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Abstract 

Integrated assessment models have become the primary tools for comparing climate 
policies that seek to reduce greenhouse gas emissions. Policy comparisons have often 
been performed by considering a planner who seeks to make optimal trade-offs between 
the costs of carbon abatement and the economic damages from climate change. The 
planning problem has been formalized as one of optimal control, the objective being to 
minimize the total costs of abatement and damages over a time horizon. Studying climate 
policy as a control problem presumes that a planner knows enough to make optimization 
feasible, but physical and economic uncertainties abound. Manski, Sanstad, and DeCanio 
(2021) proposed and studied use of the minimax-regret (MMR) decision criterion to account 
for deep uncertainty in climate modeling. Here the authors study choice of climate policy 
that minimizes maximum regret with deep uncertainty regarding both the correct climate 
model and the appropriate time discount rate to use in intergenerational assessment of 
policy consequences. The analysis specifies a range of discount rates to express both 
empirical and normative uncertainty about the appropriate rate. The findings regarding 
climate policy are novel and informative. The MMR analysis points to use of a relatively low 
discount rate of 0.02 for climate policy. The MMR decision rule keeps the maximum future 
temperature increase below 2°C above the 1900-10 level for most of the parameter values 
used to weight costs and damages.  
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1. Introduction 

 

Analysis of integrated assessment (IA) models enables quantitative evaluation of the benefits and costs 

of alternative climate policies. IA models are long-run (century-scale or more) descriptions of the global 

economy including the energy system and its role in economic production. These models incorporate 

representations of the climate and the links between the climatic effects of greenhouse gas (GHG) emissions 

and their impacts on the economy. IA models have become the primary tools for comparing policies that 

seek to reduce GHG emissions.  

 Policy comparisons have often been performed by considering a social planner who seeks to make 

optimal trade-offs between the costs of carbon abatement and the economic damages from climate change, 

at a global scale. The planning problem has been formalized as an optimal-control problem with three key 

components: (1) equations coupling GHG emissions and abatement to the accumulation of GHGs in the 

atmosphere and resulting temperature increases; (2) a damage function that quantifies economic effects of 

climate change in terms of the loss of global economic output as a function of temperature increases; and 

(3) an abatement cost function that expresses the cost of actions to reduce GHG emissions relative to a 

stipulated baseline emissions trajectory. Costs and damages at a point in time are expressed in terms of 

reductions in gross world product at that time. The control problem is to minimize the total costs of 

abatement and damages over a time horizon. 

 Studying climate policy as an optimal-control problem presumes that a planner knows enough about 

the global climate and economic systems to make optimization feasible. However, uncertainties abound. 

Physical and economic uncertainties have been handled in different ways. 

The physical scientists whose research informs component (1) of IA models have performed multi-

model ensemble (MME) analysis (Taylor et al., 2012). In the absence of a consensus climate model, they 

have developed multiple distinct models. To cope with inter-model structural uncertainty, they compute 

simple or weighted averages of the outputs of MMEs. However, choosing appropriate weights has been 

problematic. 
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The economists whose research informs components (2) and (3) have estimated multiple damage 

functions and abatement cost functions. In general, economists have not performed MME analyses that 

combine multiple functions by weighted averaging. They have instead reported disparate findings, 

stemming from their separate studies. 

Manski, Sanstad, and DeCanio (2021) (M-S-D hereafter) framed structural uncertainty in climate 

modeling as a problem of partial identification, generating deep uncertainty. This problem refers to 

situations in which the underlying mechanisms, dynamics, or laws governing a system are not completely 

known and cannot be credibly modeled definitively even in the absence of data limitations in a statistical 

sense. M-S-D proposed use of the minimax-regret (MMR) decision criterion to account for deep climate 

uncertainty in integrated assessment without weighting climate model forecasts. They developed a 

theoretical framework for cost-benefit analysis of climate policy based on MMR and applied it 

computationally with a simple illustrative IA model. 

To simplify the computational analysis, M-S-D studied MMR decision making in the presence only 

of physical-science uncertainty regarding the correct climate model. We specified damage and cost 

functions with functional forms and parameter values found in the literature on IA models. We engaged 

economic uncertainty only by exploring the sensitivity of findings to the specified parameter values of the 

damage and cost functions. 

To move from illustrative analysis towards realistic comparison of climate policies, it is important to 

recognize joint deep uncertainty in the physical and economic components of IA models. Among the many 

economic aspects of IA models that have lacked consensus, perhaps the most contentious has been how a 

planner should assess the costs and benefits of policies across future generations. In this paper, we study 

choice of climate policy that minimizes maximum regret with deep uncertainty regarding both the correct 

climate model and the appropriate intergenerational assessment of policy consequences. 

Economists have long framed intergenerational policy assessment using a time discount rate. They 

have evaluated climate policies by the present discounted value of the sum of abatement costs and the 

corresponding damages. However, there has long been debate about what discount rate to use; see, for 



3 
 

example, Arrow et al. (2014) and Heal and Milner (2014). The choice is highly consequential. Low discount 

rates favor policies that reduce GHG emissions aggressively and rapidly (Emmerling et al., 2019). High 

rates favor policies that act more modestly and slowly. To express deep uncertainty, we suppose that the 

appropriate discount rate lies within an interval that covers the spectrum of rates that have been used in the 

literature. We suggest that consideration of this range of discount rates may be an attractive way for a 

planner to cope with normative uncertainty about the appropriate rate. 

 From a mathematical perspective, the computational analysis in this paper is a straightforward 

generalization of the analysis in M-S-D. That work supposed that the correct physical climate model is one 

of six prominent models in the literature on climate science, whereas the correct economic model is known. 

Given uncertainty about the climate model, M-S-D supposed that a planner compares six policies, each of 

which chooses an emissions abatement path that is optimal under one and only one of the six climate 

models. Regret is the loss in welfare if the model used in policy making is not correct and, consequently, 

the chosen abatement path is actually sub-optimal. The MMR rule chooses a policy that minimizes the 

maximum regret, or largest degree of sub-optimality, across all six climate models. 

Here we also suppose that the correct climate model is one of the six models examined in M-S-D. We 

characterize uncertainty about the discount rate by supposing that it takes one of the seven values  {0.01, 

0.02, . . . , 0.07}, a range that covers the rates commonly used. As we explain later, this range reflects both 

empirical uncertainty about the future of the economy and normative uncertainty (or perhaps disagreement) 

about how the current population values the welfare of future generations. 

Given joint uncertainty about the climate model and the discount rate, we suppose that a planner 

compares forty-three policies. Each of forty-two policies chooses an emissions abatement path that is 

optimal under one of the six climate models and seven discount rates. The remaining one is the benchmark 

of a passive policy in which the planner chooses no abatement. With this setup, there are forty-two {discount 

rate, model} pairs, any of which is possibly correct. The regret of a specified policy under each pair is the 

loss in welfare if its abatement path is sub-optimal. The MMR criterion chooses a policy that minimizes 

maximum regret across all forty-two {discount rate, model} pairs. 
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Although the mathematical generalization of the earlier analysis is straightforward, the substantive 

findings regarding climate policy are novel and informative. The MMR analysis points to use of a relatively 

low discount rate for climate policy. The MMR decision rule keeps the maximum future temperature 

increase below 2℃ for most of the parameter values used to weight costs and damages.   

In what follows, Section 2 describes how the physical-science and economics literatures have sought 

to cope with uncertainty about the correct climate model and discount rate respectively. Section 3 

formalizes MMR policy choice, generalizing the IA model of M-S-D to incorporate discount-rate 

uncertainty. Section 4 presents our computational model and Section 5 gives the findings. Section 6  

discusses the contributions and limitations of this work. 

 

2. Prevalent Approaches to Climate and Discount-Rate Uncertainty 

 

2.1. Averaging Outputs of MMEs of Climate Models 

 

 The climate is a complex system comprising many different physical processes occurring at a range of 

spatial and temporal scales, which climate models aim to represent in a tractable manner. All climate models 

are based on a specific set of deterministic nonlinear partial differential equations describing large-scale 

atmospheric dynamics. However, implementation of the equations in particular models is subject to 

numerous practical choices involving discretization, solution methods, and other details. Moreover, other 

components of the system – such as cloud formation and heat transfer between land surfaces and the 

atmosphere – are not yet fully understood and must be approximated. For these reasons, multiple climate 

models have been developed and are currently in use, each reflecting different but credible choices in model 

design and implementation. Existing models yield different projections of the global climate. Neither a 

“consensus” climate model nor definitive quantitative climate projections can be specified with current 

knowledge (Pindyck, 2022). The range of projections produced by different climate models is a gauge of 

deep uncertainty about the climate system given the current state-of-the-science. 
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 Virtually all methods of MME analysis combine model outputs into single projections of future climate 

variables. A primary reason is that modelers have perceived policymakers as requiring single projections 

(as functions of particular GHG emissions scenarios) for use in decision-making (Parker 2006). However, 

climate researchers have recognized persistent methodological problems in combining model projections 

(Tebaldi and Knutti, 2007; Sanderson, 2018). 

