meaning just productive enough to be adopted) can result in especially anemic gains from labor’s

perspective.6

6See also Acemoglu and Restrepo (2019) for related discussion.
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We can formalize a “worst case” (for labor) automation-led style of growth as follows, where

output per capita grows at a constant rate through automation but wages stagnate.

Corollary 4 (Automation-led growth with constant wages) Let automation proceed at some rate

qh > 0 where newly automated technologies have productivity level zmin
t , the lowest level of pro-

ductivity where they will still be adopted. Let prior automated technologies see no productivity

improvement. Then wages remain constant. Income per-capita grows at rate qh, and the labor

share falls at rate qh. The technology index Zt declines at rate qh 1−Zt
βt

< 0.

Proof. See appendix.

In this corollary, we have not only turned off vertical advances on existing lines but we have

made newly-automated technologies barely good enough to be adopted. The result is a kind of

weak but sustained growth in income per capita, with none of the gains going to labor. This result

may be especially interesting as a technological context to consider recent dynamics in the U.S.

economy.

3.1.1 Application to U.S. Growth and Income Share Series

Having established the theoretical results and their intuitions above, we can further consider

an application of the model to U.S. macroeconomic data. In particular, one may use the output

and labor share results, (22) and (21), to pin down βt and Zt each period to match the observed

output and labor share series.7 For this application we will use standard data series for U.S. labor

productivity (output her hour) and the U.S. labor share of income from 1947-2019 (Bureau of Labor

Statistics 2021a, 2021b). While the recent productivity growth slowdown and the recent decline in

the labor share, which appear in these series, are subjects of ongoing measurement debates, here

we take these data series as given and see how the model would explain these patterns.

Figure 4a presents the macro data series. Figure 4b presents the estimated technology paths.8

These paths are presented as 1− β̂t and c− Ẑt, which is useful for seeing balanced growth behavior

7As this model features full employment, among other simplifications, matching business cycles goes beyond what

the model is meant to do. Longer-trends at full employment are more naturally within the conceptual grasp.
8The appendix provides further details on this estimation.
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and deviations from this behavior. The estimation results suggest striking shifts in the nature of

technological progress. First is an era of relatively stability. Horizontal and vertical innovation

proceeded at broadly similar rates from the late 1940s into the early 1990s, consistent with broadly

balanced growth.9 Second, starting around the mid-1990s, we see episodes of decoupled technologi-

cal progress and unbalanced growth, which continue until around 2010. Third, after 2010, we again

see parallel but slower progress in both forms of innovation. This most recent period is consistent

with innovation getting harder in a general sense while also maintaining a relatively stable labor

share. Of course, the labor share is structurally lower after 2010 than in the latter half of the

20th century, which follows from highly unusual behavior from 2000-2010. This period follows the

broad logic of Corollary 4: automation (in fact, a burst of automation) but a reversal in the capital

productivity index, consistent with the entrance of new automation technologies that are not much

lower cost than labor. The result is anemic growth, and especially anemic gains for labor.

3.2 Structural Change

The growth model can also be applied to consider structural change. Here we will consider

how industry GDP shares and capital shares may evolve. For example, we can divide the economy

into agriculture, manufacturing, and services.10 The dynamics in these sectors can then follow from

differential rates of automation and capital productivity advances within these sectors and provide

a novel perspective on structural change.11

To formalize such ideas, one can label subsets of tasks as representing different sectors. Specifi-

cally, let there be J sectors indexed j ∈ [1, J ]. Let each sector have a measure ujt ≤ 1 of tasks, which

divide up all the tasks in the economy so that
∑

j u
j
t = 1. Further, let the measure of automated

9The 1970s-era slowdown in labor productivity growth is reflected in slowdowns on both the vertical and horizontal

technology dimensions so that, while the growth rate declined, the labor share of income remained relatively steady.
10We organize the analysis into these three broad sectors following long-standing orientations in studies of structural

change (e.g., Fisher 1939, Kuznets 1966).
11The “two technologies” approach we develop here is distinguished from other perspectives in the vast literature

on structural change, including those that emphasize non-homethetic preferences and income effects (e.g., Matsuyama

1992, Buera and Kaboski 2012, Matsuyama 2019); models that emphasize productivity shifts in the context of price-

taking behavior (e.g., Hansen and Prescott 2002); and more general orientations in development economics that

link development with structural change and engage frictions that inhibit development (e.g., Lewis 1954, Harris and

Todaro 1970, Banerjee and Newman 1998).
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tasks in sector j be βjt ≤ ujt , which sum to the overall automated task share,
∑

j β
j
t = βt. Finally,

let each sector have a technology index Zj
t , which is the harmonic average of the zt(i) in that sector.

It is now straightforward, by summing up output and capital investment within a sector, to

write down the GDP share of the sector, as well as the labor share of income within that sector.

In particular,
Y j
t

Yt
= βjt

(
Zj
t

)−1
+ sLt

ujt − βjt
1− βt

(30)

sjLt
= 1− βjt

(
Zj
t

)−1 Yt

Y j
t

(31)

where Y j
t /Yt is the GDP share of the sector and sjLt

is the labor share of income within the sector.

With these expressions, we can consider the influence of technological advance on the sectoral

GDP shares and income shares.12

Corollary 5 (Structural change). Holding other sector technology levels fixed, the GDP share of a

sector will decline with its automation level, βjt , or capital productivity level, Zj
t . The labor share

of income within the sector will decrease in the automation level, βjt , but increase in the capital

productivity level, Zj
t .

Proof. See appendix.

These findings regarding GDP shares are intuitive and follow the basic logic of Baumol’s cost

disease. To the extent that sectors like agriculture and manufacturing deploy increasingly produc-

tive capital equipment relative to services, then the GDP shares of agriculture and manufacturing

will decline. Similarly, sectors that are relatively highly automated will also see their GDP shares

decline. The capital shares within the sectors, by contrast, follow opposing dynamics. Higher

capital productivity lowers the sector’s capital share while higher automation increases it.

12On the growth path of the economy, technological advance may naturally be occurring in all sectors

simultaneously. We may therefore also consider a variant of this corollary that emphasizes the relative evolution

of sectors along a balanced growth path. That formulation produces similar results and intuition as Corollary 5, with

technological advance now expressed in relative terms across sectors along a balanced growth path. That formulation

and result are provided in the appendix as Corollary 5a.
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3.2.1 Application to U.S. Structural Transformation

Having established these sectoral-level results and intuitions, we can once again consider an

application of the model to U.S. macroeconomic data. In particular, we may describe each sector

by the technology vector {ujt , β
j
t , Z

j
t }, representing the sector’s share of tasks, automation rate, and

capital-productivity index, where all sectors aggregate to the economy-wide measures {1, βt, Zt}.

Using (30) and (31), we can then use data series for the sectoral GDP share and within-sector labor

share of income to estimate β̂jt and Ẑj
t .

Figure 5 provides an illustrative application, focusing on three sectors: manufacturing, agri-

culture, and other private sector (which is mostly comprised of services). For data series, we use

Mendieta-Munoz et al. (2020).13 Figure 5 (top row) presents data for sectoral GDP shares and

the labor shares of income within each sector. Figures 5 (bottom row) presents, for each sector,

the estimated paths of automation and capital productivity. For these estimates, we determine the

tasks shares using SIC and NAICS industrial coding schemes, as discussed in the appendix.

Looking at the raw data, Figure 5 shows a familiar picture of structural change. Agriculture

(already at a low level) and especially manufacturing show declining GDP shares with time while

the GDP share elsewhere rises. Further, we see that manufacturing exhibits a sharp decline in the

labor share of income over the 1980-2010 period. By contrast, the labor share in other sectors is

steadier (though much lower in agriculture and rising there to some degree).

