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Abstract 

There is growing concern that it is too difficult or costly to substantially improve the 
academic skills of children who are behind in school once they reach adolescence. But 
perhaps what we have tried in the past relies on the wrong interventions, failing to account 
for challenges like the increased variability in academic needs during adolescence, or 
heightened difficulty of classroom management. This study tests the effects of one 
intervention that tries to solve both problems by simplifying the teaching task: individualized, 
intensive, in-school tutoring. A key innovation by the non-profit the researchers study (Saga 
Education) is to identify how to deliver “high-impact tutoring” at relatively low cost ($3,500 
to $4,300 per participant per year). Their first randomized controlled trial (RCT) of Saga’s 
tutoring model with 2,633 9th and 10th grade students in Chicago public schools found 
participation increased math test scores by 0.16 standard deviations (SDs) and increased 
grades in math and non-math courses. The authors replicated these results in a separate 
RCT with 2,710 students and found even larger math test score impacts—0.37 SD—and 
similar grade impacts. These effects persist into future years, although estimates for high 
school graduation are imprecise. The treatment effects do not appear to be the result of a 
generic “mentoring effect” or of changes in social-emotional skills, but instead seem to be 
caused by changes in the instructional “technology” that students received. The estimated 
benefit-cost ratio is comparable to many successful model early-childhood programs. 
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I. INTRODUCTION 

Education is one of the American public’s top priorities, but both the data and public 

opinion suggest there is room for improvement―perhaps especially for adolescents.1 The failure 

to improve schooling outcomes at a pace to keep up with technological change has harmed 

economic growth, leading to a dramatic rise in the returns to schooling over time (Goldin and 

Katz, 2008). Long-term trends in test scores seem more encouraging for relatively younger than 

older students (Hanushek et al., 2020). Furthermore, disparities in achievement test scores 

between students who are academically succeeding versus struggling seem to grow rather than 

shrink as children progress through school (Cascio and Staiger, 2012). Studies of educational 

interventions for teens tend to yield much more disappointing results than of interventions for 

young children.2 And parents of public high school students are notably less satisfied with the 

schools their children attend than are parents of elementary-school children.3 

The relatively disappointing academic outcomes and interventions for teens relative to 

younger children has raised the concern that perhaps it is too late to substantially increase human 

capital and remediate disparities once children reach adolescence, due to causes that are 

fundamental and unavoidable. For example, developmental plasticity declines from early to 

 
 
1 See for example https://www.pewresearch.org/politics/2019/01/24/publics-2019-priorities-economy-health-care-
education-and-security-all-near-top-of-list/ and https://news.gallup.com/poll/1612/education.aspx  
2 For young children, examples include Perry Preschool (Schweinhart et al., 2005; Belfield et al., 2006; Heckman et 
al., 2010) and Carolina Abecedarian (Campbell et al., 2002; Barnett & Masse, 2007). A number of studies of state-
sponsored universal pre-K programs have used a research design that exploits a regression discontinuity in age (see 
for example Gormley & Phillips, 2008). For a discussion of some concerns about that design, and a review of the 
evidence on the federal Head Start program, see Ludwig and Phillips (2007) and Gibbs, Ludwig and Miller (2013). 
For excellent reviews of the literature for older children see Carneiro & Heckman (2003) or Heckman (2012). 
3 Data from the 2012 National Household Education Survey shows that in public school districts where the district 
assigns schools (as opposed to for instance choice districts), 66% of parents with children 5-10 are very satisfied 
with the school their child attends compared to 47% of those with children 14-18 (Cheng and Peterson  2017). 

https://www.pewresearch.org/politics/2019/01/24/publics-2019-priorities-economy-health-care-education-and-security-all-near-top-of-list/
https://www.pewresearch.org/politics/2019/01/24/publics-2019-priorities-economy-health-care-education-and-security-all-near-top-of-list/
https://news.gallup.com/poll/1612/education.aspx
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middle childhood, although may increase again during adolescence (Shonkoff & Phillips, 2000; 

Steinberg, 2014; Bonnie & Backes, 2019). Motivation becomes more challenging as students 

age, as reflected by increased prevalence of disruptive behaviors.4 The growing variability of 

academic achievement as children age means the variability of what students need within a given 

classroom is also heightened for older children (Cascio and Staiger, 2012). No wonder teachers 

report that the two most challenging parts of their job are individualizing instruction and 

classroom management.5 Thus Carneiro and Heckman’s (2003, p. 90) pessimistic conclusion: 

“The return to [human capital] investment in the young is apparently quite high; the return to 

investment in the old and less able is quite low.” 

