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Abstract 

Importance: Prior studies have shown that long-term exposure to air pollution predicts 
higher COVID-19 mortality, but there is limited evidence on the effect of short-term 
fluctuations in air pollution levels.  

Objective: To determine whether short-term changes in county air-pollution levels predict 
COVID-19 mortality in the U.S. 

Design: We use county-level data regarding COVID-19 deaths, air pollution, temperature, 
precipitation, and lagged SARS-CoV2 infection and vaccination rates, with county and date 
fixed effects, to assess whether, and for how long, variation in local air pollution predicts 
COVID-19 mortality rates.  

Setting: We use county-by-day data on COVID-19 deaths, infections, and vaccination 
rates, the aerosol optical depth (AOD) measure of daily air pollution from NASA MODIS 
satellite data, and Oregon State University PRISM database on daily precipitation and 
temperature, over March 2020 through August 2021. 

Participants: 2,942 U.S. Counties with data on COVID-19 mortality and air pollution levels, 
after interpolation for days with missing pollution data.  

Exposures: Daily air pollution levels; lagged daily COVID-19 infection and vaccination 
rates. 

Main Outcomes and Measurements: County-level COVID-19 deaths measured as the 
natural log of (7-day moving average daily deaths +1).   

Results: Higher AOD levels predict modestly higher COVID-19 mortality for the next 2-3 
weeks, controlling for local lagged infections, lagged vaccination rates, temperature, and 
precipitation. A one-standard-deviation increase in AOD over the previous 14 days predicts 
5.9% higher COVID-19 mortality.  

Conclusion and Relevance: The evidence in this study on the association between 
higher near-term air pollution and COVID-19 mortality suggests that persons who are 
infected with or at risk for SARS-CoV-2 infection should limit their exposure to air pollution. 
Paying greater attention to indoor ventilation and air filtering, including in hospitals, may 
reduce COVID-19 deaths. 

The project described was supported by the National Center for Advancing Translational Sciences and Office of the 
Director, National Institutes of Health, Award Number UL1TR001436. 
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Key Points 
 
Question: Does short-term variation in air pollution predict variation in COVID-19 mortality? 
 
Findings: Fluctuations in county-level daily air pollution, relative to the county-mean, predict 
higher COVID-19 mortality for the next 2-3 weeks. 
 
Meaning:  Efforts to reduce air-pollution exposure, especially for already infected COVID-19 
patients, can significantly reduce COVID-19 mortality. 
 
Tweet: Daily changes in local air pollution levels predict COVID-19 mortality for the next 2-3 
weeks.   
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Introduction 
Knowing whether a significant association exists between short-term air pollution exposure and 
COVID-19 mortality is important to guide individual efforts to limit pollution exposure and efforts 
by governments and hospitals to improve ventilation and air filtering.  Both long-term ambient air 
pollution levels and short-term spikes in pollution can lead to higher mortality from respiratory 
illness,1-3 and higher healthcare spending.4  Several studies have documented an association 
between long-term air-pollution levels and COVID-19 mortality.5-11 
In contrast to the evidence on long-term air pollution exposure, the relation between short-term 
exposure to air pollution and COVID-19 mortality risk is less understood. One German study uses 
wind direction as an instrumental variable for pollution levels and finds that short-term exposure 
predicts higher mortality over a limited period early in the pandemic.13  An Italian study found an 
association between monthly average air pollution and COVID-19 mortality over March-June 
2020,14 but did not control for geographic region, so the observed association could reflect urban 
areas being both more polluted and having more COVID-19 cases due to initial spread principally 
in urban areas.  US evidence is very limited.  A single-county study of Queens, New York, early 
in the pandemic, found no association between pollution levels and mortality.15  A California study 
during March-April 2020 found an association between average pollution levels, apparently 
averaged over the sample period, and COVID-19 mortality over this period.16  As with the Italian 
study,14 this could reflect urban areas being both more polluted and having more COVID-19 cases 
during this period. 
We study the relation between short-term air pollution exposure and COVID-19 mortality rates 
over the continental U.S. (48 states plus D.C.), from pandemic onset in March 2020 through 
August 2021.  Our study thus provides a much more complete picture of the association between 
short-term fluctuations in air quality and COVID-19 mortality.  We assess whether county-by-day 
pollution levels predict future COVID-19 deaths in a model with county fixed effects (which 
control for average pollution levels over our sample period and other time-invariant county 
characteristics), date fixed effects, and relevant time-varying covariates (lagged infection rate, 
lagged vaccination rate, precipitation, temperature).   