Turning to the estimated technology paths, consider automation first. We see a durable rank

ordering – agriculture is the most automated, followed by manufacturing, followed by services - even

as each sector is becoming more automated with time. Notably, manufacturing is catching up to the

high automation share in agriculture and automation proceeds especially quickly in manufacturing

over the 1980-2010 period. This burst of automation is consistent with the declining labor share of

income in manufacturing over this period.

13Mendieta-Munoz et al. (2020) provide value-added output and labor shares of income for 14 sectors. Their

approach drops the public sector and housing sector. Here we study (1) manufacturing, (2) agriculture, forestry,

and fishing; and (3) other, which includes arts, entertainment and recreation; construction; education, health and

social services; finance and insurance; information; mining; retail trade and wholesale trade; transportation and

warehousing, professional and business services; utilities; and other services.
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Examining the capital productivity indices, we see that Zagr
t exhibits much greater advance

than the other sectors. This acts toward reducing the GDP share of agriculture and increasing the

labor share in agriculture. By contrast, the advancing automation in manufacturing comes with

weak and even retrograde movement in Zman
t after 1980, which can further inform the declining

labor share of income in this sector. Meanwhile, we see anemic growth in Zother
t . Expanding service

automation has not been coupled with new technologies that are substantially more productive than

labor. The rising GDP share of services follows in part by this relatively anemic progress. Of course,

as services become the increasingly dominant share of the economy, technological progress in this

sector increasingly dominates the path of the economy overall. The relatively weak progress in this

sector historically and recently thus suggests potentially enduring growth challenges.

3.3 General Purpose Technologies and Computing

As a related application to structural change, consider the GDP share of a general purpose

technology (GPT) – for example, computers. Here we think of a type of capital input that takes

on a widening variety of tasks, making it “general purpose.” This can be new automation taking

over from labor. For example, the word “computer” once referred to a worker type but now refers

to a machine (see Figure 1). The general purpose capital input might also take over from other

capital inputs; for example, computer storage can take over from printed books.

In the model, we can define a general purpose technology as a type of capital input that

automates a measure βGPT
t of tasks. This measure will increase as the GPT takes over more tasks.

But then there are also advances in productivity, zt(i), for these general purpose capital inputs.

These productivity gains will generally occur in heterogeneous ways across tasks. For example, the

productivity at some computer-performed tasks (such as floating point operations per second) has

risen at remarkable rates, while computer automation at other tasks (such as voice transcription)

has shown more modest productivity improvements. The productivity index across the GPT tasks,

ZGPT
t , will then naturally grow (though determined relatively strongly by its lower-productivity

tasks) as the GPT simultaneously extends its automation footprint. The GPT’s share of GDP is
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then simply,14

Y GPT
t

Yt
=
βGPT
t

ZGPT
t

(32)

reflecting again the broad idea of a tug of war between automation and productivity. For example,

here computers grow as a share of GDP as they take over more tasks, but the rising productivity

of computers reduces their share of GDP.

The computer application is perhaps especially worthy of consideration both because of its

current relevance and because Moore’s Law presents an especially remarkable and continuous

improvement in certain productivity metrics. In fact, the growth slowdown often seems in tension

with the extraordinary progress in computing and its many applications. As a final theoretical

result, it is then useful to consider the limited power of seemingly amazing technologies in this

model. In particular, recall from (6) that Zt is the harmonic average of the zt (i). Recall also that

harmonic averages are heavily weighted toward their smallest values. For example, the harmonic

average of a finite number and infinity is twice the finite number. Thus, in this model, the

productivity at any particular task or finite measure of automated tasks can advance enormously

(e.g., via Moore’s Law) and even go to infinity. However, Zt (the harmonic average) will still remain

below any finite positive limit so long as the productivity for some measure of automated tasks

remains finite. This feature follows from the less-than-unitary elasticity of substitution (see also

Aghion et al. 2019). Rather than having the highest-productivity sectors take over the economy,

these sectors become smaller shares of the economy.

Formally, we can encapsulate the limited effect of extreme productivity at any particular

measure of automated tasks, as follows.

Corollary 6 (Extreme technological advance). Let a fraction α of the automated tasks have the

same distribution of zt(i) as the other automated tasks. Holding other technologies constant, take

zt(i) → ∞ for this fraction α of automated tasks. The capital share will decline by α percent.

Income per capita will increase by ∆ ln(yt) = −1
ρ ln

(
1 + α

sKt
sLt

)
.

Proof. See appendix.

14This follows directly by aggregating the capital inputs in (17) over a measure βGPT
t of tasks performed by the

GPT. Alternatively, using the lens of the structural change analysis above, we can define a tuple {uGPT
t , βGPT

t , ZGPT
t }

where uGPT
t = βGPT

t is the evolving measure of tasks performed by the GPT, and use (30).
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So, for example, if α = 10% of automated tasks, and these suddenly became infinitely

productive, then a capital share of, say, sK = .40 would fall to .36. Taking an elasticity of

substitution between capital and labor of 0.5 (ρ = −1), which is a typical value in the literature, then

income per-capita would increase by 6.5%. Thus, even extreme (infinite!) advances in productivity

for substantive shares of the economy’s tasks, which would appear dramatic for the affected sectors,

would have substantially muted macro effects. This suggests a possible view on the limited effects

of computing advances and Moore’s Law at an aggregate level.

4 Endogenous Growth Model

The baseline model of Section 2 can solve the challenge of the Uzawa Growth Theorem

while also engaging rich industrial and macroeconomic dynamics. It is less clear, however, why

a balanced growth path may tend to emerge amidst the tug of war between automation and capital

quality improvements. And, more generally, the pathways of automation and capital productivity

improvements are not determined inside the baseline model. In this section we extend the baseline

model to allow for endogenous growth.

To model endogenous technological progress, we follow the standard set-up (Romer 1990,

Aghion and Howitt 1992) of introducing profits into the intermediate goods sector and letting

these profits pay for R&D. Thus we will edit the baseline growth model by (1) introducing market

power on intermediate capital goods and (2) introducing knowledge production functions that relate

innovation outcomes to input costs of R&D. A point of difference with standard endogenous growth

models is that we now have both vertical innovations, increasing zt (i), and horizontal innovations,

increasing βt. For simplicity, we set Lt = L, a constant.

4.1 Capital Good Producers

As before, producers of final goods and non-automated intermediate goods remain competitive.

However, producers of automated goods now have market power. We follow the vertical growth

literature (Aghion and Howitt 1992), where the firm with the leading technology is a monopolist

(supported, e.g., by an infinitely lived patent) but faces a competitive fringe that accesses a lower-
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productivity vintage of technology. While we will closely follow this standard vertical approach,

some distinctions will occur here because ρ < 0.15 Specifically, the limit price imposed by the

competitive fringe always binds as the profit-maximizing price set by the leading firm. Thus, we

replace the equilibrium price (15) in the baseline model with

pt (i) = ψzet (i)
1−ρ
ρ , i ∈ [0, βt] (33)

where zet (i) is the technology accessed by the competitive fringe.

Innovation steps are proportional increases of size ϕ in the prior technology level. We assume

the competitive fringe accesses a level of technology

zet (i) = γzt (i)

where γ ∈ [ 1
1+ϕ , 1].