 A common technique is to take the simple average across model projections of policy-relevant 

variables such as increases in global mean temperature due to anthropogenic carbon emissions. But 

computation of simple averages of predictions assumes that equal weight should be given to each model, 

an assumption lacking a compelling foundation (Knutti, 2010). Hence, researchers may instead compute 

weighted average projections when they believe that models can be ranked with respect to relative accuracy. 

However, model performance with respect to specific variables in historical data has not been demonstrated 

to imply skill in predicting climate (Flato et al., 2013), weakening the case for this approach to weighting 

projections for policy applications. 

 Combining climate model ensemble outputs into single projected trajectories of the future global 

climate remains a challenging and unresolved problem. As summarized in the recent Intergovernmental 

Panel on Climate Change (IPCC) physical sciences report, “…despite some progress, no universal, robust 

method for weighting a multi-model projection ensemble is available…” (Lee et al., 2021). This state of 

affairs poses a quandary for policymakers who rely on climate model output to formulate strategies for 

GHG emissions abatement and other approaches to address climate change. 

 

2.2. Uncertainties and Disagreements Regarding the Discount Rate 

 

IA models are subject to uncertainty in their economic assumptions as well as in their representation 

of the climate (Heal and Miller, 2014; Weyant, 2017). The paradigmatic example is Nordhaus’s DICE 

(Dynamic Integrated Climate Economy) model, the most influential IA model of the last several decades 

(Nordhaus, 2019). In DICE and similar models, the economic losses from climate change are represented 
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by damage functions that give the decreases in world-wide output resulting from increases in mean global 

temperature, as a proportional reduction or in dollar terms. These functions have uncertain theoretical and 

empirical grounding (Pindyck, 2013).  

Economists study dynamic optimization by a social planner, which entails discounting to quantify 

the present value of future economic costs and benefits. The appropriate definition and magnitude of the 

discount rate is a long-standing and contentious issue in climate change economics and integrated 

assessment modeling (e.g., Ackerman et al., 2009; Arrow et al., 2014; Dasgupta, 2019; Pindyck, 2017; 

Weisbach and Sunstein, 2017). Controversy persists in part due to the fact that choice of an appropriate 

discount rate is not only an empirical question regarding the future of the economy. It is also a normative 

matter of ethics, concerning social preferences for equity across future generations which vary in their time 

of existence and in their levels of consumption (Dasgupta, 2008). 

A simple version of the famous Ramsey formula (Ramsey, 1928) provides a transparent expression of 

the interplay of ethical and empirical considerations in choosing a discount rate. Paraphrasing the exposition 

in Arrow et al. (2014), let the planner’s utilitarian social welfare function be additively separable in the 

utility of future generations. Let ρ be the rate at which the social planner discounts the utility of future 

generations. Let the utility of a representative consumer be an increasing and concave function of 

consumption, with constant elasticity (− η) of marginal utility with respect to consumption. Let gt be the 

annualized growth rate of consumption between time 0 and a future time t. Ramsey showed that it is optimal 

to discount future consumption between the present (time 0) and time t at the rate 

(1)                                                                      𝛿𝛿𝑡𝑡  ≡  𝜌𝜌 +  𝜂𝜂 𝑔𝑔𝑡𝑡 .                                                                        

 Of the variables on the right-hand side, gt describes future consumption growth in the economy. From 

the perspective of the present, the empirical value of gt may be uncertain, perhaps deeply so. Such 

uncertainty is similar conceptually to the uncertainty that climate modelers face as they attempt to project 

the future trajectory of climate variables. 
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The time-invariant quantities ρ and η are normative parameters. The value of ρ formalizes how the 

planner views intergenerational equity, with ρ = 0 if the planner gives equal weight to the welfare of all 

future generations and ρ > 0 if the planner weights welfare more heavily in the near future than in the distant 

future. The value of η formalizes how the planner views the desirability of consumption equity. Under 

conventional utilitarian presumptions, the marginal utility of consumption decreases as consumption 

increases. Therefore, a larger value of η combined with positive gt (i.e., future generations are richer) 

implies that the planner should use a larger discount rate to evaluate costs and benefits, as expressed in 

equation (1). 

Being normative parameters, ρ and η are not subject to empirical uncertainty in the sense of gt or 

climate projections. Nevertheless, a social planner may feel normative uncertainty about what values are 

appropriate to use. Supposing that the planner aims to represent society, a source of this uncertainty may 

be normative disagreements within the present population. Such disagreements were evident, for example, 

in a highly public dispute between Nordhaus (2007), whose policy analysis used the value  

ρ = 0.03, and Stern (2006), whose analysis used the value ρ = 0.001. This difference was highly 

consequential. Stern concluded that policy should seek to reduce GHG emissions aggressively and rapidly. 

Nordhaus favored policies that act more modestly and slowly. 

Recognizing that conclusions about climate policy may depend critically on the discount rate used, 

economists have struggled to do more than debate the issue. Weitzman (2001) suggested use of a weighted 

average of the discount rates considered in the climate-economics literature, a procedure akin to the 

weighted averaging performed by climate scientists in MME analysis. Heal and Milner (2014) mention 

other possible ways to obtain a discount rate that a planner might find appropriate to use. 

We argue against any attempt to cope with empirical and normative uncertainty by choosing a single 

discount rate. Instead, we study formation of climate policy recognizing a set of possibly appropriate 

discount rates. The remainder of this paper shows how.  
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3. Minimax-Regret Policy Evaluation 

   

 We study a straightforward extension of the MMR policy-choice problem posed by M-S-D. To begin, 

we specify the optimal-control problem that a planner would solve in the absence of uncertainty. 

 

3.1. The Optimal-Control Problem 

 

 Let Bt represent baseline GHG emissions at time t, At be GHG abatement or mitigation actions at time 

t under some climate policy, measured in the same units as emissions, C(At) be the cost of these actions, 

and  𝐸𝐸𝑡𝑡
𝐴𝐴𝑡𝑡 =  𝐵𝐵𝑡𝑡 −  𝐴𝐴𝑡𝑡 be the resulting net emissions. (The terms abatement and mitigation are both used in 

the literature to describe actions reducing GHGs and related measures.)   We refer to At and Et
 At as “paths” 

or “trajectories,” and we assume that abatement paths are chosen from some space of feasible paths.  

 Emissions paths are used as inputs to a climate model M.  We focus on the global mean temperatures 

projected by M as a function of these paths. Thus, let T(Et
 At, M) be the global mean temperature at time t 

determined by the GHG trajectory Et
 At when it is simulated in the climate model M. Then a damage function,  

as discussed above, can be written as D�T�Et
 At , M��. 

 For an abatement path At and climate model M, denote the associated total cost (abatement plus 

damages) at time t as 

(2)                                             ℂ(At, M) ≡ C(At) + D �T�Et
 At , M��.  

A policymaker seeks to minimize the present value of cumulative cost over a planning horizon which, as is 

customary in the climate economics literature, we assume to be infinite. The optimal control problem given 

a particular climate model M is to solve 

(3)                                                           min
𝐴𝐴𝑡𝑡

� ℂ(𝐴𝐴𝑡𝑡,𝑀𝑀)𝑒𝑒−𝛿𝛿𝑡𝑡𝑑𝑑𝑑𝑑
∞

0
 ,                                                                     
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where δ is a time-invariant discount rate. In this approach, the optimal 𝐴𝐴𝑡𝑡 is chosen with commitment at 

time zero – that is, it is not updated over time as new climate or cost information is obtained. As stated, (3) 

is a deterministic optimization problem that, under certain technical assumptions regarding the feasible 

abatement path space and the cost and damage functions, has a unique solution. We will assume that such 

conditions hold for the series of problems we describe. 

  

3.2. The Minimax-Regret Decision Rule 

 

Now let Δ = {δ1, …, δK} be a set of possibly appropriate discount rates and  M = {M1,…,MN} be a 

model ensemble. The planner now faces the problem of minimizing total present-value cost over the infinite 

horizon while recognizing joint {discount rate, model} uncertainty. For a particular discount rate δi and 

model Mj, let  𝐴𝐴𝑡𝑡;𝛿𝛿𝑖𝑖,𝑀𝑀𝑗𝑗
∗  be the abatement path defined by   

(4)                                                               𝐴𝐴𝑡𝑡;𝛿𝛿𝑖𝑖,𝑀𝑀𝑗𝑗
∗ =  arg  min

𝐴𝐴𝑡𝑡
� ℂ(𝐴𝐴𝑡𝑡,𝑀𝑀𝑗𝑗)𝑒𝑒−𝛿𝛿𝑖𝑖𝑡𝑡
∞

0
𝑑𝑑𝑑𝑑 

That is, this cost-minimizing A* is the optimal trajectory when the discount rate is δi and the model is Mj.  