Methods 
We study the relation between short-term air pollution and COVID-19 mortality and infection rates 
using daily data on satellite-measured aerosol levels and county-level COVID-19 mortality, 
infection, and vaccination rates. We construct a panel dataset on a county-by-day basis covering 
the continental United States (48 states plus D.C.) from March 2020 to August 2021.  
Environmental Data 
Data on air pollution come from the Moderate Resolution Imaging Spectroradiometer (MODIS) 
on NASA’s Terra satellite. We use MODIS data on Aerosol Optical Depth (AOD) to measure air 
pollution. AOD is available on a daily basis with geographical resolution of 3 km2.  Data on AOD 
is available for about half of US counties on any given day, depending on cloud cover and satellite 
flight patterns. AOD is a unitless measure, higher AOD indicates higher aerosol concentration, 
and thus higher pollution levels. The average county-level AOD for our full sample is 0.29. For 
comparison, the average AOD in highly polluted northern India over 2005-2018 was around 
0.50.17  AOD is a good predictor of suspended particulate matter.18,19  
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We obtain information on temperature and precipitation from the Parameter-elevation Regressions 
on Independent Slopes Model (PRISM), a spatial climate database maintained by Oregon State 
University, providing grid data at a resolution of 4 km2.   
We map AOD and weather data to counties following a geographical weighted average method 
used by the previous literature.20  See Appendix sections 3-4 for details on AOD and this mapping. 
COVID-19 Data 
We obtain daily data on county level COVID-19 cases and mortality from the New York Times 
website, which in turn collects data from state and local governments and health departments. The 
data is available as daily counts and 7-day running averages; we use the 7-day averages.  
We  obtain county vaccination rates from the Centers for Disease Control and Prevention (CDC).  

Outcome (COVID-19 Mortality) 
Our main outcome variable is county-level COVID-19 daily mortality. Due to the weekly reporting 
schedule of many states (most states do not report COVID-19 data on weekends and holidays; 
Florida only reports on Friday; Kansas, Michigan, and Iowa only report on Monday, Wednesday, 
and Friday), daily mortality and case counts are noisy. Therefore, we use daily 7-day moving 
averages, which smooth the daily counts and remove the cyclical weekly pattern.  We measure 
county mortality in logs, but add one before taking logs to avoid losing observations with no deaths. 
Because the outcome is in logs, the coefficients on the predictor variables can be roughly 
interpreted as fractional changes in predicted mortality. 
Based on evidence that the concentration-response effect of air pollution for other respiratory 
disease is close to exponential shape (marginal damage from pollution increases with pollution 
level,21,22 we take the natural log of daily moving average mortality. To prevent losing observations 
with zero value, we arbitrarily add 1 to the outcome variable before taking logs, but in the 
Appendix, Figure A11, assess robustness if we instead add 0.1.  

Statistical Analysis: 
We use a multivariate linear model with two-way fixed effects (county and date), applied to our 
longitudinal data, to estimate the conditional correlation between daily 7-day moving average 
COVID-19 mortality and lagged daily air pollution, using lags of 1 to 28 days (see regression 
details in Appendix Section 6). The county fixed effects control for county characteristics that vary 
slowly, if at all, over our time period, including long-term pollution level, poverty level, urban vs. 
rural character, population density, and racial and ethnic composition.  The date fixed effects 
control for seasonality, and our use of a 7-day moving average for deaths and infections controls 
for day of week effects in either actual or reported infections and mortality.  Thus, we measure the 
effect of changes in pollution levels, relative to the county mean over the sample period and the 
daily mean for the country.  The outcome variable is log of county-by-day COVID-19 daily deaths 
(7-day moving average, plus one to avoid missing values). In robustness checks we assess shorter 
lag periods (14 and 7 days).   
We control for confirmed infections, lagged 18 days (7-day moving average) to account for the 
level of COVID-19 infections in the county, but consider shorter and longer lags in robustness 
checks.  We also control for the county vaccination rate lagged 18 days to allow time for 
vaccination to affect infection and mortality rates;23 and lagged weather conditions (average 
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precipitation and temperature for past two weeks).  The sample period is March 1, 2020 (the rough 
onset of the pandemic) to August 26, 2021. We cluster standard errors at the county-level.   
We lag infection rates and vaccination rates by 18 days based on studies which found that for 
COVID-19 decedents; the average duration from symptom onset to ICU admission is 11 days;24 
the average duration from ICU admission to death is 7 days;24 and the average duration between 
COVID-19 diagnosis and death was 18.1 days.25 
We present principally graphical results, in which we plot the estimated daily coefficients of lagged 
daily air pollution, as predictors of current COVID-19 mortality.  We also report regression 
analyses.  In the regressions, the core predictor variable for COVID-19 mortality is the fraction of 
days over the last three weeks in which the county had AOD greater than the national median.  We 
call this variable “High Pollution Exposure.”  In robustness checks, we vary the number of days 
over which this variable is measured.  