The hypothesis tested in this paper is that the limited success of previous efforts to 

improve academic outcomes for adolescents is not because success is impossible, but rather 

because of a reliance in the past on the wrong intervention approach, or “technology.”6 In some 

sense an instructional technology that works with students of any age has long been known: 

intensive tutoring. This method of instruction dates back at least to the 15th century at Oxford. 

Randomized experiments comparing tutoring to classroom instruction confirm the former to be 

 
 
4 Disciplinary actions in school increase with age (https://nces.ed.gov/programs/raceindicators/indicator_RDA.asp). 
This is not just a function of changing disciplinary standards by schools since we also see increases in absences  
(https://www2.ed.gov/datastory/chronicabsenteeism.html) and arrests, including for serious offenses where 
presumably the discretion of police to arrest a suspect or not is relatively limited.  
5 For example in the School and Staffing Survey (SASS), 43% of new elementary school teachers and 47% of new 
secondary school teachers say they felt not at all prepared or only somewhat prepared to deal with classroom 
management; 41% of new elementary school teachers and 44% of new secondary-school teachers said they were 
unprepared or only somewhat prepared to differentiate instruction. (From original author tabulations of SASS data). 
6 Examples include generally disappointing studies of the Job Corps (Long et al., 1981), Catholic schools, which 
may increase graduation but do not seem to increase achievement test scores (Grogger and Neal, 2000, Altonji, 
Elder and Taber, 2005), and accountability or school voucher programs (Rouse and Barrow, 2006). Studies of 
increased school funding typically document the effects of changes across all grades, which makes it somewhat 
difficult to determine the impacts on adolescents specifically (see for example the review in Jackson, 2018). 

https://nces.ed.gov/programs/raceindicators/indicator_RDA.asp
https://www2.ed.gov/datastory/chronicabsenteeism.html
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“the best learning conditions we can devise” (Bloom, 1984, p. 4). The challenge to widespread 

implementation has not been a pedagogical problem so much as an economic one―that is, cost. 

The key insight behind the specific educational intervention we study here, developed by 

Saga Education, is that being a successful tutor requires fewer specialized skills and less on-the-

job-learning than does classroom teaching.7 This insight expands the applicant pool, and also 

means that the people hired―tutors—can be successful right away (rather than the usual three-

year learning curve for classroom teachers8). Saga therefore uses a very different HR model from 

regular education: It hires people to tutor for just one year for a modest stipend, as a sort of 

public service. Rather than boost teacher quality, which has been a key focus of much education 

policy, Saga simplifies what instructors are asked to do by changing the teaching task itself.  

We carried out two separate large-scale randomized controlled trials (RCTs) with 

thousands of teens who essentially formed a representative sample of students enrolled in some 

of Chicago’s (and hence America’s) most economically disadvantaged neighborhood schools. 

We focused on math because failing core math classes is a driver of dropout in Chicago 

(Allensworth and Easton, 2005), because math is so important for success in school and later 

earnings (Duncan et al., 2007), and because math skills for school-age children may be more 

responsive to school-based interventions than reading skills (e.g. Fryer, 2014, 2017). 