16 This competitive fringe pins down the equilibrium price

pt (i) = ψ [γzt (i)]
1−ρ
ρ , i ∈ [0, βt] (34)

which is the limit price used by the monopolist firm with the leading technology. Given this price,

the demand for the good yt (i) is, using (11),

yt (i) = υ−1γ
− 1

ρ zt(i)
− 1

ρYt, i ∈ [0, βt] . (35)

The innovator will fulfill this quantity demanded at the limit price, but using their new technology.

This determines the scale of the new innovator’s production, defining the xt (i). Setting demand

equal to supply for yt (i) we have

xt (i) = υ−1γ
− 1

ρ
Yt
zt (i)

, i ∈ [0, βt] . (36)

And now there are profits. The flow profit for the new innovator is

πvt (i) = µ
Yt
zt(i)

(37)

where we define µ = γ−1 − γ
− 1

ρ , capturing the limit-price (markup) effect.

15This means that the final good producers’ demand, given by (11), differs from the traditional Cobb-Douglas case.
16Tying the competitive fringe’s technology to exactly the prior technology vintage, γ = 1

1+ϕ
is a potential

simplification. Here we decouple the markup from the technology step size, so that market power and technology

step size may be distinct forces. We consider the competitive fringe technology to be in the interval γ ∈
[

1
1+ϕ

, 1
]
,

with the idea that the fringe imitates the leading technology to some extent.
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4.2 Innovation Process

Resources are now devoted endogenously to advance R&D. The resource constraint of the

economy is

Ct + It +Dt = Yt

where the new term, Dt, represents the total expenditure on R&D.

There are two different types of innovations, corresponding to the margins of technology in

the model. First, there are vertical innovations, where innovating firms follow a quality-ladder,

improving technologies that have already been automated. Second, there are horizontal innovations,

where innovating firms automate new tasks. We consider each in turn.

4.2.1 Vertical Innovation

An intermediate firm may invest in vertical research in a (stochastic) attempt to raise a given

productivity, zt (i), by a proportional amount ϕ. The flow value of profits from such an innovation

is given by (37). While the technology level, zt (i), is fixed for a given vintage and patent, this flow

profit is growing as the scale of the market grows; i.e., at the growth rate of the economy, gt. The

firm will lose these profits through creative destruction when another firm innovates along this line,

which occurs with arrival rate qvt (i). Defining the present value of an innovation as Vt(i), we have

the Bellman equation,

rtVt (i)− V̇t (i) = πvt (i)− qvt (i)Vt (i) (38)

We will examine the balanced growth path equilibrium where gt, rt, and qvt (i) are all constants,

and the value of an innovation along the BGP can thus be written

Vt (i) =
πvt (i)

r + qv − g
=

µ

r + qv − g

Yt
zt (i)

(39)

The value of an innovation is a function of the task’s market size. The market size for the task is

increasing on the growth path as the overall economy expands. However, the intermediate good’s

market size is decreasing when its productivity rises.17

17Note that the latter effect is only operable across rungs of the quality ladder - the zt(i) is fixed from the perspective

of the leading firm.
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Entrant firms perform R&D with increased investment raising the arrival rate of innovation.18

We specify a lab equipment model that features diminishing returns to effort but positive intertem-

poral spillovers on a given line. Namely, investing dvt (i) in R&D at task i will generate an arrival

rate of new ideas of

qvt (i) = ξv
(
zt(i)d

v
t (i)

Yt

)α

(40)

where ξv is a measure of how easy innovation is in the vertical direction and α < 1.19

The zero profit entry condition in R&D implies that

qvt (i)Vt (i) = dv(i)

so that the expected value of R&D effort is equated to its costs in equilibrium. Given the R&D

technology, (40), and the value of an innovation on the BGP, (39), this equilibrium entry condition

on the balanced growth path becomes

ξvµ

r + qv − g
=

(
zt(i)d

v
t (i)

Yt

)1−α

, i ∈ [0, βt) (41)

On a BGP, it follows that qv is a constant. In particular, from (41), the ratio zt(i)d
v
t (i)/Yt is

a constant on a BGP, so that more advanced lines (which have smaller shares of GDP and hence

smaller market size) attract less effort in equilibrium. From (40), this leads to a constant hazard

rate of vertical advance across automated lines.

4.2.2 Horizontal Innovation

The other innovation margin is horizontal, where innovators seek to automate currently non-

automated sectors. We allow R&D to be conducted on any currently non-automated line. Success

occurs with arrival rate qht . Further, a new automation technology must come with some initial

18Following standard vertical models (Aghion and Howitt 1992), entrant firms do all the R&D and seek to displace

the incumbent firm.
19We specify a lab-equipment model rather than a labor input model as it is slightly more tractable. In the lab

equipment model, expenditure on R&D is normalized by GDP in (40). This will lead to a constant GDP share being

spent on R&D. This specification is similar to relying instead on R&D labor, lvt (i), and the knowledge production

function qvt (i) = ξv(zt(i)l
v
t (i))

α. With labor paid the prevailing wage, this formulation also produces a constant R&D

expenditure share of GDP and a balanced growth path. This variation is available from the authors upon request.

33



technology level. For the newly automated task at some i = i′ we assume that the revealed

automation quality follows the process

zt(i
′) = h(1− βt) (42)

for some constant h.20 This assumption (which is familiar from Section 2.7.3) says that the initial

automation quality is decreasing over time, as βt rises. One can interpret this feature as saying that

production lines automated later are the harder ones: they take longer to successfully automate

and their starting productivity will be lower.21

Once a horizontal research investment succeeds, the newly-automated task becomes a vertical

line, and further innovation proceeds in the same vertical manner as for previously automated

tasks, described above. Specifically, we assume there is a markup based on a technology advantage

γ, which defines the flow profits from this innovation as in (37).22 The present value of this new

innovation, Vt (i), will then again be as in (38) and (39). Creative destruction occurs when further,

vertical R&D improves on this newly-automated technology.

On the cost side, the horizontal knowledge production function will follow a similar structure of

R&D costs as seen vertically, in (40), except that we allow the cost parameter to differ. Specifically,

horizontal R&D investment, dht (i), which targets a non-automated line, i ∈ (βt, 1], will generate an

arrival rate for a new automation of

qht (i) = ξh
(
zt(i)d

h
t (i)

Yt

)α

(43)

20We assert for simplicity that the initial productivity is deterministic according to (42). One can also consider

models where the initial productivity of the task is stochastic. With a Pareto distribution for initial productivity

draws, one can develop analytic solutions along these lines, but for simplicity we do not pursue such deeper

microfoundations here.
21We will consider below the condition on h that guarantees the newly automated technology will be adopted. In

particular, although the initial productivity of a newly automated line is dropping along the growth path, and limits

to zero as β → 1, wage growth in the economy means that these increasingly low-quality initial technologies will still

be cost-effective compared to labor, as we show below.
22That is, we assume that the newly automated production tasks engender a competitive fringe that can access a

technology a proportion γ worse than the newly automated technology. This assumption enhances tractability by

creating symmetry with the vertical case, but is not essential.
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where ξh is a measure of how easy innovation is in the horizontal direction. The zero-profit entry

condition is then,

qh(i)Vt(i) = dht (i).

On the balanced growth path, this entry condition becomes23

ξhµ

r + qv − g
=

(
zt(i)d

h
t (i)

Yt

)1−α

, i ∈ (βt, 1]. (44)

On the BGP, it follows that qh is a constant. As with the vertical logic above, from (44), the ratio

zt(i)d
h
t (i)/Yt is a constant on a BGP. From (43), this leads to a constant hazard rate of automation

among the non-automated lines.

We can now collect several results for R&D in the following lemma.