Addressing missing AOD observations 
A central challenge for this study is how to handle missing data.  AOD data is measured by satellite 
sensors from orbit. Both heavy cloud coverage and bright ground surface (i.e., water surface, snow 
coverage, and urban areas) can cause difficulty for satellite sensors and lead to missing 
observations.  To estimate daily coefficients on lagged AOD, we need complete data on AOD over 
the period being studied (over lags of up to 28 days).  However, long periods without missing 
AOD (due principally to cloud cover) are rare in the Eastern United States.  To obtain a nationally 
representative sample, we use linear interpolation of AOD for either 1 or 2 days, based on AOD 
for the days immediately preceding and following the missing day(s).  We also present results 
where we do not interpolate but measure AOD only every 3 days, which reduces the need for 
interpolation. 
Rural-Urban and East-West Comparisons 
We also assess whether the predictive power of AOD for county mortality differs between urban 
and rural areas.  With 2-day interpolation, we have data for at least some time periods for 2,942 
counties, out of 3,103 counties in the U.S. We define urban counties (1,088 counties in our sample) 
as those included in a Combined Statistical Area, as defined by the Census Bureau (basically, any 
county in or close to a metropolitan or micropolitan statistical area); the remaining 1,854 counties 
are rural.  We modify our basic approach above to include lagged AOD levels measured separately 
for urban and rural counties.  We proceed similarly to assess whether the predictive power of AOD 
is similar in Eastern counties (1,882 counties) versus Western counties (1,060 counties).   