In the first RCT (“study 1”), our research team randomly assigned 2,633 male youths in 

summer 2013 who were rising 9th or 10th graders to a treatment group that was offered Saga 

7 At the time we initially started working with Saga tutoring they were part of the Match charter school organization 
of Boston, Massachusetts. In 2015, executives from Match Education spun off from Match to form SAGA Innovations, 
a national non-profit that aims to bring this tutoring model into traditional public school systems across the country. 
SAGA Innovations changed their name to Saga Education in 2019. 
8 See e.g. Rivkin, Hanushek and Kain, 2005; Boyd, Grossman, Lankford, Loeb and Wykoff, 2006; Clotfelter, Ladd 
and Vigdor, 2007 and 2010; Goldhaber, 2007; and Kane and Staiger, 2008. 
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tutoring or a control group that was not. Students were drawn from 12 CPS high schools mostly 

on the west and south sides of Chicago. After one year of program participation the intention-to-

treat effect (ITT) on standardized math achievement test scores is 0.08 standard deviations (SD), 

and the treatment-on-the-treated (TOT) effect is 0.16 SD. This gain is about what the average 

high school student learns in a year, so the intervention (roughly speaking) doubles the annual 

math test score gain.9 These gains in test scores do not appear to be the result of tutors narrowly 

teaching to the test; we also see a TOT effect on grades in regular classroom math courses equal 

to 0.56 points (on a 0 to 4-point scale), and a decline in math course failures of 49%. 

Motivated in part to see if these results could be replicated at this large scale, in the 

summer of 2014 we randomized a separate sample of 2,710 9th and 10th graders (“study 2”). The 

TOT effect on math scores after one year is roughly twice as large as in study 1 (0.37 SD). We 

also find sizable positive effects on math grades in study 2 similar to the findings for study 1. 

What is the mechanism behind these effects? Given that past efforts to improve meta-

cognition and social-emotional skills for adolescents and young adults have been more 

encouraging than efforts to improve academic skills (for example Blattman et al., 2017, Heller et 

al., 2017), one might wonder whether tutoring―which puts youth in close contact with a pro-

social adult every day―is just operating through a generic “mentoring effect.” But survey data 

show no detectable effects on whether youth report feeling close to or supported by adults in 

school or out of school, or on grit, conscientiousness, or locus of control. Nor do we find 

evidence consistent with the idea of classroom management being the key mechanism in the 

sense that the impacts are no larger in schools where disciplinary incidents in classrooms at 

 
 
9 Reardon (2011) finds in the NAEP that the average high school student’s scores in reading and math increase by 
around 0.6 to 0.7 standard deviations over 4 years, or approximately 0.15-0.18 standard deviations per year. 
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baseline are more common. We do find gains in whether students like math and care about their 

math grades―mediators closely tied to math instruction and achievement specifically. 

We also present suggestive findings consistent with, although certainly not definitive 

proof for, better ‘personalization’ of instruction as a relevant mechanism. Some studies find 

classroom teachers orient material towards the top third of the classroom (Bloom, 1984),10 which 

would suggest students at the bottom of the baseline achievement distribution might benefit most 

from personalized instruction with tutoring. But identification of this pathway is complicated by 

signs of potential ‘floor effects’ in the achievement tests administered by CPS. To explore floor 

effects (the possibility that students learn more math, but their skills are still below the easiest 

items included on a given test) we estimate heterogeneous treatment effects using the machine 

learning approach of Athey, Tibshirani and Wager (2019). About one-quarter of the sample have 

large gains in math grades, but no gain in math test scores, consistent with floor effects on the 

tests. (This could simply reflect increased effort, but we see no signs of that in survey data.) 

We then exploit the fact that we administered our own math tests as well, for which we 

have item-level data. When we rank-order items by difficulty and estimate effects for specific 

items we see suggestive (but imprecisely estimated) indications that students with below-median 

baseline scores gain most on the easiest items, while above-median students gain most on harder 

items. This suggestive result is consistent with Duflo et al.’s (2011) finding that personalization 

by tracking improved learning outcomes for students in both the top and bottom halves of the 

achievement distribution.11  

10 Previous research suggests there can be mismatches between the developmental needs of youth and their social 
environments, also called “stage-environment fit” (see Hunt, 1975; Eccles et al. 1993). The same sort of mismatch 
may occur for youths’ academic needs as well (see for example, Engel, Claessens and Finch 2012). 
11 See Figlio & Page, 2002 for a similar finding among initially lower-performing students in the US. 
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One way to read this study is as a program evaluation of an intervention that substantially 

improves learning of adolescents, at a cost of $3,500 to $4,300 per year per student.12 (By way of 

comparison average CPS spending per pupil is about $17,000 per year.)13 The ultimate cost 

effectiveness of the program depends on whether impacts persist and can help students who are 

behind get back up to grade level to engage effectively with regular classroom instruction, which 

affects whether students need this support consistently or just on a one-time basis. When we look 

at 11th grade outcomes, a year or two after tutoring, we see persistent gains in math test scores of 