Lemma 1 The vertical and horizontal hazard rates of innovation, qv and qh, are both constants

on a BGP and have the ratio

qh

qv
=

(
ξh

ξv

) 1
1−α

. (45)

Aggregate R&D expenditure in the vertical direction and in the horizontal direction are both constant

shares of GDP.

Proof. See appendix.

The relative innovation rate in the horizontal and vertical dimensions (qh/qv) is thus deter-

mined by the relative ease of innovating in these directions (ξh/ξv) and the degree of diminishing

returns (α) when R&D effort crowds into one research avenue. With these innovation rates, together

with the size of vertical steps, ϕ, and the corresponding “size” parameter for a horizontal step, h,

we can determine the endogenous evolution of the technology indices, βt and Zt, and characterize

the balanced growth path. To do so, we will first determine the economic aggregates and then

return to the conditions that determine the BGP.

23Note that horizontal innovators attempt to innovate across the measure of non-automated lines. If successful,

the productivity of that line is given by (42). That is, we are treating all non-automated lines as symmetric, and for

notational simplicity we are implicitly re-indexing a successfully automated task to stand at i = βt.
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4.3 Aggregates

We calculate the capital stock, and the capital share of income, by summing up across the

automated intermediate inputs using (36). The capital share of income is

sKt =
ψXt

Yt
= γ

− 1
ρβtZ

−1
t (46)

Comparing this outcome to its value in the exogenous growth model, (20), we see that less capital

is used for a given technological state. This is the usual result in endogenous growth, where market

power in this sector and the consequent markup has reduced its output and thus its input demand.

The aggregate profit is calculated by summing up profits across the automated lines using

(37).24

Πt

Yt
= 1− µβtZ

−1
t (47)

The labor income is the remaining part of the output,

sLt = 1− γ−1βtZ
−1
t (48)

Aggregating the intermediate outputs, we find a similar result to the exogenous growth model.

The difference is that monopoly power reduces GDP compared to the exogenous case with fully

competitive markets. Adding up intermediate outputs and prices, aggregate GDP is25

Y ∗
t =

υAL (1− βt)
1−ρ
ρ(

1− γ−1βtZ
−1
t

)1/ρ . (49)

4.4 The Endogenous Balanced Growth Path

As with the exogenous growth model, we need the same, two macro-level conditions for the

economy to present a balanced growth path. First, we require βtZ
−1
t = s, for some constant s, as

before (BGP1). This condition produces a constant capital share, profit share, and labor share (see

(46), (47), and (48)). Second, with a constant capital share, we see that income per capita in (49)

will grow at g = ρ−1
ρ g1−βt . Balanced growth thus requires that g1−βt = −qht , a constant (BGP2).

24Recall that non-automated lines are produced competitively using labor.
25This form is familiar from the exogenous growth case. The difference is the markup parameter, γ, which acts to

reduce GDP.
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We can now confirm that the endogenous innovation processes will meet these conditions.

First, consider the horizontal innovation sector. We know via Lemma 1 that qh is constant with

time in equilibrium. Thus the horizontal innovation sector provides g1−βt = −qht , a constant. This

directly satisfies (BGP2).

Second, consider the vertical innovation sector. We have a step size of ϕ on each line and, again

per Lemma 1, a constant rate of innovation, qv, on the BGP. Further, newly automated technologies

are drawn according to (42). It therefore follows that the ratio of the technology indices on the

BGP is pinned down as26

βtZ
−1
t =

1

hϕ

(
ξh

ξv

) 1
1−α

(50)

The technology indices βt and Zt thus evolve in a constant ratio, satisfying (BGP1).

This constant ratio in turn implies that the capital, profit, and labor shares of income will be

constant on the BGP (see (46), (47), and (48)). The labor share specifically is

sL = 1− γ−1

hϕ

(
ξh

ξv

) 1
1−α

Thus not only are the income shares constant with this innovation model, producing a balanced

growth path, but they can be expressed in a simple form based on the parameters of the vertical

and horizontal knowledge production functions and the markup parameter.

Finally, we can confirm that these newly automated technologies are in fact adopted - that

is, that they are more cost effective than using labor. This requires that the newly automated

technologies be sufficiently productive initially.27 This parametric condition is readily verified as

follows, which we assume holds.

Lemma 2 Automated technologies are used on the BGP if h ≥ γ−1 1
ϕ

(
ξh

ξv

) 1
1−α

.

Proof. See appendix.

26This follows by combining the process of new productivity draws, (42), the condition (29) for newly automated

technologies to maintain a BGP, and the relative rates of horizontal and vertical innovation (45).
27Noting that wages are rising on the growth path, being productive enough to be adopted when it is initially

automated guarantees that the technology remains productive enough to continue using over time, since labor becomes

increasingly expensive.
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This condition is the endogenous growth analogue to (24) in the exogenous growth model. It

further guarantees that the capital share in (50) is less than 1.

With these results, we have determined the income shares in terms of the exogenous variables,

and now turn to the growth rate itself. For the general case, we have a system of four equations

that determine four endogenous variables {qv, qh, r, g}. These four equations govern the vertical

innovation rate (from (40) and (41)), the relationship between the vertical and horizontal innovation

rates (45), the relationship between the growth rate and horizontal innovation rate (26), and the

Euler equation (8), which we collect here.

qv = ξv
1
αµqv

α−1
α − (r − g) Vertical Innovation

qh

qv
= (

ξh

ξv
)

1
1−α V&H Relationship

g =
1

θ
(r − ω) Euler Equation

g =
ρ− 1

ρ
qh Growth Rate

To study properties of the growth path, we focus on the case where θ ≥ 1.28

Proposition 3 (Existence and uniqueness). The balanced growth path exists and is unique if θ ≥ 1.

Proof. See Appendix.

The model thus produces a balanced growth path, emerging endogenously from R&D effort

on the vertical and horizontal dimensions. A primary intuition for the balanced result follows from

the diminishing returns to R&D effort at a point in time on a given line, which we can think of as a

crowding or duplication externality among competing R&D firms. This force acts to spread R&D

effort out across lines, with the balance of vertical and horizontal progress depending on the knowl-

edge production function parameters. This diminishing returns force also allows the equilibrium

to move away from requiring knife-edge relationships among the knowledge production function

parameters, and it creates conceptual degrees of freedom in the model, separating automation

forces from capital productivity improvement forces in informing macroeconomic outcomes.

28Empirical evidence commonly suggests the case where θ ≥ 1. See for example Campbell (2003) and Vissing-

Jorgensen (2002). The model can also be considered where θ < 1, with some further parametric restrictions, but this

case is analytically more complex in addition to being less salient empirically.
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4.5 Growth and the Labor Share of Income

Tracking the two dimensions of technological progress, we can return to consider the apparent

growth slowdown and decline in the labor share. As usual with an endogenous growth model, we

think of dynamics as a shift between two different balanced growth paths, where we have moved

from a relatively high growth and high labor share equilibrium to a relatively low growth and low

labor share equilibrium. With the capital share (and hence labor share) given explicitly by (50)

and the growth rate determined implicitly in the four-equation system above, we can now consider

the implications of changing parameters of the model. Key comparative statics are collected here.

Proposition 4 (Endogenous growth). The labor share on a balanced growth path increases with

ξv, h, ϕ, and γ and decreases with ξh. The growth rate on a balanced growth path increases with

ξh and µ, decreases with ξv, and is unchanging in h.

Proof. See Appendix.

In light of these results, consider the apparent recent downshift in both the growth rate and

the labor share (e.g., Gordon 2016, Elsby et al. 2013, Karabarbounis and Neiman 2014). First,

consider an increasing difficulty in innovation and let’s assume this happens on all dimensions.