Results 
Summary Statistics 
We provide summary statistics in Table 1 for all counties and for each interpolation choice.  The 
full dataset has 859,001 non-missing observations of AOD for 3,103 counties (out of 1,691,135 
possible observations if AOD were never missing) over March 1, 2020 to August 26, 2021.  
However, sample size drops dramatically if we require 28 consecutive days of AOD data preceding 
the day when mortality is measured, to only 24,583 observations of 491 counties, almost all in the 
western U.S. (see Figure 1).  Our interpolation strategy (2-days versus 1-day versus no 
interpolation but measuring AOD only every three days) allows us to study a much more nationally 
representative sample.  The additional counties that we capture through interpolation on average 
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are smaller, and have lower mortality and infection counts, but somewhat higher mortality and 
infection rates.  
Figure 1 Panel A shows which counties are usable in our analysis (have at least one day in our 
sample period with non-missing AOD for the preceding 28 days), with each of: (i) no interpolation; 
(ii) 1-day interpolation; (iii) 2-day interpolation; and (iv) not interpolating, but requiring AOD data 
only every 3 days.  This figure shows the loss of sample in the Eastern U.S. with no interpolation, 
recovery of a nationally representative sample with 2-day interpolation, and partial loss of sample 
in the Eastern U.S. with either 1-day interpolation or the every-3-days approach.   
Figure 1 Panel B shows the national daily trend of county-average AOD data without interpolation. 
The average over our full period is 0.29. There are notable spikes in the summers of 2020 and 
2021, coincident with large wildfires in the West.  The smoke from these fires strongly affected 
the West, but it was also blown east by prevailing winds, leading to higher AOD levels in the 
Midwest and, to a lesser extent, the East. 
Main Results 
In Figure 2, we plot the coefficients and associated 95% confidence intervals (CIs), from a 
regression which predicts daily county mortality (log of 7-day moving average +1) based on lagged 
daily AOD over the prior 28 days, with county and date fixed effects and the covariates discussed 
above.  Panel A uses 2-day interpolation; Panel B is similar but uses 1-day interpolation; Panel C 
does not use interpolation, but we measure lagged AOD only every 3 days.  We present results 
with no interpolation in Appendix Figure A5.  Results are consistent across all panels.  Lagged 
AOD predict significantly higher current mortality for lags up to about 3 weeks, with somewhat 
lower but still statistically significant coefficients in the third week (lags of 15 days or more), and 
insignificant coefficients after that.  This time lag is consistent with the typical lag from 
symptomatic infection to death.  The coefficients of lagged daily AOD with 2-day interpolation 
range between 0.0030 and 0.0061 over lags of 1-14 days (mean of daily coefficients = 0.0042).  
This implies that a one standard deviation (0.395) increase in AOD for a single day during the 
prior two weeks predicts a modest (0.12% to 0.24%) increase in daily mortality.  The coefficients 
in Panel C are roughly 3 times larger, because we are using one-third as many days with lagged 
AOD to predict mortality. If we sum the daily coefficients over 1-21 days, exposure to one standard 
deviation higher AOD throughout this period predicts a 3.15% increase in COVID-19 mortality 
(95% CI, 1.97-4.34%).   
In Table 2, we report results, with two-way fixed effects, using High Pollution Exposure as the 
predictor variable, measured over a 3-week period (the rough period for which daily results are 
significant in Figure 2 with 2-day interpolation).  We present results with 2-day interpolation, 1-
day interpolation, and measuring AOD every 3 days.  Columns (1)-(3) present results for High 
Pollution Exposure, with the lagged county infection rate as the only time-varying covariate.  Both 
High Pollution Exposure and lagged cases predict higher mortality.  In columns (4)-(6) we add 
lagged vaccination rate and 2-week average precipitation and temperature as additional covariates.  
The lagged vaccination rate predicts lower mortality, as expected.  
Across specifications, higher values for the High Pollution Exposure measure, relative to each 
county’s mean (absorbed by the county fixed effects) and the daily mean (absorbed by the day 
fixed effects) predict significantly higher COVID-19 mortality.  The 0.0509 point estimate in 
column (4), with full covariates and 2-day interpolation, implies that going from 0 to 21 days with 
air pollution above the national mean for that day predicts 5.22% higher COVID mortality.   
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Urban versus Rural; East versus West 
In Figure 3, Panel A, we show coefficients on lagged AOD separately for urban and rural counties. 
The predictive value of AOD, and the lag period over which AOD predicts COVID-19 mortality, 
are similar in urban and rural areas.  In Figure 3, Panel B, we compare the Eastern U.S. and Western 
U.S., and find similar coefficients on lagged AOD in both areas.   
Robustness Checks 
We conduct a number of robustness checks, and report results in the Appendix.  We obtain 
consistent results if we: (i) study a shorter period for lagged AOD of either 14 or 7 days instead of 
28 days (Appendix Figures A6-A7); (ii) either omit lagged cases as a covariate, or use lags of 9 or 
27 days instead of 18 days (Appendix Figures A8-A10); (iii) add 0.1 instead of 1 before taking 
logs in measuring mortality (Appendix Figure A11); (iv) measure High Pollution Exposure over 7 
or 14 days, instead of 21 days (Appendix Table A1).  We also cluster standard errors at the state 
instead of the county level (Appendix Figure A12); the standard errors are larger but inference is 
similar.   