Let  ℂ∗ �𝐴𝐴𝑡𝑡;𝛿𝛿𝑖𝑖,𝑀𝑀𝑗𝑗
∗ , δi,𝑀𝑀𝑗𝑗�  be the associated minimum cost: 

(5)                                                        ℂ∗ �𝐴𝐴𝑡𝑡;𝛿𝛿𝑖𝑖,𝑀𝑀𝑗𝑗
∗ ,𝛿𝛿𝑖𝑖 ,𝑀𝑀𝑗𝑗� = � ℂ(𝐴𝐴𝑡𝑡∗,𝑀𝑀𝑗𝑗)𝑒𝑒−𝛿𝛿𝑖𝑖𝑡𝑡𝑑𝑑𝑑𝑑

∞

0
 

(Note the change in notation: Previously, ℂ(At ,𝑀𝑀𝑗𝑗),) was total cost at time t; now, ℂ*�𝐴𝐴𝑡𝑡;𝛿𝛿𝑖𝑖,𝑀𝑀𝑗𝑗
∗ ,𝛿𝛿𝑖𝑖 ,Mj� is 

total discounted cost, i.e., an integral.) 

 Now consider any feasible abatement trajectory At. The regret ℝ(𝐴𝐴𝑡𝑡,𝛿𝛿𝑖𝑖 ,𝑀𝑀𝑗𝑗) associated with At, when 

discount rate δi and climate model Mj describe the actual state of the world, is the difference between the 

cost of At in the actual state of the world and the cost of the optimal policy associated with δi  and Mj: 

(6)                                        ℝ�𝐴𝐴𝑡𝑡 ,𝛿𝛿𝑖𝑖 ,𝑀𝑀𝑗𝑗� = � ℂ�𝐴𝐴𝑡𝑡 ,𝑀𝑀𝑗𝑗�𝑒𝑒−𝛿𝛿𝑖𝑖𝑡𝑡𝑑𝑑𝑑𝑑 −  ℂ∗ �𝐴𝐴𝑡𝑡;𝛿𝛿𝑖𝑖𝑀𝑀𝑗𝑗
∗ , 𝛿𝛿𝑖𝑖 ,𝑀𝑀𝑗𝑗�

∞

0
. 
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 To apply the MMR rule, the planner first considers each feasible abatement path At and finds the model 

and discount rate combination that maximizes regret as defined in Equation (6), solving the problem 

(7)                              max
𝛿𝛿𝑖𝑖,𝑀𝑀𝑗𝑗

 ℝ(𝐴𝐴𝑡𝑡,𝛿𝛿𝑖𝑖 ,𝑀𝑀𝑖𝑖) = max
𝛿𝛿𝑖𝑖,𝑀𝑀𝑗𝑗

 �� ℂ�𝐴𝐴𝑡𝑡,𝑀𝑀𝑗𝑗�𝑒𝑒−𝛿𝛿𝑖𝑖𝑡𝑡𝑑𝑑𝑑𝑑 −  ℂ∗(𝐴𝐴𝑡𝑡;𝛿𝛿𝑖𝑖,𝑀𝑀𝑗𝑗
∗ ,𝛿𝛿𝑖𝑖 ,𝑀𝑀𝑗𝑗)

∞

0
�  . 

The MMR solution is then to find At to solve the problem 

(8)                                                                  min
𝐴𝐴𝑡𝑡

�max
𝛿𝛿𝑖𝑖,𝑀𝑀𝑗𝑗

 ℝ(𝐴𝐴𝑡𝑡, 𝛿𝛿𝑖𝑖 ,𝑀𝑀𝑗𝑗)�   .                                  

 

 

3.3. Use of Δ to Express Empirical and Normative Uncertainty           

 

 In research on decision making under uncertainty, the term “uncertainty” has usually referred to 

incomplete knowledge of the empirical environment of the decision maker, commonly called the “state of 

nature” or the “state of the world.” In study of climate policy, this interpretation of uncertainty applies to 

incomplete knowledge of the future global temperature, abatement costs, and damages that will occur if 

alternative climate policies are chosen. It also applies to uncertainty about the discount rate that stems from 

difficulty in predicting the future of the economy. 

 For example, economists using the Ramsey formula to specify a discount rate have studied policy 

formation when the growth path gt of future consumption is generated by an assumed stochastic process; 

see the discussion in Arrow et al. (2014). A planner may feel unable to specify a credible stochastic-process 

for gt, so uncertainty about the discount rate is deep. If so, the MMR rule given in (8) provides a reasonable 

approach to policy making with the Ramsey formula. 

 In the computational analysis of Section 5, we will use the MMR rule in (8) to embrace normative as 

well as empirical uncertainty about the appropriate discount rate to use when evaluating climate policy. We 

need to consider normative uncertainty (or perhaps disagreement) because, as discussed in Section 2.2, 

debate among economists about the appropriate discount rate has stemmed from more than empirical 
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uncertainty about the future economy. Notably, the dispute between Nordhaus (2007) and Stern (2006) 

regarding optimal climate policy, mentioned earlier, occurred largely because they specified different 

values for the normative parameter ρ in the Ramsey formula. 

 Our use of the set Δ to express both empirical and normative uncertainty regarding the appropriate 

discount rate departs only modestly from the usual decision-theoretic focus on empirical uncertainty if the 

planner is a utilitarian entity who has incomplete knowledge of the intergenerational preferences of the 

present population. Then the planner’s normative uncertainty has an empirical source, namely incomplete 

knowledge of the population preferences that a utilitarian would seek to maximize. Pushing this idea further, 

the planner may face the difficult task of representing a population whose members may not themselves be 

clear about their pure time preferences or willingness to accept intergenerational inequalities. 

 Social planning using Δ to express normative uncertainty is a more radical departure from the decision-

theoretic norm if the underlying problem is clear and yet sharp normative disagreements exist within the 

present population. That is, a segment of the population may strongly value intergenerational equity 

whereas another segment may be less concerned with the fate of future generations. In this case, one may 

think it necessary to abandon the idealization of a utilitarian planner and replace it with conceptualization 

of policy making as a non-cooperative political game. 

 We nonetheless find it attractive to study MMR decision making even in this challenging setting. The 

reason is that the MMR rule has some appeal as a broadly acceptable mechanism for policy choice. Recall 

that the regret of a policy in a specified state of nature measures its degree of sub-optimality in that state, 

and that maximum regret measures the maximum degree of sub-optimality across all states. Suppose that 

the members of a heterogeneous present population disagree on what {discount rate, model} should be 

considered the “true” state of nature. Then use of the MMR rule to choose policy minimizes the maximum 

degree of sub-optimality that will be experienced across the population. 

 The notion that the MMR policy may be broadly acceptable because it minimizes maximum sub-

optimality is reminiscent of Rawls’s consideration of social decision making behind a veil of ignorance. As 

with Rawls, we find it appealing to minimize some measure of the maximum harm experienced by a 
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heterogeneous population. However, the two settings differ in important respects. Formation of 

intergenerational climate policy differs from Rawls’s concern with static income distribution, and the MMR 

decision rule differs from Rawls’s consideration of maximin decisions.  

  

4. Computational Model 

 

A number of elaborate computational IA models have been proposed in the literature and are used in 

climate policy analysis. To show in broad terms the consequences of adoption of the MMR decision rule in 

this context, we instead present a very simple IA model that summarizes the essential economic and 

physical mechanisms at work. While the standard in the IA literature is to report results only about a century 

into the future, analyzing the uncertainty associated with discount rates necessitates attention to longer time 

horizons because phenomena in the more distant future that are negligible in economic terms with 

conventional discounting become salient with low rates. Notwithstanding the speculative nature of extreme 

emissions reduction or reversal scenarios (see Appendix A for additional discussion), we follow the 

convention of assuming them in our computational model, both in a baseline emissions trajectory and in 

abatement paths.  

 

4.1 Model Details 

 

 To illustrate quantitatively the solution of MMR equation (8) in Section 3.2, we specify functional 

forms and parameters for the climate damages, abatement costs, and climate dynamics in order to create a 

simple IA model. To define simple reduced forms of complex climate model dynamics, we draw on the 

work of Matthews et al. (2009). They showed that the “carbon-climate response” (CCR), the change in 

global mean temperature over periods of decades or longer, varies approximately linearly with the increase 

in cumulative carbon emissions over the same period. We define net cumulative emissions as  
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(9)                                                            𝐄𝐄𝑡𝑡
𝐴𝐴𝑡𝑡 = � 𝐸𝐸𝑡𝑡

𝐴𝐴𝑡𝑡𝑑𝑑𝑑𝑑 = � (𝐵𝐵𝑡𝑡 − 𝐴𝐴𝑡𝑡)𝑑𝑑𝑑𝑑
𝑡𝑡

0

𝑡𝑡

0
 

Matthews et al. analyzed the case At = 0; that is, no abatement relative to the baseline at any time. Note that 

there is no requirement our definition that (Bt – At) be non-negative. At exceeding Bt implies adoption of 

mitigation measures that yield negative net emissions at some time t. Doing so may result in declining net 

cumulative emissions if sustained long enough. 