Specifically, let the ease of innovation, ξh and ξv, decline proportionally in both horizontal and

vertical dimensions and let the size of innovations, h and ϕ, also decline. If “innovation has become

harder,” both the growth rate and the labor share will decline. The decline in growth is intuitive

when innovation gets harder. The decline in the labor share follows because advancing capital

technology has become more difficult. With a less than unitary elasticity of substitution, a lower

productivity capital stock makes it relatively costly, and it is cheap capital that supports the labor

share.29

Second, one can look at more precise dimensions of knowledge production. First, consider the

automation dimension. Here, we can think of automation as becoming harder, in two senses. We

could imagine that the ease of discovering automation goes down (ξh decreases) and the productivity

29This is the opposite of how one thinks about capital productivity and income shares with an elasticity of

substitution greater than 1 (e.g., Karabarbounis and Neiman (2014)). With an elasticity of substitution less than 1,

we can instead link a declining labor share and declining productivity growth in one frame.
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of the new automation becomes worse (h declines). First, the decline in h acts to pull down the labor

share. Second, a decline in ξh will cause the growth rate to decline.30 For example, if we think that

recent automation has been barely good enough to replace labor (e.g., replacing customer service

workers or secretarial workers with automated systems, but these automated systems perform

poorly), this low automation quality will cause the labor share to fall. What is bad for labor share

of income is being replaced by machines that aren’t very good, so that there is little productivity

gain to offset the displacement effect of increased automation. This “so-so” technology effect is

featured in Acemoglu and Restrepo (2018, 2019). Here this force is seen as a balance between

the rate and size parameters governing horizontal innovation, while also integrating with vertical

technological progress.

Third, consider the vertical technology dimension. To focus purely on technology, consider for

the moment the natural idea that the technological distance between the leader and the competitive

fringe (γ−1) is positively related to the size of the advance the leader made in the line’s technology

(1 + ϕ).31 Then a decline in the vertical step size, ϕ, will weaken profitability of an incumbent

monopolist and reduce incentives to innovate. We will again see lower growth and a lower labor

share of income. A decline in the vertical technology step size can then provide an especially

parsimonious force for both the macroeconomic effects.

Finally, consider a political economy dimension, focusing on incumbent market power. Here

we let the markup parameter, γ, move separately from the vertical step size, acknowledging that

markups also may depend on institutions. A rise in the markup (i.e., a decline in γ) will cause

the labor share to decline. This follows because, again, we have a balanced growth path that still

features a less than unitary elasticity of substitution between capital and labor. A larger markup

reduces the size of the capital stock, and this reduce the labor share. Thus we have a simple link

between increased market power and a declining labor share of income. However, from a growth

point of view, a rise in the markup makes innovation more profitable and the growth rate should

then increase. Thus, the markup story must be counterbalanced by other forces to further match

the declining growth rate.32

30For the labor share to decline on net, we would need the percentage decrease in h to exceed 1
1−α

times the

percentage decrease in ξh (see (50)).
31To be specific, let γ−1 = λ(1 + ϕ) for some λ > 0.
32Skeptics about the growth slowdown, who may see it a measurement artifact, may not see a tension here.
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5 Conclusion

This paper seeks to resolve key tensions between micro and macro descriptions of technological

progress. Specifically, the model engages the microeconomic regularities of capital-embodied tech-

nological progress and the macroeconomic regularities of balanced growth. By engaging two salient

technology dimensions – the automation frontier and the productivity frontier - balanced growth

emerges in a surprisingly tractable framework. These two frontiers engage in a “tug of war,” with

their balance determining the income shares in a transparent manner while allowing steady growth.

In addition to providing a novel type of solution to the puzzle of the Uzawa steady-state growth

theorem, the model can also inform economic dynamics. The interplay of the two technology

frontiers can provide insights about shifts in growth rates and income shares as well as industry

dynamics, with applications to structural change (on or off a balanced growth path) and general

purpose technologies. With exogenous technological progress, the model engages such dynamics in a

straightforward manner, and indeed is flexible enough to fit macroeconomic and sectoral dynamics

exactly. The endogenous growth model, which is necessarily more constrained, delivers further

insights about why a balanced growth path would emerge amidst the tug of war between automation

and capital-productivity improvements. The endogenous growth model may further inform long-run

shifts in growth rates and income shares from the perspective of underlying economic parameters.

The results and intuitions of the model build in part from a less than unitary elasticity of

substitution between capital and labor. This feature puts the two technology margins in opposition

in the evolution of income shares, allowing for balanced growth, while also allowing for intuitive

dynamics in growth and income shares, and further applications to structural change, where sectors

with relatively slow technological advance take on a larger share of the economy, as with Baumol’s

cost disease. Further applications engage the macroeconomic implications of general purpose

technologies and the ultimately limited aggregate effects of remarkable technologies, like computing.

Numerous extensions are possible. First, we have not emphasized policy implications, but for

example the role of tax policy would be nuanced and distinct, with capital taxation having different

implications for labor shares depending on whether it limits horizontal or vertical progress. Second,

to emphasize the novel forces and intuitions at work in this model, we have focused purely on capital-
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embodied technological change, but future extensions can incorporate labor-embodied productivity

gains, human capital, and capital-skill complementarity to engage additional forms of productivity

growth as well as skill-biased technical change. Third, the tractability of the technology dynamics

may also allow extensions to business cycles, where frictions may lead to less than full employment.

The displacement effects of increased automation may then have additional labor market effects.

Fourth, alternative forms of the endogenous growth theory may prove insightful. Overall, micro-

foundations emphasizing the two dimensions of capital-embodied technology advance appear to

provide a tractable and rich framework for engaging economic growth and related phenomena.
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6 Appendix

6.1 Proofs

Proposition 1: (Balanced growth path). Under condition 1, a balanced growth path exists where

the capital share is s = βtZ
−1
t and the growth rate in per-capita output, per-capita consumption,

per-capita capital stock, and the wage are g = ρ−1
ρ qh. The discount rate is r = ω + θ ρ−1

ρ qh.

Proof. On the production side, firm optimization presents explicit solutions at each point t for

intermediate outputs and prices (yt(i) and pt(i)), factor inputs (lt(i) and xt(i)), aggregate GDP and

investment (Yt and It), and wages (wt). Specifically, Yt, wt, and lt(i) are given explicitly in terms

of exogenous variables by (22), (23), and (13) respectively. The explicit solution for xt(i) in terms

of exogenous variables follows from (17) and replacing Yt using (22). Similarly one finds explicit

solutions in terms of endogenous variables for yt(i), pt(i), and It in a straightforward manner.

On the consumption side, household optimization gives the Euler equation (8). Market clearing

further implies that consumption equates to wages in this baseline model. Specifically, household

income is Yt = ctLt + St and factor payments total Yt = wtLt + ψXt. Savings equals investment,

St = It, and the full depreciation each period equates capital factor payments to gross investment,

It = ψXt. Hence, equating income and expenditure, ct = wt.
33 Per condition 1, the growth rate in

per-capita income is g = ρ−1
ρ qh, and with a constant labor share we have gc = gw = g. The Euler

equation thus implies r = ω + θg = ω + θ ρ−1
ρ qh. The transversality condition is ω − n > (1− θ)g,

which is satisfied by the assumption in condition 1.

Corollary 1: (Limited innovation, limitless growth). On the balanced growth path, the technology

indices shrink at constant rates, g1−βt = g1/s−Zt
= −qh, but grow at shrinking rates,

gβt = gZt =
1−βt

βt
qh, and approach finite limits, βt → 1 and Zt → 1/s.