Discussion 
We found that short-term increases in AOD, which provides a daily measure of pollution exposure, 
predict higher COVID-19 mortality over the next 2-3 weeks within a county, relative to county 
means and the national daily mean, controlling for cases, temperature and precipitation.  The 
county fixed effects included in our analyses control for time-invariant local factors that may affect 
the number of deaths, such as county population, long-term pollution levels, poverty, and 
racial/ethnic composition.   
Air pollution fluctuations within each county should be largely uncorrelated with other factors 
known to predict COVID mortality rates.  If so, then the association between pollution and 
mortality would be causal: higher short-term air pollution causes higher COVID mortality. Our 
results provide empirical support for the importance of limiting pollution exposure during high-
pollution periods, especially during periods when COVID-19 infection rates are also high, and 
especially for individuals at high risk of COVID-19 mortality.  
The empirical magnitude of the mortality effect we report is modest.  A one standard deviation 
increase in AOD, sustained over three weeks, predicts 3.15% higher COVID-19 mortality. But 
even this modest magnitude is important, when measured against the large number of COVID-19 
deaths.   
Our study extend understanding of the link between short-term pollution levels and COVID-19 
mortality in several aspects. First, this is the only national study in the United States and covers an 
extended period from March 1, 2020 through August 26, 2021.  Prior studies cover small regions 
for short time periods early in the pandemic. Second, because we use national AOD data, rather 
than ground-based air monitors (usually located in urban areas), we are able to study both rural 
and urban areas.  Third, we show that the relation between daily air pollution levels and COVID-
19 mortality persists for up to three weeks following the exposure.  
Looking beyond COVID-19, both long-term and short-term exposure to air pollution are 
respiratory health concerns. For example, asthma, COPD, lung cancer, and respiratory infections 
are exacerbated by exposure to a variety of air pollutants, especially particulates, ozone and 
nitrogen oxides.26 Air pollution levels have been linked to acute lower respiratory infections in 
young children,27 and increased pneumonia and influenza infection rates.28  Extreme air pollution 
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levels are known to increase near-term mortality.29,30  There is also evidence that fluctuations 
around normal levels can modestly increase all-cause mortality for the elderly.31 The effect of daily 
fluctuations, generally within normal levels, on mortality from respiratory disease is hard to study 
because there is no general source of daily mortality by cause of death at a local geographic level.  
Studying COVID-19, for which daily mortality data is available, provides a window into what 
could be a broader link between air pollution rates, within normal levels, and mortality from 
respiratory and related causes.   
For most COVID-19 decedents, death is preceded by hospitalization and often an ICU stay.  The 
average hospital stay for COVID-19 prior to death is 7 days.24  Also, patients who are ill but not 
yet hospitalized are likely to spend little time outdoors.  This raises the question of the mechanism 
through which outdoor pollution levels influence mortality over the next several weeks, since 
indoor pollution levels are likely to be lower than outdoor levels. However, indoor and outdoor air 
pollution are known to be highly correlated, including in hospitals.32-34  Thus, it is plausible that 
indoor exposure to pollution is an important contributor to death. This suggests hospitals should 
pay greater attention to air quality for patients with COVID-19. 
Limitations   
We acknowledge several limitations to our analysis. First, we rely on observational data. But we 
are unable to hypothesize plausible factors that would not be captured by the county and day fixed 
effects, but would be correlated with both AOD and infection rates, and thus could produce omitted 
variable bias. We note that we find similar effect magnitudes in urban and rural counties, and in 
the Eastern versus Western U.S., suggesting that the association is robust to the differences in 
COVID mortality seen among states and between urban and rural areas. Moreover, experimental 
studies of the association between air pollution and COVID-19 mortality are infeasible.  
Second, our measure of air pollution levels (AOD) is based on satellite remote sensing 
measurement. The AOD measure provides much better geographical and temporal coverage, 
especially in rural areas, than the alternative of ground-based air quality monitor data (see 
Appendix section 5), but has important limitations. First, satellites cannot measure AOD in areas 
with heavy cloud coverage or bright surfaces.  We address this limitation through interpolation for 
days with missing AOD, and provide evidence that results are not sensitive to the specific 
interpolation strategy used.  Second, we cannot identify the contributions of specific pollutants, 
since AOD measures only overall aerosol levels. Third, AOD measures aerosol for the whole 
vertical column of atmosphere. However, AOD measures are strongly correlated with ground-
based measures.18,20  Moreover, imprecision in the measure would tend to bias the observed 
association toward zero.  
We control for lagged COVID-19 infections; actual infections are known to be a multiple of 
confirmed infections, with the multiple being especially high early in the pandemic due to limited 
test availability and more generally varying over both time and geography.35  However, lagged 
infections are likely to be a good measure of symptomatic infections, since people with 
symptomatic infection are more likely to be tested. Also, our infection measure strongly predicts 
mortality, as expected. Finally, our results for AOD are robust to whether we control for lagged 
infections and to the duration of our lag period.  
We study only deaths attributed to COVID-19 in death records, but excess mortality from other 
causes is also high during periods with high COVID mortality (see 
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https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm).  Thus, our study may 
underestimate the full effect of air pollution fluctuations on COVID-related mortality. 