 The CCR parameter m(Mi), or mi for short, associated with each full-scale numerical climate model is 

estimated by determining the model’s projected temperature response when it is driven by a carbon 

emissions path according to 

(10)                                                               𝑇𝑇𝑖𝑖 =  𝑚𝑚𝑖𝑖𝐄𝐄𝑡𝑡
𝐴𝐴𝑡𝑡 ,                  𝑖𝑖 = 1, … .6  

where T henceforth indicates the temperature increase over its initial value at time t = 0. The CCRs vary 

across climate models, reflecting structural and other forms of uncertainty. The CCR allows incorporating 

both reduced-form climate dynamics and deep climate model uncertainty into our simple IA modeling 

framework. 

Our model ensemble M is obtained by drawing on results from simulations of six “Earth System 

Models (ESMs),” which combine physical climate models with representations of biogeochemistry in order 

to simulate the complete atmospheric, oceanic, and terrestrial carbon cycle. These ESMs were used in the 

Climate Model Intercomparison Project Phase 5 (CMIP5), a study under the auspices of the World Climate 

Research Programme. We estimate CCR parameters im  using historic and projected emissions and 

temperature data from each of the six ESMs (see M-S-D for details). Our model ensemble can then be 

described succinctly by M = {m1, …, m6}. The models and their associated mi are shown in Table 1. 
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Table 1 

Earth system models used to estimate Carbon-Climate Response (CCR) 
parameters, with estimated CCR values (℃ per teraton carbon) 

Model and model number CCR 

1.    GFDL-ESM-2G - Geophysical Fluid 
Dynamics Laboratory Earth System 
Model version 2G 

0.00157 

2.    BCC-CSM-1 - Beijing Climate Center 
Climate System Model version 1.1 

0.00186 

3.     FIO-ESM - FIO-ESM - First Institute of 
Oceanography Earth System Model 0.00194 

4.    Had-GEM2-ES - Hadley Global 
Environmental Model 2 - Earth System 

0.00229 

5.    IPSL-CM5A-MR - Institut Pierre Simon 
Laplace Coupled Model 5A - Medium 
Resolution 

0.00236 

6.    MIROC-ESM - Model for 
Interdisciplinary Research on Climate - 
Earth System Model 

0.00244 

Taylor et al. (2012), Collins et al. (2013) 
  

Next, we specify abatement cost and climate damage functions in quadratic form to implement the IA 

model as an optimal control problem, allowing for plausible non-linearity in these functions as the 

abatement effort and the temperature increase:  

(11)                                                                    𝐶𝐶(𝐴𝐴𝑡𝑡) = 1
2 𝛼𝛼𝐴𝐴𝑡𝑡

2                                                                           

(12)                                                                  𝐷𝐷(𝑇𝑇𝑡𝑡) =   12 𝛽𝛽𝑇𝑇𝑡𝑡
2                                                                            

where α and β are weighting parameters calibrated to numerical estimates in the climate economics 

literature, and Tt is, as above, global mean temperature increase as of  time t. For damages, the quadratic 

form and the value of β are taken from a statistical survey by Nordhaus and Moffat (2017), and comprise 
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these researchers’ preferred regression model for approximating existing empirical damage estimates. The 

quadratic form and value of α are derived from Dietz’s and Venman’s (2019) synthesis of global marginal 

abatement costs reported in the Intergovernmental Panel on Climate Change’s Fifth Assessment Report 

(Clarke et al., 2014).  

A baseline emissions trajectory Bt is derived from the so-called “Representative Concentration 

Pathway (RCP) 8.5” scenario in its extended version to year 2500, which envisions a relatively high growth 

rate of global carbon emissions from fossil fuel use through the 21st century, followed by a peak or plateau 

period of constant emissions until 2150, and then a decline to a very low level by 2250 (Riahi et al., 2011, 

Meinshausen et al., 2011). In its original form with a 2100 time horizon, the RCP 8.5 reflects an absence 

of explicit global climate policy. This, and several other extended RCP scenarios assuming different 

emissions paths, were devised for research purposes, with no explanation given of the policies, 

technological advances, or other factors that could bring about this peaking, leveling, and decline. See 

Appendix A for discussion of issues in specifying a realistic baseline trajectory for IA modeling of climate 

policy. 

A functional form having the same general shape as the RCP 8.5 was fitted by nonlinear least squares 

using the Levenberg-Marquardt method in Mathematica (2019). The fitted equation for Bt is 

(13)                                                  𝐵𝐵𝑡𝑡 =  �𝜃𝜃𝑑𝑑 +  𝐵𝐵0
exp (𝜃𝜃𝜃𝜃)

� 𝜃𝜃 exp (−(𝑑𝑑 − 𝜑𝜑)) .                            

This equation smooths connected segments of the extended RCP 8.5, including the plateau during the first 

half of the 22nd century, and captures its rapid 21st-century increase and subsequent dramatic decline.  

Equation (13) fits the scenario data well, with an R2 of 0.927.  

 Combining these various components, the optimal control problem is to minimize, for a particular 

discount rate and model, the present value of abatement costs plus climate damages over an infinite horizon, 

subject to the dynamic relationship between cumulative emissions and temperature: 

(14)                                                            min
𝐴𝐴𝑡𝑡

�
1
2

(𝛼𝛼𝐴𝐴𝑡𝑡2 + 𝛽𝛽𝑇𝑇𝑡𝑡2)
∞

0
𝑒𝑒−𝛿𝛿𝑡𝑡𝑑𝑑𝑑𝑑 
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subject to 

(15)                                                              𝑑𝑑
𝑑𝑑𝑡𝑡
𝐄𝐄𝑡𝑡
𝐴𝐴𝑡𝑡 = 𝐸𝐸𝑡𝑡

𝐴𝐴𝑡𝑡 =  𝐵𝐵𝑡𝑡 −  𝐴𝐴𝑡𝑡     

(16)                                                               𝑇𝑇𝑡𝑡 = 𝑚𝑚𝐄𝐄𝑡𝑡
𝐴𝐴𝑡𝑡 

(17)                                                                𝐄𝐄0
𝐴𝐴𝑡𝑡 =  𝐄𝐄0 

 

where the last equation specifies an initial condition for net cumulative emissions. Applying standard 

solution techniques (see, e.g., Barro and Sala-i-Martin, 1995) yields first-order conditions including two 

coupled differential equations in abatement and the atmospheric greenhouse gas concentration associated 

with the optimal abatement: 

(18)                                                         𝑑𝑑𝐴𝐴𝑡𝑡
𝑑𝑑𝑡𝑡

=  𝛿𝛿 𝐴𝐴𝑡𝑡 −  𝛽𝛽𝑚𝑚
2

𝛼𝛼
 𝐄𝐄𝑡𝑡

𝐴𝐴𝑡𝑡                                                                               

(19)                                                         𝑑𝑑𝐄𝐄
𝐴𝐴𝑡𝑡

𝑑𝑑𝑡𝑡
=  𝐵𝐵𝑡𝑡 −  𝐴𝐴𝑡𝑡    .                                                                         

These equations can be solved in closed form for the optimal abatement path At and resulting optimal 

temperature, costs, damages, and present-value total cost. 

 We discussed our numerical reduced-form climate model ensemble M above. For numerical solution 

of the MMR problem in equation (8), it is also necessary to specify the discount rate set Δ. Following the 

discussion in Section 3.3, we pick seven possible discount rates ranging from a low of 0.01 to a high of 

0.07 to represent the extent of empirically-based and normative uncertainty; these values roughly span the 

set of discounts rates that have been used in the climate economics literature.  For numerical 

implementation, we pick the seven values {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07} in this interval.  It should 

be noted that a zero discount has also been analyzed and debated, but the optimal control problem stated in 

Equations (14) – (17) does not have a solution in this case because the transversality first-order condition 

is not satisfied. As an approximation, we selected  δ = 0.01 for the smallest potential δ value. The largest 

value, 0.07, corresponds to the real, pre-tax return on private investment (Arrow et al., 2013, citing U.S. 

Office of Management, 2003). The six reduced-form climate models in the ensemble M are defined by the 

different values of their CCRs as discussed above (see Table 1). With seven values in the ensemble Δ, there 
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are thus forty-two combinations of δ and m representing the range of the two types of deep uncertainty we 

have discussed.  

 Before turning to uncertainty analysis, we illustrate how the model works, including the influence of 

the baseline emissions scenario approximating the RCP 8.5 and the implications of the discount rate 

uncertainty. The left-hand panel of Figure 1 shows the baseline Bt and the optimal abatement At for a 

particular set of parameters. The right-hand panel shows net cumulative emissions under At  and under a 

policy of no abatement (At = 0 for all t), respectively. Starting from the initial year, abatement increases 

along with baseline emissions, but with a lag: Through the 21st century the model does not find it optimal 

to abate baseline emissions completely. In the 22nd century, by contrast, optimal abatement  begins to exceed 

the baseline, resulting in a decline in net cumulative emissions, as seen in the right-hand panel. This panel 

also shows that optimal abatement policy entails a significant reduction in net cumulative emissions relative 

to no abatement. 