33This will not be true in the endogneous technology model of Section 4, for the usual reason in endogneous growth

where capital inputs still fully depreciate but there are profits from market power adding to household income and,

on the expenditure side, there are additional investments in R&D that drive technological progress.
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Proof. From (BGP2), we require g1−βt = −qh. It follows that gβt = β̇t

βt
= 1−βt

βt

β̇t

1−βt
= 1−βt

βt
qh.

From (BGP1), we require βt

Zt
= s. Therefore, Zt → 1/s as βt → 1. Further, gβt = gZt . The growth

rate at which Zt approaches its limit is g1/s−Zt
= − Żt

1/s−Zt
= − Żt

Zt

Zt
1/s−Zt

= −1−βt

βt
qh 1

1/βt−1 = qh.

Case 1: (A micro-innovation process for balanced growth). Let existing tasks increase their

productivity proportionally by an amount ϕ with hazard rate qv. Then a BGP will occur with so

long as newly automated tasks have productivity zt (βt) = h (1− βt) where h ≥ 1
1−s and s = qh

qvϕh .

Proof. Differentiate the first BGP condition in the form (29) using Leibniz’s rule. This gives∫ βt

0

żt (i)

zt (i)
2di =

β̇t
zt (βt)

(51)

In the vertical innovation process, a given automated line increases its productivity propor-

tionally by an amount ϕ with hazard rate qv. Then we have żt (i) /zt (i) = ϕqv in expectation,

given zt (i). Therefore ∫ βt

0

żt (i)

zt (i)
2di = ϕqv

∫ βt

0

1

zt (i)
di = sϕqv

Meanwhile, the horizontal process of automated new tasks occurs as the rate β̇t = qh (1− βt)

on the BGP. Thus we can write the BGP condition (51) as

qh (1− βt)

zt (βt)
= sϕqv

Rearranging this produces the necessary condition of the Corollary 1, equation (29), governing

the productivity draws for new technologies. Namely, with zt (βt) = h (1− βt) we have s = qh

qvϕh .

Next consider the condition that all automated technologies be adopted (as opposed to using

labor). First note that the automated technology with the lowest productivity will be the newly

automated one. This follows because, from (29), the initial productivity is declining on the growth

path and, once automated, the productivity on any line can only be increasing. Thus all automated

technologies will be used so long as the newly automated technology is used. Second, from (24),

the newly-automated technology will be adopted if zt (βt) ≥ 1−βt

1−s . Using (29), this condition is

h ≥ 1
1−s with s = qh

qvϕh as above.
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Proposition 2 (Unbalanced growth path). Under condition 2, an equilibrium exists with a capital

share sKt = βtZ
−1
t and explicitly determined paths of output, consumption, investment, the wage,

the interest rate, and all other prices and quantities in the economy.

Proof. On the production side firm optimization presents solutions at each point t for intermediate

outputs and prices (yt(i) and pt(i)), factor inputs (lt(i) and xt(i)), aggregate GDP and investment

(Yt and It), and wages (wt). On the consumption side, we have ct = wt. The Euler equation is

therefore rt = ω + θgwt . The interest rate is then determined directly by taking the growth rate of

wt from (23). The interest rate is

rt = ω + θ
ρ− 1

ρ

(
βtZ

−1
t

1− βtZ
−1
t

(gβt − gZt)− g1−βt

)
(52)

The transversality condition requires limt→∞ ψXt exp−
∫ t
0 rsds = 0. From the Euler equation, the

integral can be solved from the path of wages, and the transversality condition can be written as

lim
t→∞

e−(ω−n−(1−θ)gt)t
βtZ

−1
t(

1− βtZ
−1
t

)θ = 0

where gt is the mean growth rate in per-capita income from time 0 to time t. Under condition 2,

we have ω − n > (1− θ)g∞ and the transversality condition is therefore satisfied.34

The economy thus has a well-defined equilibrium, with quantities and prices following explicitly

defined paths as given in the relevant equations of Section 2. The capital share is sKt = βtZ
−1
t from

(20). The path of GDP is given in (22). The path of wages is given by (23), which also determines

per-capita consumption. And the interest rate is (52). All other prices and quantities are found in

Section 2, given either directly in terms of exogenous parameters there, or indirectly by replacing

the GDP or wage term with its explicit solution.

Corollary 3: (Growth dynamics). The growth rate in income per-capita increases in gβt and gZt.

34Note also that we require that the capital share (βtZ
−1
t ) be less than 1 as t → ∞. This is a very weak condition

because the technology adoption condition already implies Zt ≥ 1, as discussed in Section 2.6, and as long as capital

productivities advance beyond this minimum floor, so that Z∞ > 1, the capital share will be less than 1 in the limit.
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Proof. Consider GDP as given by (22). Take logs and differentiate with respect to time. Then

rearrange terms to write

gyt = −1

ρ

(
βtZ

−1
t

1− βtZ
−1
t

)
gZt −

1

ρ

(
(1− ρ)

βt
1− βt

− βtZ
−1
t

1− βtZ
−1
t

)
gβt (53)

Note that ρ < 0. Further note that βtZ
−1
t < 1. Therefore we see that gyt is increasing in gZt .

Noting again that ρ < 0, we see that gyt is increasing in gβt if

βt
1− βt

− βtZ
−1
t

1− βtZ
−1
t

> 0 (54)

The left hand side terms can be combined into the expression

βt(1− Z−1
t )

(1− βt)(1− βtZ
−1
t )

> 0 (55)

This is positive so long as Zt > 1, which is guaranteed by (25), an implication of the adoption

condition (24).

Corollary 4: (Automation-led growth with constant wages) Let automation proceed at some rate

qh > 0 where newly automated technologies have productivity level zmin
t , the lowest level of

productivity where they will still be adopted. Let prior automated technologies see no productivity

improvement. Then wages remain constant. Income per-capita grows at rate qh, and the labor

share falls at rate qh. The technology index Zt declines at rate qh 1−Zt
βt

< 0.

Proof. Consider first the growth rate in Zt. Take the definition of Zt as the harmonic average of

the zt(i), as in (6). Differentiating (6) with respect to time and using Leibniz’s rule gives

gZt = gβt − Zt
gβt

zt(βt)
+
Zt

βt

∫ βt

0

1

zt (i)
gzt(i)di (56)

Following the technological pathways defined in the Corollary, we have

1. g1−βt = −qh, which is equivalently gβt = ((1− βt)/βt)q
h;

2. zt(βt) = zmin
t = (1− βt)/(1− βtZ

−1
t );

3. gzt(i) = 0 for all i < βt (no vertical progress).
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Under these conditions, the growth rate of Zt in (57) becomes

gZt =
1− Zt

βt
qh (57)

which is less than zero because Zt > 1.

The labor share is sLt = 1 − βtZ
−1
t . Taking logs and differentiating with respect to time, we

have

gsLt
=

βtZ
−1
t

1− βtZ
−1
t

(gβt − gZt) (58)

Using the above technology paths for βt and Zt this simplifies to gsLt
= −qh.

The wage is given by (23). Taking logs and differentiating with respect to time gives

gwt =
ρ− 1

ρ

(
gsLt

− g1−βt

)
(59)

Using the results above, we have gsLt
= −qh = g1−βt and so gwt = 0.

Finally, given that wages are constant and that the labor share of income, sLt =
wtLt
Yt

, falls at

rate qh, it follows directly that Yt/Lt grows at rate q
h.