0.22 SD (pooling study 1 and 2) and improved math grades of 0.18 GPA points. The point 

estimate for graduation is positive, 1.9 percentage points, but imprecisely estimated; we cannot 

rule out declines of up to 4.8 points or gains as large as 8.6 points. Our findings echo Banerjee et 

al. (2007)’s study in India of gains from substituting a simpler teaching task for teacher skill.14 

A second way to read this study is as a test of whether it is really too late to substantially 

improve academic outcomes of children who have reached adolescence. We find it is possible to 

perhaps double, or even triple, how much math students learn in a year, for something like one-

fifth of the average cost of schooling per pupil per year. These sizable gains are consistent with 

studies of ‘no-excuses’ charter schools for high school students, which, interestingly, also often 

12 At the time of this intervention (2013-2015) the per-pupil cost of Saga was approximately $3,800 with a 
defensible range of $3,500 to $4,300, as stated. Subsequently Saga has dropped its charge to districts from $3,800 
per-pupil (2013-2015) to $3,100 per-pupil (2015-2019) to now $1,800 per-pupil as of the time of release of this 
paper by obtaining an AmeriCorps subsidy of $15,000 per fellow and using a blended-learning model, in which the 
student:tutor ratio is 4:1 in lieu of 2:1 and students spend half their time on a learning platform, e.g. ALEKS. 
13 This is “operating expenditure” excluding summer school, adult education, capital expenditures and debt.  
https://www.illinoisreportcard.com/district.aspx?source=environment&source2=perstudentspending&Districtid=150
16299025  
14 Banerjee et al. (2007) found that assigning third and fourth graders in India who are far behind to receive 
instruction in remedial skills for two hours per day in a classroom of 15-20 students (who are thus fairly 
homogenous in academic level) increased test scores by around 0.60 SD. The instructors for these classes were 
women from the local community who were trained for just a short period of time and paid only $10-15 per month. 
The effects of a computer-assisted program that also individualized instruction were found to increase test scores by 
up to 0.47 SD after the second year of intervention, although impacts from both strategies were short-lived.  

https://www.illinoisreportcard.com/district.aspx?source=environment&source2=perstudentspending&Districtid=15016299025
https://www.illinoisreportcard.com/district.aspx?source=environment&source2=perstudentspending&Districtid=15016299025
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include intensive or ‘high-impact’ tutoring as an element (Fryer, 2014; Fryer 2015; Dobbie & 

Fryer, 2019; Tuttle, et al., 2015; Angrist et al., 2016; Abdulkadiroglu, et al., 2017). Extrapolating 

these test score impacts to earnings gains based on the best estimates in the literature implies that 

the benefit-cost ratio of the program is comparable to both exemplar early childhood model 

programs, like the Abecedarian Project and the Perry Preschool Program, as well as larger-scale 

efforts to improve outcomes for younger children such as the Tennessee Star class size reduction 

experiment.  

II. THE INTERVENTION 

We selected Saga Education’s tutoring model to study in part because of its low cost 

relative to the intensity of the intervention. One major innovation is the recognition that the 

instructional “technology” of tutoring is quite different from that of a classroom, and so the set of 

skills and experiences required to be a successful tutor are plausibly different. Compared to 

regular classroom instruction, one-on-one (or two-on-one) tutoring greatly simplifies the 

instructional task, expanding the set of people who can be successful instructors. Teachers learn 

how to individualize instruction or handle classroom management usually through extensive pre-

service pedagogical training as well as on-the-job learning over the first several years of 

classroom teaching (Rockoff, 2004; Clotfelter et al., 2010; Henry et al., 2011). But the 

importance of that prior training and on-the-job learning is plausibly less for tutoring. 