Figure 1 – Trajectories of  Bt, optimal 𝐴𝐴𝑡𝑡, 𝐄𝐄𝑡𝑡
𝐴𝐴𝑡𝑡, and 𝐄𝐄𝑡𝑡

noabatement

for  m = 0.002286,  α = 0.000125,  β = 0.018, and δ = 0.05

Bt

𝐄𝐄𝒕
𝐴𝐴𝒕

𝐄𝐄𝒕
noabatement

GtC GtC

Year Year

At

 

The computational model shows the importance of the discount rate. With the parameters of Figure 1, 

the optimal total economic loss from climate change, including abatement cost, is 0.51% of the present-

discounted value of future global GDP. If the discount rate were 1%, this optimal value would be 3.51%.  
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By way of comparison, with no abatement and the parameters of Figure 1 (i.e., with a discount rate of 5%), 

the total economic cost of climate change would be 0.79% of the present-discounted value of future global 

GDP, while at a 1% discount rate these damages would be 42.02% of present-discounted value of future 

global GDP.   

 

5. MMR Analysis 

 

 The computational model presented in Section 4 enables us to quantify the theoretical discussion in 

Section 3.2. For the middle values of the economic parameters α and β, the full set of regrets (from  Equation 

(6)) across all possible pairs of δ and m is shown in the three-part Table B-1 in Appendix B. Regrets can be 

calculated for any feasible abatement path At, but to keep the calculations tractable (and because a planner 

presumably would seek to pick a “best” policy) we focus on those paths that are optimal for those 

combinations of δ and m that are in the Δ and M ensembles. There are 42 such combinations. In Table B-

1, a policy is defined by optimizing using the {δi, mj} pair at the top of each column, while the {δi, mj} 

values that correspond to the actual state of the world are indicated by the row headings on the leftmost 

border. For example, if policy is optimized assuming {0.03, m2}, while the actual state-of-the-world is  best 

described by {0.04, m1}, the regret is 0.049, as highlighted in bold in the fourth row and tenth column of 

Part 1 of Table B-1. Appendix Figure B-1 gives a color-shaded plot of the 1849 numbers in Table B-1.  

The maximum regret for each policy is given in the final row of the Table, across each of its three 

parts. From those maximum regrets, the minimum of them (i.e., Equation (8)) can be read off directly.  For 

this (α, β) combination it is 0.273, which appears at the bottom of the second column of Part 3.   

To explore the sensitivity of the MMR to different combinations of the α and β parameters, we 

calculated the full matrix of 1806 regrets, the maximum regret for each {δi, mj} combination, and the MMR 

for nine combinations of α and β. The values of the MMR, along with the combination of δ and Model that 

yield the MMR, are given in Table 2. The most striking result exhibited in this Table is that, under all 

combinations of α and β, the discount rate corresponding to the MMR solution is 0.02, near the low end of 
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the range of discount rates considered. Different climate models are picked by the MMR rule depending on 

the (α, β) combination, although the three models appearing in Table 2 are the ones with the highest values 

of the CCR parameter m. However, in all cases the MMR decision rule points unambiguously to use of a 

relatively low discount rate in evaluating the costs and benefits of climate mitigation measures. The strong 

finding regarding the low value of δ selected by the MMR criterion is reinforced if we consider cases where 

the Model is known and only δ is uncertain.  These results are not shown here, but are available from the 

authors on request. 

The simple IA model also allows for calculation of the maximum temperature increase that will be 

reached for any policy path, and how long it will take to reach that temperature, two quantities of 

considerable importance in climate science and policy (Clarke et al. 2014, IPCC, 2021). Once the MMR 

policy combination of {δ, m} is selected, the abatement and net cumulative emissions paths are determined. 

The maximum temperature increase given such a path is determined by equation (10), and will occur when 

net cumulative emissions is at a maximum.  The value of the CCR parameter in the actual state of the world 

may be different from that in the MMR policy combination.  
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Table 2 

Values of MMR, uncertain Model and  δ, for combinations of  α  and  β 
Potential values of δ:  {0.01,0.02,0.02,0.03,0.04,0.05,0.06,0.07} 

α = 0.000075    

β = 0.014 

α = 0.000075 

β = 0.018 

α = 0.000075 

β = 0.022 

Model δ MMR Model δ MMR Model δ MMR 

IPSL 0.02 0.172 
 

HAD 0.02 0.172 
 

HAD 0.02 0.178 
 

         
         

α = 0.000125    
β = 0.014 

α = 0.000125 
β = 0.018 

α = 0.000125 
β = 0.022 

Model δ MMR Model δ MMR Model δ MMR 

MIROC 0.02 0.266 
  

IPSL 0.02 0.273 
 

IPSL 0.02 0.284 
 

   

α = 0.0002    
β = 0.014 

α = 0.0002 
β = 0.018 

α = 0.0002 
β = 0.022 

Model δ MMR Model δ MMR Model δ MMR 

MIROC 0.02 0.478 
 

MIROC 0.02 0.436 
 

MIROC 0.02 0.423 
 

 

Because the actual state of the world is unknown, the temperature increase under the MMR policy cannot 

be known at the time the policy decision is made. What is known is that it will be less than or equal to the 

maximum over all six models, which will occur if MIROC is the true model because m6 is the greatest of 

the CCRs. Table 3 shows these maxima for the nine combinations of {α, β}, and the year at which it is 

reached. It can be seen from Table 3 that for almost all the parameter combinations considered here, the 

MMR policy keeps the peak temperature increase under 2℃. Only for the costliest abatement (cases with 

α = 0.0002) does the maximum temperature increase exceed 2℃. Under the MMR abatement policy across 

the nine (α, β) combinations, the global mean temperature will reach its maximum between 118 and 149 

years from the initial point.  Although not shown in the Table, it is worth noting that without any abatement, 
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the maximum temperature increase can be quite high, for example, it is 14.7℃ as time goes to infinity for 

the middle values of α and β and the Hadley model (m4). 

 

Table 3 

Values of Maximum Temperature Increase (Tmax) and Years until it is reached, 
 uncertain Model and  δ, for combinations of  α  and  β 

Potential values of δ:  {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07} 

α = 0.000075    

β = 0.014 

α = 0.000075 

β = 0.018 

α = 0.000075 

β = 0.022 

MMR 
Model Years Tmax MMR 

Model Years Tmax MMR 
Model Years Tmax 

IPSL 124 1.248 HAD 121 1.055 HAD 118 0.877 

         
         

α = 0.000125    
β = 0.014 

α = 0.000125 
β = 0.018 

α = 0.000125 
β = 0.022 

MMR 
Model Years Tmax MMR 

Model Years Tmax MMR 
Model Years Tmax 

MIROC 134 1.831 IPSL 130 1.564 IPSL 125 1.315 

   

α = 0.0002    
β = 0.014 

α = 0.0002 
β = 0.018 

α = 0.0002 
β = 0.022 

MMR 
Model Years Tmax MMR 

Model Years Tmax MMR 
Model Years Tmax 

MIROC 149 2.660 MIROC 141 2.187 MIROC 135 1.859 
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6. Discussion 

 

 We consider the minimax regret rule to provide a reasonable way to form climate policy with both 

empirical uncertainty about the physical climate system and normative uncertainty regarding the discount 

rate. Our computational analysis of MMR decision making offers a new reason for using a low discount 

rate in climate policy analysis, a rate on the order of 2% per annum. This discount rate encompasses the 

pure rate of time preference, intergenerational inequality aversion, and projection of the economy’s future 

rate of growth.   

MMR decision making copes with deep uncertainty without adopting the extreme conservatism of 

minimax decisions. As discussed in Section 3.3, MMR enables a planner to deal with heterogeneous 

populations, who may not themselves be clear about their time preferences or willingness to accept 

intergenerational inequalities. There is no scientific or economic reason that everyone should hold the same 

normative values. Furthermore, some people may have only a vague understanding of discounting. 

We also find it appealing to view the MMR decision rule as a consensus-building mechanism. 

Calculating regrets enables people with different values to see how implementation of alternative policies 

might play out from their perspectives. Having the appeal of limiting maximal harm across the population, 

choosing policy by MMR may be acceptable to holders of incompatible preferences.   

Of course, the modeling in this paper does not address the philosophical problems that some may have 

with the utilitarian framework. Aggregating individualistic “utilities” may be a questionable basis for 

societal decisions. It is possible to aggregate monetary costs and benefits, but these can be translated into 

utilities only if Kaldor-Hicks compensations are implemented – something that rarely takes place in the real 

world. Some forms of compensation are impossible to accomplish: future generations cannot pay us to 

mitigate climate change.  