Corollary 5: (Sectoral advance). Holding other sector technology levels fixed, the GDP share of a

sector will decline with its automation level, βjt , or capital productivity level, Zj
t . The labor share

of income within the sector will decrease in the automation level, βjt , but increase in the capital

productivity level, Zj
t .

Proof. From (30), write the GDP share of the sector as

Y j
t

Yt
= βjt

(
Zj
t

)−1
+

(
1−

∑
i

βit
(
Zi
t

)−1

)
ujt − βjt
1−

∑
i β

i
t

(60)

Differentiate with respect to Zj
t . After simplification, this can be written as

∂

∂Zj
t

(
Y j
t

Yt

)
= −βjt

(
Zj
t

)−2
(∑

i̸=j u
i
t − βit

1− βt

)
(61)

which by inspection is less than zero.
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Next differentiate (60) with respect to βjt . After simplification, this can be written as

∂

∂βjt

(
Y j
t

Yt

)
= (Zj

t )
−1

(
sLtZ

j
t

1− βt
− 1

)(
ujt − βjt
1− βt

− 1

)
(62)

This is also less than zero. To see this, note that
uj
t−βj

t
1−βt

≤ 1 and
sLtZ

j
t

1−βt
≥ 1. The former is true

by inspection, as the measure of non-automated tasks in the sector, ujt − βjt , must be weakly less

than the measure of non-automated tasks in the economy overall, 1−βt. To show the latter, which

requires that sLtZ
j
t ≥ 1−βt, we can rewrite this expression using the definition of sLt = 1−βtZ

−1
t

to produce the equivalent condition

1 ≥ βtZ
−1
t

(
Zj
t − Zt

Zj
t − 1

)
(63)

which holds because βtZ
−1
t ≤ 1 and Zt ≥ 1. Thus the sector’s GDP share is increasing in Zj

t and

βjt .

Turning to the income share within a sector, we find that

∂sjLt

∂βjt
≥ 0 (64)

This follows by inspection of (31), since we have βjt increasing and the GDP share of the sector

falling.

Differentiating the sectoral labor share of income in (31) by Zj
t we find, after some simplifica-

tion, that

∂sjLt

∂Zj
t

= −βjt

(
ujt − βjt
1− βt

)2

≤ 0 (65)

As a related result, on the growth path of the economy, technological advance may proceed in

all sectors simultaneously. We may therefore also consider a variant of this corollary that emphasizes

the relative evolution of sectors along a balanced growth path. To do so, we can define the relative

technology state of different sectors. Specifically, define the relative automation rate in sector j as

ηjt = (βjt /u
j
t )/βt.

35 Similarly, define the relative capital productivity in sector j as φj
t = Zj

t /Zt.

35This is the relative automation rate in that βj
t /u

j
t is the share of tasks in the sector that are automated, which

is compared to βt, the share of all tasks that are automated.
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Thus a sector with ηjt > 1 is relatively highly automated compared to the economy at large, and a

sector with φj
t > 1 has relatively advanced capital productivity.

With these definitions, we can sum up sector-specific tasks and write the GDP share and

capital share for a given sector in the following, relative technology form,

Y j
t

Yt
= ujt

(
ηjt

φj
t

sKt +
1− ηjtβt
1− βt

(1− sKt)

)
(66)

sjKt
= sKt

(
sKt + φj

t

1/ηjt − βt
1− βt

(1− sKt)

)−1

(67)

We can then consider structural change in the economy along a balanced growth path, as

follows.

Corollary 5a: (Structural change). Along a balanced growth path, an increase in the relative

productivity, φj
t , of the sector’s capital inputs or relative automation level, ηjt , will cause the

sector’s GDP share to decline. An increase in the sector’s relative automation, ηjt , will cause its

labor share to decline while an increase in the relative productivity, φj
t , of the sector’s capital

inputs will cause its labor share to rise.

Proof. Consider the within-sector capital share, as in (67). Consider dynamics where the overall

capital share in the economy is fixed (i.e., the economy is on a balanced growth path). Focus on

a particular sector j. By inspection of (67), the capital share in that sector will rise if its relative

automation rate, ηjt , increases, and the capital share in that sector will fall if its relative productivity

level, φj
t , increases.

Next consider the sector’s share of GDP, as in (66). By inspection, an increase in the sector’s

relative capital productivity level, φj
t , will cause the GDP share of that sector to decline. The effect

of higher relative automation cannot be seen by inspection, however. Differentiate the sectoral GDP

share by its relative automation rate, holding the economy wide technology indices fixed. We have

∂(Y j
t /Yt)

∂ηjt
= uj

(
1

φj
t

sKt −
βt

1− βt
sLt

)
(68)

Thus the GDP share of the sector is declining in its relative automation rate if the term on

parentheses is negative. Recalling the definition φj
t = Zj

t /Zt, and that sKt = 1 − sLt = βtZ
−1
t
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we can write
∂(Y j

t /Yt)

∂ηjt
< 0 iff Zj

t >
1− βt

1− βtZ
−1
t

(69)

Now recall from (24) that

zmin
t ≥ 1− βt

1− βtZ
−1
t

(70)

Since the harmonic average Zj
t must exceed zmin

t , the above condition must hold.

Corollary 6: (Extreme technological advance). Let a fraction α of the automated tasks have the

same distribution of zt(i) as the other automated tasks. Holding other technologies constant, take

zt(i) → ∞ for this fraction α of automated tasks. The capital share will decline by α percent.

Income per capita will increase by ∆ ln(yt) = −1
ρ ln

(
1 + α

sKt
sLt

)
.

Proof. Consider a fraction α of the automated tasks. Define the harmonic average of the zt(i)

for this fraction of tasks as Zt,α. Define the harmonic average of the zt(i) for the remaining 1− α

fraction of tasks as Zt,1−α. Therefore we can write

Zt =
(
αZ−1

t,α + (1− α)Z−1
t,1−α

)−1
(71)

For simplicity, consider the initial state at time t where the harmonic average is the same for the

fraction α of tasks as for the all automated tasks. Then Zt,1−α = Zt,α = Zt. Now, for the fraction

α of automated tasks, let the technology level zt(i) → ∞ at time t = t′, holding βt and the other

zt(i) fixed. The index Zt′ becomes

Zt′ =
1

1− α
Zt′,1−α =

1

1− α
Zt (72)

and the capital share becomes

sKt′ = βt′Z
−1
t′ = (1− α)βtZ

−1
t = (1− α)sKt (73)

Hence the capital share falls by α percent.

For income per capita, consider GDP given by (22). With βt fixed, the change in income per

capita is

yt′

yt
=

(
1− βt′Z

−1
t′

1− βtZ
−1
t

)−1/ρ

=

(
1− (1− α)sKt

sL

)−1/ρ

(74)

Taking logs and using 1− sKt = sLt produces the result in the corollary.

54



Lemma 1: The vertical and horizontal hazard rates of innovation, qv and qh, are both constants

on a BGP and have the ratio qh

qv =
(
ξh

ξv

) 1
1−α

. Aggregate R&D expenditure in the vertical direction

and in the horizontal direction are both constant shares of GDP.

Proof. By (40) and (41), we can write the equilibrium vertical rate of innovation as

qv = ξv
1
α µqv

α−1
α − (r − g) (75)

Similarly, from the horizontal side, (43) and (44) imply

qv = ξh
1
α µqh

α−1
α − (r − g) . (76)

Combining these produces the ratio qh

qv =
(
ξh

ξv

) 1
1−α

, as was to be shown.