Conclusion 
We report evidence that daily fluctuations in local air pollution predict higher COVID-19 mortality 
over the next 3 weeks, in both urban and rural areas, and in both the Eastern and Western U.S.  
The magnitudes are modest, but nonetheless important given the large scale of COVID-related 
mortality.  Our results suggest the need for attention to both reducing outdoor air pollution and, in 
the near term, improving indoor air filtration and ventilation, especially in hospitals. 
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Table 1: Summary Statistics 
Data are daily county means, with counties weighted equally.  Standard deviations are in parentheses.  Sample size is number of 
counties (or county*days) in dataset with complete aerosol data for days -28 (28 days before measuring mortality) through day -1 
(day before date for measuring mortality).  Mortality and COVID-19 cases are 7-day moving averages.  Sample period is March 1, 
2020 through August 26, 2021.  Last two columns:  Aerosol data is interpolated for one or two missing daily values using data for 
the days before and after the missing day or days.  Vaccination rate is assumed to be zero prior to first day with positive value in 
each county.   

Variable Full Dataset 𝒏𝒏 = 𝟐𝟐𝟐𝟐 lags 𝒏𝒏 = 𝟐𝟐𝟐𝟐 lags 𝒏𝒏 = 𝟐𝟐𝟐𝟐 lags 𝒏𝒏 = every 3 days 
of 28 lags 

AOD Interpolation 
Approach Not applicable 

Require data on 
all 28 preceding 

days 

Interpolate for 
single missing 

day 

Interpolate for 
up to two 

adjacent days 

Require data every 
3rd day during 

preceding 28 days 
No. of Counties 3,103 491 1,772 2,942 2,176 
County × Day 
Observations  859,001 24,583 111,987 256,348 76,035 

COVID-19 Mortality 0.377 (2.34) 1.06 (4.36) 0.72(5.41) 0.51 (3.87) 0.69 (4.59) 
COVID-19 Mortality/100k 
people  0.396 (1.110) 0.234 (0.584) 0.271 (0.889) 0.310 (1.006) 0.275 (0.922) 

COVID-19 Cases 24.4 (149.4) 75.8 (322.1) 46.9 (349.7) 34.52 (253.0) 48.3 (318.3) 
COVID-19 Cases/100k 
people  22.70 (32.71) 15.76 (24.11) 18.53 (29.80) 20.42(31.23) 18.90 (30.45) 

Aerosol optical depth 
(AOD, unitless) 0.290 (0.336) 0.311(0.409) 0.338(0.438) 0.327 (0.395) 0.339 (0.443) 

Vaccination Rate (%) 29.54 (17.34) 36.96 (15.78) 32.34 (17.25) 30.95 (17.91) 33.79 (16.93) 
Daily Precipitation (mm) 1.73 (5.84) 0.348 (1.585) 0.971 (3.788) 1.75 (5.75) 1.137 (4.375) 
Daily Temperature 
(Celsius) 16.5 (8.82) 20.574 (6.081) 19.381 (7.061) 18.6 (7.71) 18.970 (7.256) 

County population (2020 
data) 

114,936 
(392,295) 

449,095 
(1,263,128) 

223,002 
(820,129) 

157,559 
(610,502) 247,692 (890,658) 
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Figure 1: Data Visualization 
Panel A. AOD Data Coverage, 𝑛𝑛 = 28 

Map shows number of counties in sample (for at least one day in sample period) with no interpolation, one-day interpolation, two-
day interpolation, or with AOD measured only every 3 days.  Color gradient shows average AOD by county over our sample period 
(2020-03-01 to 2021-08-26).  