The IA model described in our paper is simple and computationally tractable. This is partially because 

we have not considered all possible sources of uncertainty. As shown in Appendix A, the appropriate 

baseline emissions path is highly uncertain. Despite the best efforts of economists, the shapes and 
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parameters of the abatement cost and climate damage functions are also uncertain. We have addressed this 

partially by sensitivity analysis, calculating MMR solutions with various parameters (α, β) on abatement 

cost and climate damages. However, it would be better to expand our MMR analysis to encompass deep 

uncertainty about the correct values for these weights, a formidable computational task. Future research 

may narrow the realistic ranges of these parameters, as well clarify the shapes of the abatement cost and 

damage functions. Knowledge of realistic baseline scenarios may improve. Ongoing progress in physical 

climate modeling is likely to lead to better understanding of the relationship between greenhouse gas 

emissions, global temperatures, and other features of the geophysical system.   

And yet, as discussed in Sections 2.2 and 3.3, there is an intrinsic difference between the discount rate, 

which depends on normative considerations, and the models/parameters of the physical climate and the 

economy. Geophysical and economic models may continue to be improved by new scientific research, but 

the normative parameters determining the discount rate involve issues that are beyond the reach of science. 

We suggest that the MMR approach to climate policy decision-making provides an attractive way to cope 

with both empirical and normative uncertainty. 
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Appendix A.    Specifying the Baseline Emissions and Abatement Paths 

 

In Section 3.1 we defined a “net emissions” path as  𝐸𝐸𝑡𝑡
𝐴𝐴𝑡𝑡 =  𝐵𝐵𝑡𝑡 −  𝐴𝐴𝑡𝑡, where Bt  is a baseline emissions 

path and At is a path of carbon emissions abatement actions. In the climate economics literature, quantitative 

baselines have usually been specified on the basis of narrative scenarios describing in qualitative terms how 

the world economy, society, and energy system might evolve over the course of the twenty-first century 

and beyond. Projected abatement paths that reduce emissions relative to baselines are similarly conceived 

and quantified. 

Both baseline scenarios and abatement paths have been developed to reflect a range of global GHG 

emissions projections, including both continued high fossil fuel use and dramatic reductions. Reductions 

are modeled as being achieved through measures including carbon pricing, emissions cap and trade systems, 

and adoption of low-carbon or non-carbon primary power generation – solar, wind, nuclear, and fossil with 

carbon capture and sequestration.  However, there are no generally accepted criteria stipulating what should 

be considered feasible or realistic in these low-carbon scenarios, whether technologically, economically, or 

politically. In many cases, scenarios project implementation of measures significantly beyond past or 

current levels. Indeed, there are examples in which scenarios project rapid global deployment of 

technologies that are at present still only in the development and demonstration phase.  

Increasing attention is being directed toward even more radical measures, which would go beyond 

reducing emissions to reversing them.  “Carbon dioxide removal” (CDR) refers to human activities such as 

afforestation, ocean fertilization, and direct air capture and sequestration, which extract already-emitted 

carbon from the atmosphere and store it in underground reservoirs or other repositories. Aggressive 

deployment of CDR could result in “net negative” emissions, meaning that the rate of removal would 

exceed the rate of new emissions. But CDR on scales sufficiently large and sustained to meaningfully affect 

global climate change is at this point highly speculative, both in terms of technologically and with respect 

to its effects on the climate and other impacts, such as on agriculture. Nevertheless, it has come to the fore 
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with the advent of highly ambitious global temperature change limits as an international policy goal. 

Notably, in modeling of emissions paths to prevent mean global warming of more than 1.5℃ over the pre-

industrial level, most scenarios in which this limit is achieved entail global net zero, and then negative, 

emissions during the twenty-first century, requiring CDR far beyond what is currently feasible, even on 

small, demonstration-level scales.   

Another form of geoengineering is “Solar Radiation Modification (SRM),” which entails changes in 

the planetary radiation budget by measures such as injecting aluminum silicate particles into the 

stratosphere. Like CDR, there is considerable technological and scientific uncertainty regarding SRM, and 

it has to date received much less attention in the integrated assessment literature. Additionally, fusion power 

has been proposed for many decades, without yet coming to fruition. There is no way of knowing at this 

time whether these speculative possibilities, or others that have not even been imagined, will materialize.   
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Appendix B. Regret Computations 

 

Table B-1 
 

Regrets 
  

α = 0.000125, β = 0.018 
 

Part 1 of 3 

Parameter Combinations (Model used for policy) (Columns) 

Actual 
World δ1 m1 δ2 m1 

δ3 
m1 

δ4 
m1 

δ5 
m1 δ6 m1 δ7 m1 

δ1 
m2 

δ2 
m2 

δ3 
m2 

δ4 
m2 

δ5 
m2 

δ6 
m2 

δ7 
m2 

δ1 m1 0.000 0.312 1.015 1.865 2.735 3.567 4.340 0.043 0.071 0.428 0.962 1.574 2.208 2.833 
δ2 m1 0.137 0.000 0.075 0.225 0.392 0.551 0.696 0.253 0.033 0.006 0.074 0.182 0.303 0.424 
δ3 m1 0.239 0.040 0.000 0.020 0.059 0.102 0.142 0.347 0.110 0.020 0.000 0.013 0.039 0.070 
δ4 m1 0.268 0.076 0.012 0.000 0.006 0.018 0.032 0.361 0.145 0.049 0.011 0.000 0.002 0.009 
δ5 m1 0.264 0.090 0.025 0.004 0.000 0.002 0.006 0.345 0.152 0.062 0.023 0.006 0.001 0.000 
δ6 m1 0.249 0.093 0.032 0.009 0.002 0.000 0.001 0.319 0.148 0.066 0.029 0.011 0.004 0.001 
δ7 m1 0.230 0.090 0.034 0.012 0.004 0.001 0.000 0.293 0.139 0.066 0.031 0.014 0.006 0.002 
δ1 m2 0.056 0.761 1.924 3.238 4.546 5.778 6.911 0.000 0.280 0.955 1.832 2.787 3.752 4.689 
δ2 m2 0.046 0.041 0.255 0.532 0.808 1.060 1.283 0.127 0.000 0.079 0.251 0.455 0.662 0.859 
δ3 m2 0.143 0.005 0.023 0.093 0.173 0.248 0.315 0.236 0.043 0.000 0.024 0.075 0.134 0.192 
δ4 m2 0.193 0.033 0.000 0.012 0.038 0.065 0.090 0.278 0.086 0.015 0.000 0.008 0.026 0.046 
δ5 m2 0.208 0.054 0.007 0.000 0.007 0.017 0.028 0.283 0.107 0.032 0.006 0.000 0.003 0.010 
δ6 m2 0.207 0.064 0.015 0.001 0.000 0.004 0.008 0.274 0.113 0.042 0.013 0.002 0.000 0.001 
δ7 m2 0.198 0.068 0.020 0.004 0.000 0.000 0.002 0.258 0.113 0.047 0.018 0.006 0.001 0.000 
δ1 m3 0.086 0.897 2.186 3.628 5.055 6.396 7.627 0.002 0.351 1.113 2.083 3.133 4.188 5.209 
δ2 m3 0.031 0.063 0.315 0.627 0.933 1.210 1.454 0.104 0.002 0.110 0.310 0.541 0.771 0.989 
δ3 m3 0.123 0.002 0.036 0.119 0.210 0.295 0.369 0.212 0.032 0.001 0.037 0.099 0.167 0.232 
δ4 m3 0.176 0.025 0.001 0.019 0.050 0.081 0.110 0.258 0.074 0.010 0.001 0.014 0.036 0.059 
δ5 m3 0.195 0.046 0.004 0.001 0.011 0.023 0.035 0.269 0.096 0.026 0.003 0.000 0.006 0.015 
δ6 m3 0.196 0.058 0.012 0.001 0.001 0.006 0.012 0.263 0.105 0.037 0.010 0.001 0.000 0.003 
δ7 m3 0.190 0.063 0.017 0.003 0.000 0.001 0.004 0.250 0.106 0.042 0.015 0.004 0.000 0.000 
δ1 m4 0.303 1.691 3.658 5.783 7.855 9.784 11.545 0.073 0.793 2.022 3.497 5.053 6.594 8.073 
δ2 m4 0.004 0.230 0.687 1.187 1.654 2.067 2.426 0.028 0.061 0.324 0.678 1.050 1.407 1.736 
δ3 m4 0.051 0.017 0.138 0.295 0.446 0.578 0.692 0.117 0.002 0.040 0.141 0.258 0.374 0.480 
δ4 m4 0.104 0.003 0.022 0.077 0.136 0.189 0.235 0.175 0.027 0.001 0.024 0.066 0.110 0.152 
δ5 m4 0.135 0.017 0.001 0.019 0.044 0.068 0.090 0.201 0.053 0.005 0.002 0.015 0.033 0.052 
δ6 m4 0.149 0.030 0.001 0.003 0.014 0.026 0.037 0.209 0.068 0.015 0.001 0.002 0.009 0.018 
δ7 m4 0.152 0.039 0.006 0.000 0.004 0.010 0.016 0.207 0.076 0.023 0.004 0.000 0.002 0.006 
δ1 m5 0.364 1.887 4.012 6.298 8.521 10.589 12.474 0.099 0.907 2.245 3.839 5.513 7.168 8.755 
δ2 m5 0.006 0.278 0.783 1.327 1.831 2.277 2.663 0.018 0.084 0.383 0.773 1.178 1.565 1.920 
δ3 m5 0.040 0.027 0.168 0.342 0.507 0.651 0.773 0.101 0.001 0.056 0.171 0.302 0.429 0.545 
δ4 m5 0.092 0.001 0.031 0.095 0.160 0.219 0.269 0.159 0.020 0.002 0.034 0.082 0.131 0.178 
δ5 m5 0.124 0.012 0.003 0.025 0.054 0.081 0.105 0.188 0.045 0.003 0.004 0.020 0.042 0.063 
δ6 m5 0.139 0.025 0.001 0.005 0.018 0.032 0.044 0.198 0.061 0.012 0.000 0.004 0.013 0.023 
δ7 m5 0.144 0.035 0.004 0.000 0.005 0.013 0.019 0.198 0.070 0.019 0.003 0.000 0.003 0.008 
δ1 m6 0.431 2.099 4.394 6.851 9.235 11.449 13.467 0.130 1.030 2.486 4.206 6.006 7.783 9.485 
δ2 m6 0.012 0.332 0.889 1.479 2.024 2.503 2.918 0.011 0.111 0.449 0.877 1.318 1.736 2.119 
δ3 m6 0.030 0.040 0.202 0.394 0.574 0.730 0.863 0.085 0.002 0.074 0.206 0.350 0.489 0.615 
δ4 m6 0.079 0.001 0.042 0.115 0.187 0.251 0.306 0.144 0.014 0.006 0.045 0.100 0.155 0.207 
δ5 m6 0.112 0.009 0.006 0.033 0.066 0.096 0.122 0.175 0.037 0.001 0.007 0.027 0.052 0.076 
δ6 m6 0.129 0.021 0.000 0.008 0.023 0.039 0.053 0.187 0.054 0.009 0.000 0.006 0.017 0.029 
δ7 m6 0.136 0.030 0.002 0.001 0.008 0.016 0.024 0.189 0.064 0.016 0.002 0.001 0.005 0.011 