This insight enables Saga to expand the applicant pool to anyone who both possesses 

strong math skills and are willing to devote one year to public service―for example, recent 

college graduates, retirees or career-switchers―but do not necessarily have extensive prior 

training or experience as teachers. A school in which classroom teachers cycle in and out after 

just one year would face significant challenges. As with other public service programs the tutors 
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were willing to serve at relatively low wages ($16,000 plus benefits for the nine-month academic 

year during the study period, $20,000 plus benefits today). As with Banerjee et al. (2007), Saga 

substitutes a very different teaching method for many dimensions of what previous studies call 

“teacher skill” or “quality” (such as teaching experience or extensive pedagogical training). This 

substitution makes high-dosage tutoring more feasible from a cost perspective. 

The tutors were mostly recent college graduates hired because they had both strong math 

skills (according to Saga’s screening assessment) and strong interpersonal skills (as revealed by 

interviews that also involved delivering a mock tutoring session). Hired tutors have higher SAT 

scores than what other studies have reported for big-city public school classroom teachers (Jacob 

et al., 2018).15 But Saga tutors neither had formal teacher training nor were licensed Illinois 

teachers. The Saga intervention is similar in spirit to how charters often hire teachers with less 

experience and formal teaching credentials than normal public schools in exchange for smaller 

class sizes (Lake, Bowen, & Demeritt, 2012). Saga hired 139 total tutors across both study years 

out of an estimated pool of approximately 1,200 applicants. Roughly half of tutors hired were 

Black or Latinx, and approximately 50% were female.16 We do not know how many tutors it 

would be possible to hire before effectiveness declines, but over this range there is little 

difference between tutors at the top vs. bottom of Saga’s ranked hiring list (Davis et al., 2017). 

For our study 1, described further below, Saga delivered this tutoring intervention in CPS 

starting in the 2013-14 academic year (AY). Each tutor participated in approximately 100 hours 

15 A comparison of Saga Tutors SAT scores from AY2016-17 and AY2017-18 in Chicago reveals that average math 
SAT scores were 707 compared with the average math SAT scores for new NYC teachers of 613 reported in 
Rockoff, Jacob, Kane, and Staiger (2008). We see similar patterns for English scores.
 

16 Of the 54 Saga tutors hired for study 1 in AY2013-14, 18 were Black and 8 were Latinx. Nineteen tutors spoke 
fluent Spanish, and every school with a high proportion of Spanish speakers had multiple bilingual tutors. Of the 
85 Saga tutors hired in AY2014-15, 23 were Black, 9 were Latinx and about a quarter spoke fluent Spanish. There 
was also a significant increase in the percentage of tutors with advanced degrees for the second year, with nearly 
20% of tutors possessing an advanced degree, in comparison to 7% in AY2013-14.   
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of training prior to the start of the school year (full-time for four weeks during the summer). 

Students―as part of their regular class schedule―were assigned to participate in a tutoring 

session for one class period every day in addition to their regular math class. For study 2 

participants, tutoring typically replaced an elective course such as art or physical education. For 

study 1 9th -graders―i.e., the majority of the study 1 sample―tutoring replaced a second hour of 

Algebra (“double-dose”). This comparison is important to keep in mind when interpreting results 

from study 1 versus study 2. The total Saga contact hours could be up to 140 per year. Each tutor 

worked with two students at a time during each session, focusing on Saga’s Algebra curriculum, 

but teaching foundational mathematics skills where needed to access these Algebraic concepts. 

Study 1 provided students with up to two years of intervention, whereas study 2 ran for one year. 