Further, recall that the ratio zt(i)d
v
t (i)/Yt is a constant for vertical lines. Define this constant

as χv. We can then write R&D expenditure on a given line as dvt (i) = χvYt/zt(i). Total vertical

research investment across the automated lines then adds up as

Dv
t

Yt
= χvβtZ

−1
t . (77)

which will be a constant share of GDP on the BGP.

Similarly, for horizontal lines, the BGP features zt(i)d
h
t (i) = χhYt, where χ

h is a constant.

Recalling that the initial quality of any newly automated line is (42), the R&D effort will then be

the same across these horizontal lines. The aggregate investment in the horizontal research sector

then adds up as

Dh
t

Yt
= χhh−1, (78)

so that horizontal R&D expenditure is also a constant share of GDP, as was to be shown.

Lemma 2: All automated technologies will be adopted on the BGP if h ≥ γ−1 1
ϕ

(
ξh

ξv

) 1
1−α

.

Proof. The adoption condition is that the price of using an automated technology, pt (i) =

ψ [γzt (i)]
1−ρ
ρ , is less than the price when using labor, p̂t (i) = wt/A. This will be satisfied for
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all automated sectors if it is satisfied for the automated sector with the lowest productivity. The

lowest productivity level will be the one for the marginally automated technology, zt (βt). Thus we

require

wt/A ≥ ψ [γzt (βt)]
1−ρ
ρ

Using the initial productivity for zt (βt), (42), and the equilibrium wage via the labor share, (48),

this becomes

(1− γ−1βtZ
−1
t )

Yt
L

≥ ψAh
1−ρ
ρ (1− βt)

1−ρ
ρ

Using GDP, (49), this simplifies as

1− γ−1βtZ
−1
t ≥ h−1

where γ−1βtZ
−1
t is the capital share. Using the result for the capital share, (46), this produces the

statement in the Corollary.

Proposition 3: The balanced growth path exists and is unique if θ ≥ 1.

Proof. We will first consider the existence and uniqueness of the horizontal innovation rate,

qh. Using the system of four equations ((8), (26), (75), and (45)) we substitute out the other

endogenous variables and write an implicit function for qh in terms of the exogenous parameters.

This expression is

qh

((
ξv

ξh

) 1
1−α

+ (θ − 1)
ρ− 1

ρ

)
=
ξh

1
αµ

qh
1−α
α

− ω (79)

The left hand side of this equation is a linear function of qh. Note that θ ≥ 1 is a sufficient condition

for the expression in parentheses to be positive. Therefore this function starts at the origin and rises

monotonically in qh and without bound as qh → ∞. Meanwhile, the right hand side of this equation

is a function that declines in qh. The function is unbounded at qh = 0 and declines monotonically,

crossing zero for some large qh. Therefore there is a single crossing property in these two functions

at some unique positive value of qh.

Next, note that a unique positive value of qh implies a unique, positive qv (via (45)) and a

unique, positive g (via (26). A unique r is then determined uniquely from the Euler equation (8)
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(and we must also have r > g with θ ≥ 1). Therefore there exists a set of values {qv, qh, r, g} that

are unique and create a balanced growth path equilibrium.

Proposition 4: (Endogenous growth comparative statics). The labor share on a balanced growth

path increases with ξv, h, ϕ, and γ and decreases with ξh. The growth rate on a balanced growth

path increases with ξh and µ, decreases with ξv, and is unchanging in h.

Proof. Write the labor share as

sL = 1− γ−1

hϕ

(
ξh

ξv

) 1
1−α

The comparative statics for the labor share with respect to ξv, h, ϕ, and ξh follow by inspection.

For the growth rate, note that it is linear and monotonic in qh, from (26). So we will consider

the comparative statics in terms of the behavior of qh. In particular, turn again to (79) and the

single crossing property analyzed in the proof of Proposition 3. Consider the intersection point of

the increasing function of qh on the left hand side and the decreasing function of qh on the right

hand side of (3).

By inspection, an increase in ξh decreases the slope on the left hand side and shifts rightward

the function on the right hand side. Both forces cause the equilibrium qh to rise. By inspection,

an an increase in ξv increases the slope on the left hand side (while the function on the right hand

side does not change), causing the equilibrium qh to fall. By inspection, a rise in the markup, µ,

cause the right hand side function to shift rightward (while the function on the left hand side does

not change), causing the equilibrium qh to rise. By inspection, changes in h have no effect on qh.

(In fact, h does not appear in the four equation system and thus has no influence on the growth

rate, innovation rates, or interest rate.)

6.2 Data Analysis

The paper provides two illustrative empirical applications of the model. We discuss the data

sets and estimation strategies in further detail here.
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6.2.1 Income and Growth Dynamics

In Figure 4, we use standard data series from the Bureau of Labor Statistics for U.S. labor

productivity (output her hour) and the U.S. labor share of income. These data were drawn from

FRED, with links to both data series provided in the references to this paper (BLS 2021a, 2021b).

Both series run from 1947-2020.

The two technology paths are then estimated using (21) and (22). To pin down the technology

paths we need one initial condition and we set Z0 = 1.5 for the first year of the data series.

Given this initial condition, the initial automation rate is pinned down by the initial capital share,

β0 = Z0sK0 . One then pin down νA given the observed initial output per worker level, Y0/L0,

thus normalizing the output per worker measure. Having normalized this measure, one can then

proceed in each period to estimate the two unknowns, βt and Zt, from the two equations (21) and

(22) and the observed output per hour and labor share data series.

Figure 4 presents the technology pathways in their limits form as 1 − βt and c − Zt. This is

useful visually because (in logs) a common, constant slope then appears as a balanced growth path,

allowing one to see a BGP and deviations from a BGP more easily. On a balanced growth path,

the limit of Zt is c = 1/s; i.e., the inverse of the capital share. For visualization purposes, we take

c = 1/min[sKt].

6.2.2 Sectoral Dynamics

In Figure 5, we provide data on sectoral GDP share and labor shares of income. The raw data

come from Mendieta-Munoz et al. (2020), who calculate output and labor compensation shares

for 14 sectors (leaving out the public sector and housing). We consider agriculture, manufacturing,

and the remaining sectors as one group (see main text).

To estimate the path of the sectoral technology parameters, βjt and Z
j
t , we can use (30) and (31).

However, we also need information on the task shares, ujt , and these are not determined within the

model. These task shares may also be evolving to some extent with time. For example, information

services may replace certain manufactured goods as the leading technology for performing certain

tasks (as when Internet search services replace dictionaries, phone books, etc.).
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To provide some external grounding for the task shares, we use SIC and NAICS codes. The

idea is to estimate the task share using the given industrial categorization scheme. Specifically,

we count the number of six-digit subsectors in the 2012 NAICS, grouped according to their

two-digit definitions (11 for agriculture, 31-33 for manufacturing). We drop the public sector,

consistent with the Mendieta-Munoz et al. (2020) data, and group the remaining six-digit in-

dustries as “other”. We similarly apportion industries in the 1987 SIC classification system.

The NAICS results produce {uagr2012, u
man
2012, u

oth
2012} = {.0618, .3514, .5868}. The SIC results produce

{uagr1987, u
man
1987, u

oth
1987} = {.0592, .4192, .5216}. We see that both schemes agree quite closely on the

share of different subsectors that constitute agriculture. Over time, however, we see that the share

of manufacturing subsectors appears by this measure to have declined compared to services. For

illustration purposes, we take this shift as substantive (as information services do seem, e.g., to have

led to the creative destruction in some manufactured goods used for some tasks), and we assign

{uagrt , uman
t , uotht } as linear trends that match the SIC and NAICS measures in the appropriate

years.
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