               
Max  

Regret 
0.431 2.099 4.394 6.851 9.235 11.449 13.467 0.361 1.030 2.486 4.206 6.006 7.783 9.485 
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Table B-1 (continued) 

 
Regrets 

 
α = 0.000125, β = 0.018 

 
Part 2 of 3 

 

Parameter  Combinations (Model used for policy) (Columns) 

Actual  
World δ1 m3 δ2 m3 δ3 m3 δ4 m3 δ5 m3 δ6 m3 δ7 m3 δ1 m4 δ2 m4 δ3 m4 δ4m4 δ5 m4 δ6 m4 δ7 m4 

δ1 m1 0.062 0.044 0.338 0.808 1.364 1.951 2.539 0.167 0.011 0.089 0.321 0.651 1.037 1.452 
δ2 m1 0.280 0.048 0.002 0.052 0.146 0.256 0.370 0.407 0.141 0.027 0.004 0.035 0.095 0.171 
δ3 m1 0.372 0.130 0.029 0.001 0.007 0.029 0.056 0.483 0.229 0.093 0.029 0.004 0.002 0.013 
δ4 m1 0.383 0.163 0.060 0.017 0.002 0.001 0.006 0.479 0.252 0.125 0.057 0.022 0.006 0.001 
δ5 m1 0.364 0.168 0.073 0.029 0.009 0.002 0.000 0.447 0.246 0.132 0.069 0.034 0.016 0.006 
δ6 m1 0.336 0.162 0.076 0.035 0.015 0.006 0.001 0.409 0.230 0.129 0.072 0.040 0.021 0.011 
δ7 m1 0.308 0.151 0.075 0.037 0.018 0.008 0.003 0.374 0.212 0.121 0.070 0.041 0.024 0.013 
δ1 m2 0.002 0.212 0.796 1.584 2.461 3.362 4.247 0.052 0.038 0.304 0.756 1.318 1.942 2.592 
δ2 m2 0.149 0.002 0.054 0.202 0.389 0.583 0.771 0.255 0.047 0.002 0.054 0.159 0.290 0.432 
δ3 m2 0.258 0.057 0.001 0.015 0.058 0.112 0.167 0.359 0.134 0.032 0.001 0.009 0.036 0.073 
δ4 m2 0.298 0.101 0.022 0.001 0.004 0.019 0.037 0.387 0.178 0.070 0.020 0.002 0.001 0.008 
δ5 m2 0.301 0.121 0.041 0.009 0.000 0.001 0.007 0.381 0.191 0.089 0.037 0.013 0.002 0.000 
δ6 m2 0.289 0.126 0.051 0.017 0.004 0.000 0.001 0.360 0.189 0.096 0.047 0.021 0.008 0.002 
δ7 m2 0.272 0.124 0.054 0.022 0.008 0.002 0.000 0.336 0.181 0.096 0.050 0.026 0.012 0.005 
δ1 m3 0.000 0.272 0.935 1.810 2.775 3.761 4.728 0.035 0.059 0.378 0.888 1.515 2.203 2.917 
δ2 m3 0.124 0.000 0.079 0.254 0.466 0.683 0.892 0.225 0.032 0.006 0.079 0.204 0.354 0.514 
δ3 m3 0.234 0.044 0.000 0.025 0.079 0.141 0.204 0.332 0.115 0.022 0.000 0.017 0.052 0.096 
δ4 m3 0.278 0.088 0.016 0.000 0.009 0.028 0.049 0.366 0.161 0.059 0.014 0.001 0.003 0.014 
δ5 m3 0.286 0.110 0.034 0.006 0.000 0.003 0.011 0.364 0.178 0.080 0.031 0.009 0.001 0.001 
δ6 m3 0.278 0.117 0.045 0.014 0.003 0.000 0.001 0.348 0.179 0.089 0.041 0.017 0.006 0.001 
δ7 m3 0.264 0.117 0.050 0.019 0.006 0.001 0.000 0.327 0.174 0.090 0.046 0.022 0.010 0.004 
δ1 m4 0.046 0.652 1.743 3.085 4.525 5.972 7.377 0.000 0.232 0.829 1.662 2.631 3.668 4.728 
δ2 m4 0.039 0.040 0.263 0.584 0.931 1.272 1.590 0.110 0.000 0.077 0.260 0.495 0.749 1.006 
δ3 m4 0.134 0.005 0.027 0.113 0.222 0.332 0.435 0.218 0.043 0.000 0.028 0.091 0.169 0.252 
δ4 m4 0.192 0.037 0.000 0.016 0.052 0.094 0.135 0.272 0.092 0.018 0.000 0.011 0.035 0.065 
δ5 m4 0.217 0.063 0.009 0.000 0.010 0.026 0.044 0.290 0.120 0.040 0.008 0.000 0.005 0.015 
δ6 m4 0.224 0.079 0.021 0.002 0.001 0.006 0.014 0.290 0.133 0.054 0.018 0.003 0.000 0.002 
δ7 m4 0.220 0.086 0.029 0.007 0.000 0.001 0.004 0.281 0.137 0.062 0.026 0.009 0.002 0.000 
δ1 m5 0.066 0.751 1.942 3.393 4.944 6.500 8.008 0.001 0.282 0.945 1.853 2.902 4.021 5.163 
δ2 m5 0.028 0.058 0.315 0.670 1.049 1.418 1.762 0.092 0.001 0.103 0.311 0.572 0.851 1.130 
δ3 m5 0.117 0.002 0.039 0.140 0.261 0.382 0.495 0.198 0.033 0.001 0.041 0.115 0.203 0.294 
δ4 m5 0.176 0.029 0.000 0.024 0.067 0.113 0.158 0.253 0.080 0.012 0.001 0.017 0.047 0.081 
δ5 m5 0.203 0.055 0.006 0.001 0.015 0.034 0.054 0.275 0.109 0.033 0.005 0.000 0.008 0.021 
δ6 m5 0.212 0.071 0.016 0.001 0.002 0.009 0.018 0.277 0.124 0.048 0.014 0.002 0.000 0.004 
δ7 m5 0.211 0.080 0.025 0.005 0.000 0.002 0.006 0.271 0.129 0.057 0.022 0.006 0.001 0.000 
δ1 m6 0.091 0.860 2.157 3.725 5.395 7.066 8.684 0.006 0.339 1.071 2.059 3.194 4.401 5.629 
δ2 m6 0.019 0.079 0.373 0.764 1.178 1.578 1.949 0.075 0.005 0.133 0.369 0.656 0.961 1.265 
δ3 m6 0.101 0.001 0.054 0.171 0.306 0.438 0.561 0.178 0.024 0.004 0.056 0.142 0.241 0.342 
δ4 m6 0.160 0.021 0.002 0.034 0.083 0.136 0.185 0.235 0.068 0.007 0.003 0.026 0.060 0.099 
δ5 m6 0.190 0.047 0.003 0.004 0.021 0.043 0.066 0.260 0.098 0.027 0.002 0.002 0.012 0.028 
δ6 m6 0.201 0.064 0.013 0.000 0.004 0.013 0.024 0.265 0.114 0.042 0.011 0.001 0.001 0.007 
δ7 m6 0.202 0.073 0.021 0.003 0.000 0.003 0.008 0.261 0.121 0.051 0.018 0.004 0.000 0.001 

               
Max 

Regret 
0.383 0.860 2.157 3.725 5.395 7.066 8.684 0.483 0.339 1.071 2.059 3.194 4.401 5.629 
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Table B-1 (continued) 
 

Regrets 
 

α = 0.000125, β = 0.018 
 

Part 3 of 3 

Parameter  Combinations (Model used for policy) (Columns), and No Abatement case 

Actual 
World δ1 m5 δ2 m5 δ3 m5 δ4 m5 δ5 m5 δ6 m5 δ7 m5 δ1 m6 δ2 m6 δ3 m6 δ4 m6 δ5 m6 δ6 m6 δ7 m6 

No 
Abmt. 