Each Saga class period in general followed a set routine. A student would first do four to 

five minutes of warm-up problems before receiving 40 minutes of tutoring on material tailored to 

that student. Finally, the student would complete one to three problems designed to assess 

understanding of the material covered during the class period. So, about half of each session 

focused on remediating skill deficits, for which Saga developed its own curriculum, and the other 

half was tied to what students were learning in their regular math classrooms.17 Saga used 

frequent internal formative assessments of student progress to individualize instruction.18 In 

addition, Saga site directors worked with mathematics teachers on a weekly basis to understand 

what standards were being taught in mainstream math classes so the Saga tutorial covered 

 
 
17 For the Fryer study, the tutoring curriculum was reverse-engineered from Texas state standards by Fryer’s EdLabs. 
For this project, an Illinois-certified math teacher helped develop curricula based on Illinois state standards.   
18 These include one- to three-question mini-assessments of the day’s lesson, which allows the tutor to revise the next 
day’s lesson based on the prior day’s learning; tests before and after each of the seven to 10 “course units” Saga has 
divided the year up into, which show tutors how much review time to allow for the first two-three weeks of the next 
unit); 80 item quarterly proficiency assessments, which tutors use to target areas to work on until the student scores at 
least 90%; and site-specific norm-referenced tests (which will involve interim assessments of the tests CPS uses).    
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complementary concepts. Saga tutors also discussed general study skills with students as part of 

the formal program (such as structuring how to approach a difficult problem by breaking it 

down), as well as through informal discussions. Tutors taught six periods a day, and each school 

was overseen by a site director who handled behavioral issues in the tutoring room and 

communication with school staff, and offered daily feedback and professional development.19  

The control group in our study sample was eligible for all the status quo supports in the 

CPS high schools in our study. These services include No Child Left Behind (NCLB) funded 

supplemental educational services (SES) tutoring, which is of much lower dosage than Saga 

tutoring (and without the same structure, curriculum, or supervision). For example, for study 1 

we estimate about 25% of control students in our schools received SES tutoring, which involves 

21 hours of writing tutoring per year and 20 hours of math tutoring (i.e., a bit over one-half hour 

per week of math tutoring, compared to 45-50 minutes per day with Saga); previous non-

experimental studies of SES tutoring in Chicago find little detectable effect on math scores.20 

While these schools include a variety of other programs (both treatment and control groups are 

eligible for these other programs) none of them focus on academic skills the way Saga does.21   

Fryer (2014) examined the effects of Saga tutoring as part of his larger study introducing 

five elements of successful ‘no excuses’ charter school practices into public schools in Houston 

19 Each site director has some combination of relevant experience, including math teaching / tutoring, mentoring, 
program direction, nonprofit management, public speaking, and training of adults, and is trained in the Saga 
model. Tutors complete a daily report to the site director; here, they note each student’s progress and convey any 
issues.  
20 The most recent evaluation of SES in Chicago is for 2005-6  
(http://sesiq2.wceruw.org/documents/chicago_ses.pdf). During 2005-6 school year, around 24 percent of all eligible 
Chicago Public School students (about 70% of students who applied for SES services) received SES services.  
21 Eight of the schools also include GEAR UP services, which focus on preparing for college (essay writing and 
ACT prep). Four schools include Youth Guidance’s Project Prepare, another college-readiness program (see https://
www.youth-guidance.org/youth-workforce-development/#projectprepare), four of the schools provide Peace 
Circles to help youth resolve disputes, 11 of the schools include the Mikva Challenge, which focuses on civic 
education (http://www.mikvachallenge.org/), and one school includes buildOn, which focuses on involving youth 
in community service (https://www.buildon.org/our-work/buildon-us/). 

http://sesiq2.wceruw.org/documents/chicago_ses.pdf
https://www.youth-guidance.org/youth-workforce-development/#projectprepare
http://www.mikvachallenge.org/
http://www.buildon.org/afterschool-service/chicago/
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and several other districts.22 Saga tutoring did not appear to have large effects on test scores 

among 6th grade students beyond the effects of the other charter practices, but did appear to have 

more pronounced effects on test scores among 9th grade students, on the order of 0.32 SD, 

although high schools could not be randomly assigned.23  

III. DATA, RANDOMIZATION AND STUDY SAMPLES

A. Data

One way we measure academic performance is from longitudinal student-level records

maintained by CPS. They capture basic demographics, enrollment, attendance, grades in each 

course, and disciplinary actions. These data also include achievement test scores for the exams 

that CPS administered to 9th and 10th graders in our study years―the 9th grade EXPLORE and 

10th grade PLAN tests, which are developed by ACT, Inc. We have these CPS data at baseline 

for all students in our two study samples. There is some missingness in post-randomization data 

(Appendix Table 1), which for school attendance equals 4.4% for controls and 6.2% for 

treatment, and somewhat higher for grades (14.6% vs. 14.8%) and test scores (29.8% vs. 29.5%), 

presumably in part because of a combination of students dropping out, transferring to suburban 

or private schools, and missing school on testing days. Attrition rates are similar for study 2. 