 
Panel B. National Average Time Trends of AOD (without interpolation) 

Note: The range of county-level AOD in our data is from -0.065 to +6.06, with a mean of 0.294. The spike in September 2020 and 
July 2021 are coincident with large wildfires in CA: the August Complex in August 2020, 1,032,648 acres; and the Dixie fire in 
July 2021, 963,276 acres. 
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Figure 2: Correlation between Lagged Daily Air Pollution and COVID-19 Mortality  
Note: Regressions using county and date fixed effects and indicated interpolation. Outcome variable is log(7-day moving average 
deaths + 1). Covariates are: “COVID-19 Cases” is 7-day moving average of new cases lagged 18 days; “Vaccination Rate” is 
percentage of fully vaccinated population in each county lagged 18 days;  “Temperature” and “Precipitation” are averaged across 
past two weeks for each county. Standard errors are clustered at county-level.  Vertical bars show 95% confidence intervals. 

Panel A. Using 2-day interpolation of AOD 

 
Panel B. Using 1-day interpolation of AOD 

 



14 
 

Panel C. No interpolation but measuring lagged AOD only every three days 
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Figure 3: Lagged Air Pollution and COVID-19 Mortality:  Urban vs. Rural Counties; West 
vs. East  
Note: Regressions are similar to Figure 2, Panel A, and use 2-day interpolation.  Panel A.  Sample is divided into urban (counties 
within a Combined Statistical Area, 1,088 counties) vs. rural (remaining 1,854 counties).  Panel B.  Sample is divided into Western 
U.S. (counties within a western state (1,060 counties in WA, OR, CA, ID, NV, UT, AZ, MT, WY, CO, NM, ND, SD, NE, KS, OK, 
TX,) vs. Eastern U.S. (remaining 1,882 counties).  Shaded areas show 95% confidence intervals. 

Panel A. Urban vs. Rural Mortality 

 
Panel B. Mortality in Western vs. Eastern U.S.  

 
. 
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Table 2: Regression Analysis of Relationship between Short-term Air Pollution Exposure 
and COVID-19 Mortality 

Note: Regressions, with county and date fixed effects, of COVID mortality (log(7-day moving average deaths + 1) on 
High Pollution Exposure and covariates. High Pollution Exposure is the fraction of “high pollution days” in the past 
21 days (for regressions using daily AOD data) or days 3, 6, 9, 12, 15, 18 and 21 (for regressions using AOD measured 
every 3 days).  High pollution days are defined as days when county AOD (with indicated interpolation) exceeds the 
median of same-day AODs across all counties. Covariates are same as in Figure 2.  Standard errors are clustered at 
the county level. *, **, *** indicates statistical significance at the 10%, 5%, and 1% level, respectively.  Significant 
results, at 5% level or better, in boldface. 

  Outcome: Log(COVID-19 Death + 1)  
 (1) (2) (3) (4) (5) (6) 
Interpolation 2-day 1-day None 2-day 1-day None 
AOD Measures Daily Daily Every 3 days Daily Daily Every 3 days 
High Pollution 
Exposure 

0.0437*** 
(0.0119) 

0.0563*** 
(0.0164) 

0.0306*** 
(0.0097) 

0.0509*** 
(0.0119) 

0.0632*** 
(0.0167) 

0.0333*** 
(0.0096) 

COVID-19 Cases (lag 
18 days) 

0.0004*** 
(0.0001) 

0.0003*** 
(0.0001) 

0.0003*** 
(0.0001) 

0.0004*** 
(0.0001) 

0.0003*** 
(0.0001) 

0.0003*** 
(0.0001) 

Vaccination Rate (lag 
18 days)    -0.0028*** 

(0.0004) 
-0.0030*** 

(0.0006) 
-0.0032*** 

(0.0006) 
Precipitation, lag 2 
week average    -0.0019** 

(0.0008) 
-0.0004 
(0.0015) 

-0.0017 
(0.0012) 

Temperature, lag 2 
week, average    0.0010 

(0.0014) 
0.0016 

(0.0019) 
0.0018 

(0.0018) 
County and date FE Y Y Y Y Y Y 
Observations 344,920 155,545 110,256 344,920 155,545 110,256 
R2 0.7674 0.8182 0.8168 0.7693 0.8199 0.8168 
Within R2 0.0837 0.0879 0.0861 0.0910 0.0962 0.0953 
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