 
δ1 m1 0.190 0.017 0.063 0.258 0.550 0.899 1.282 0.214 0.026 0.044 0.204 0.459 0.774 1.124 16.802 
δ2 m1 0.431 0.163 0.039 0.004 0.023 0.074 0.140 0.456 0.186 0.053 0.007 0.015 0.055 0.113 2.441 
δ3 m1 0.505 0.250 0.109 0.038 0.008 0.001 0.008 0.526 0.272 0.127 0.049 0.013 0.002 0.004 0.606 
δ4 m1 0.497 0.270 0.140 0.068 0.029 0.010 0.002 0.516 0.290 0.156 0.079 0.037 0.014 0.004 0.202 
δ5 m1 0.463 0.262 0.146 0.079 0.041 0.020 0.009 0.480 0.279 0.160 0.090 0.049 0.026 0.012 0.082 
δ6 m1 0.424 0.245 0.141 0.081 0.046 0.026 0.014 0.439 0.259 0.153 0.090 0.053 0.031 0.017 0.039 
δ7 m1 0.387 0.225 0.132 0.078 0.047 0.028 0.016 0.400 0.238 0.143 0.087 0.053 0.033 0.020 0.020 
δ1 m2 0.067 0.023 0.242 0.639 1.148 1.721 2.326 0.084 0.013 0.189 0.536 0.993 1.517 2.077 24.657 
δ2 m2 0.277 0.061 0.001 0.037 0.127 0.245 0.376 0.298 0.077 0.004 0.024 0.099 0.204 0.324 3.809 
δ3 m2 0.379 0.152 0.043 0.004 0.004 0.026 0.058 0.399 0.170 0.055 0.008 0.002 0.018 0.045 1.001 
δ4 m2 0.405 0.194 0.082 0.027 0.005 0.000 0.005 0.423 0.212 0.095 0.036 0.009 0.000 0.003 0.349 
δ5 m2 0.396 0.206 0.101 0.045 0.017 0.005 0.000 0.412 0.222 0.113 0.054 0.023 0.007 0.001 0.147 
δ6 m2 0.374 0.203 0.107 0.054 0.026 0.011 0.004 0.388 0.217 0.118 0.062 0.031 0.015 0.006 0.071 
δ7 m2 0.349 0.194 0.106 0.058 0.030 0.015 0.007 0.362 0.206 0.116 0.065 0.036 0.019 0.010 0.038 
δ1 m3 0.048 0.039 0.306 0.758 1.325 1.959 2.625 0.062 0.024 0.243 0.641 1.153 1.734 2.352 26.817 
δ2 m3 0.245 0.044 0.002 0.057 0.166 0.303 0.451 0.266 0.058 0.001 0.039 0.133 0.256 0.393 4.193 
δ3 m3 0.352 0.132 0.031 0.001 0.010 0.039 0.079 0.371 0.149 0.042 0.003 0.005 0.028 0.063 1.115 
δ4 m3 0.384 0.177 0.070 0.020 0.002 0.001 0.009 0.401 0.194 0.082 0.027 0.005 0.000 0.006 0.392 
δ5 m3 0.380 0.193 0.091 0.038 0.013 0.002 0.000 0.396 0.208 0.103 0.046 0.017 0.004 0.000 0.166 
δ6 m3 0.362 0.193 0.099 0.048 0.022 0.008 0.002 0.376 0.206 0.110 0.056 0.027 0.011 0.004 0.081 
δ7 m3 0.339 0.186 0.100 0.053 0.027 0.013 0.005 0.352 0.198 0.110 0.060 0.032 0.016 0.007 0.044 
δ1 m4 0.001 0.181 0.703 1.453 2.340 3.302 4.295 0.005 0.138 0.591 1.263 2.072 2.960 3.888 38.510 
δ2 m4 0.126 0.001 0.055 0.214 0.427 0.664 0.906 0.143 0.005 0.037 0.173 0.364 0.583 0.811 6.314 
δ3 m4 0.235 0.055 0.001 0.018 0.072 0.143 0.220 0.253 0.068 0.004 0.011 0.056 0.119 0.191 1.765 
δ4 m4 0.288 0.106 0.025 0.001 0.006 0.027 0.054 0.304 0.119 0.033 0.003 0.003 0.019 0.043 0.648 
δ5 m4 0.304 0.133 0.048 0.012 0.000 0.002 0.011 0.319 0.147 0.058 0.016 0.002 0.001 0.007 0.284 
δ6 m4 0.303 0.145 0.063 0.023 0.006 0.000 0.001 0.316 0.157 0.072 0.029 0.009 0.001 0.000 0.142 
δ7 m4 0.293 0.148 0.070 0.031 0.012 0.003 0.000 0.305 0.159 0.079 0.037 0.015 0.005 0.001 0.078 
δ1 m5 0.000 0.224 0.806 1.625 2.587 3.626 4.697 0.001 0.175 0.683 1.418 2.297 3.258 4.258 41.262 
δ2 m5 0.107 0.000 0.076 0.259 0.497 0.757 1.021 0.123 0.001 0.054 0.213 0.427 0.669 0.918 6.820 
δ3 m5 0.214 0.043 0.000 0.028 0.093 0.174 0.260 0.231 0.055 0.001 0.018 0.074 0.147 0.227 1.923 
δ4 m5 0.269 0.093 0.018 0.000 0.011 0.037 0.068 0.285 0.106 0.025 0.001 0.007 0.028 0.056 0.712 
δ5 m5 0.289 0.122 0.041 0.008 0.000 0.005 0.016 0.304 0.135 0.050 0.012 0.000 0.002 0.011 0.315 
δ6 m5 0.290 0.135 0.056 0.019 0.004 0.000 0.002 0.304 0.148 0.065 0.024 0.006 0.000 0.001 0.158 
δ7 m5 0.283 0.140 0.065 0.027 0.009 0.002 0.000 0.295 0.151 0.073 0.032 0.012 0.003 0.000 0.087 
δ1 m6 0.001 0.273 0.919 1.812 2.854 3.975 5.128 0.000 0.217 0.783 1.587 2.540 3.578 4.655 44.201 
δ2 m6 0.089 0.001 0.102 0.310 0.574 0.859 1.147 0.104 0.000 0.075 0.258 0.497 0.763 1.035 7.363 
δ3 m6 0.194 0.033 0.001 0.041 0.117 0.209 0.304 0.210 0.043 0.000 0.029 0.095 0.178 0.268 2.094 
δ4 m6 0.251 0.080 0.012 0.001 0.018 0.049 0.085 0.266 0.093 0.018 0.000 0.012 0.038 0.071 0.782 
δ5 m6 0.274 0.110 0.034 0.005 0.000 0.008 0.022 0.288 0.123 0.042 0.008 0.000 0.005 0.017 0.348 
δ6 m6 0.278 0.126 0.049 0.015 0.002 0.000 0.004 0.291 0.138 0.058 0.019 0.004 0.000 0.002 0.175 
δ7 m6 0.272 0.132 0.059 0.023 0.007 0.001 0.000 0.284 0.143 0.067 0.028 0.010 0.002 0.000 0.097 

                
Max 

Regret 0.505 0.273 0.919 1.812 2.854 3.975 5.128 0.526 0.290 0.783 1.587 2.540 3.578 4.655 44.201 
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Figure B-1: Color-shaded plot of the entries in Table B-1 

 

In this color plot, each cell corresponds to an entry in Table B-1. Lighter shading towards white means that 

the values of the cells are relatively low; darker shading towards red means the values are relatively high. 

The white main diagonal reflects that if the {δ, m} combination chosen for policy is the same as that which 

best describes the actual world, the regret will be zero. The highest values of the regrets are associated with 

the No Abatement policy. The lighter-shaded, diagonally shaped areas indicate that if the {δ, m} 

combination chosen for policy is close to the actual {δ, m} combination, the regret tends to be small.  
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