Treatment-control differences in missingness are not statistically significant. 

22 Four of the five charter school reforms―increased instructional time, replacing almost all principals and half of 
teachers, frequent formative assessments, and a culture of high expectations―were administered in all grades, while 
tutoring in math was given only to students in selected grades for cost reasons in the main Houston study. 
23 For older students a quasi-experimental design was used that exploited whether students were enrolled in a 
treatment school during the pre-treatment year or were zoned to be in that school. The contrast in math gains 
between grades that received tutoring (6th and 9th) versus did not (7th and 10th) was on the order of 0.09 to 0.40 SD. 
Separately, Fryer and Howard-Noveck (2020) study the effects of high-dosage reading tutoring for middle-school 
students and find statistically significant gains in attendance but not reading scores overall, although for Black 
students specifically reading scores increased by 0.09 SD. 
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From Saga we obtained tutoring attendance records, tutor characteristics, and student 

scores on Saga’s own internal math assessments. To measure effects on criminal behavior, we 

used juvenile justice and adult criminal justice arrest data from the Chicago Police Department. 

Our final data source comes from two waves of in-person surveys carried out for our 

research team by the Institute for Social Research (ISR) at the University of Michigan. We draw 

on existing survey questions that have been used in previous studies of youth, including the 

Moving to Opportunity survey.24 The first wave of surveys was carried out for the study 1 

sample mostly in May-June of study year 1, with some surveys in early fall of study year 2. We 

selected a sub-sample of 881 youth and surveyed 663 for effective response rates of 88.2% for 

treatment students and 90.6% for control students.25 We carried out another wave of in-person 

surveys with 1,238 youth in the study 1 sample in the fall after the second intervention year 

(2014-15), with effective response rates of 90.1% for the treatment group and 89.1% for controls. 

These surveys also included math achievement tests that we administered to help mitigate 

missingness in the CPS test data. These additional math tests were based mostly on items from 

the achievement tests generated for the US Department of Education’s NELS:88 8th grade wave. 

We supplemented the 8th grade NELS:88 math questions with items from the 5th grade wave of 

the Early Childhood Longitudinal Sample math assessment to broaden the range of math topics 

the assessment covered to help address possible “floor effects.”26 We return to this point below. 

B. Sample selection and randomization

24 See https://www.nber.org/mtopublic/ 
25 ISR used two-phase sampling: after interviewing 70% of the survey sample frame they selected a random sub-
sample for intensive follow-up. Our analyses employ sampling weights to account for this design. 
26 We had the Educational Testing Service (ETS), which designed the tests for the NELS:88, run three-parameter item 
response theory (IRT) models (Lord, 1980) on math test score results to allow us to create scale scores and also place 
the students in our study in the NELS metric so that we could compare to the NELS sample.  

https://www.nber.org/mtopublic/
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We invited 30 of the larger high schools in CPS to a briefing about the study. Of those 

30, 12 schools, primarily located on the south and west sides of Chicago, signed up to participate 

in study 1. Over the summer, we used administrative data to identify male students expected to 

attend each school that fall. Because Saga Education’s tutoring capacity varied by school and 

sometimes by grade, we carried out random assignment conditional on school-by-grade 

“randomization blocks” and varied the probability of assignment to the treatment condition 

across randomization blocks.27 All analyses control for randomization-block fixed effects. We 

randomized a total of 2,633 students for study 1 starting the summer before the program year, 

with 2,103 of those randomized showing up in study schools that fall. This represents 86.4% of 

the 2,434 total 9th and 10th grade male students enrolled in our study schools.  

In our study 1 schools we also independently randomized students in the sample to 

receive the meta-cognitive intervention studied in Heller et al. (2017), Youth Guidance’s 

Becoming a Man (BAM) program. Because that randomization was independent of assignment 

to Saga tutoring, controlling or not controlling for BAM assignment has no impact on the 

estimates of Saga effects reported here. Those BAM results are reported in Bhatt et al. (2021). 

For study 2, we randomized a sample of 2,645 students in 15 schools (12 of which were 

also in study 1).28 Study 2 students included a new cohort of incoming 9th grade male students in 

14 schools, a cohort of 9th and 10th grade male students in one school, and a cohort of 9th and 10th 

grade girls in seven schools.29 Of those randomized starting in the summer before the program 

27 Most randomization blocks had treatment-assignment probability between 0.45 and 0.60 (range 0.25 to 0.73). 
28 For study 2 we randomized a total of 2,710 students. However, due to student mobility and other factors N=65 
students were randomized into study 2 twice, resulting in the 2,645 “unique” students randomized noted here. See 
Table 1 for more details on this. 
29 The range of treatment-assignment probabilities across blocks in study 2 was 0.44 to 0.80. 
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year, 1,823 (69%) wound up attending a study 2 school.30  The number of randomized students 

who showed up at these study schools comprised 36% of the 5,068 total 9th and 10th grade 

students enrolled in study 2 schools.  

C. Sample Characteristics

Table 1 provides some context for our study sample. The average test score on the

EXPLORE and PLAN tests among all CPS students is close to the national median. CPS 

administered some of these tests in the spring, but they are normed against U.S. students taking 

fall tests, so CPS students had more days of school before the test than the national sample used 

to generate the percentiles. In comparison, the average test scores of students in our study 

schools are 9 to 12 percentile points lower than the CPS average. Looking within the study 

schools, the specific students in the study have similar average test scores to the schoolwide 

averages of the schools they attend. The implication is our sample has scores below the CPS 

average, in contrast to many studies of ‘no excuses’ charters where applicants tend to have 

slightly better baseline scores than the host school system (e.g., Angrist et al., 2013). 

Table 2 shows that the study 1 sample is split about evenly between Black and Latinx 

youth. Almost 90% are eligible for free or reduced lunch (FRL). The average GPA the year 

before our study was 2.11 on a 4-point scale. The study 2 sample is similar on these 

characteristics but included more Black and fewer Latinx students (and included female 

students). Randomization appears to have been successful. We carry out an F-test of the null 

hypothesis that baseline characteristics are jointly the same across treatment and control groups 

30 The study sample includes 629 girls who showed up at the study 2 schools (out of 799 randomly assigned), which 
equals 26.4% of all 9th and 10th grade female students in these schools, and 1,194 male students who showed up in 
study 2 schools (out of 1,847 randomly assigned), which accounts for 44.5% of the total 9th and 10th grade male 
students in our study schools.  
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by regressing a treatment-group indicator against all variables in Table 2, separately for studies 1 

and 2, controlling for randomization blocks. The p-value for study 1 is p=0.832, and for study 2 

is p=0.893.  

IV. ANALYSIS PLAN

Because of our randomized experimental design, our analysis plan is straightforward. We 

estimate both the intent-to-treat (ITT) effect and the effect of treatment-on-the-treated (TOT). 

The ITT estimate comes from estimating equation (1):  

(1) 𝑌𝑌𝑖𝑖 =  𝜋𝜋0 +  𝜋𝜋1𝑍𝑍𝑖𝑖 + 𝑋𝑋𝑖𝑖𝜋𝜋2  + 𝐵𝐵𝑖𝑖  +  𝜀𝜀𝑖𝑖

where 𝑌𝑌𝑖𝑖  is an outcome for student i measured after random assignment, 𝑍𝑍𝑖𝑖 is an indicator for 

having been offered Saga tutoring, 𝐵𝐵𝑖𝑖 is a full set of randomization block fixed effects, 𝜀𝜀𝑖𝑖 is a 

random error term, and 𝑋𝑋𝑖𝑖 is a set of baseline controls to improve precision.31 To ensure the 

standard errors we calculate are not misleadingly small as an artifact of finite sampling issues 

(Young, 2019), we also report p-values from a non-parametric permutation test (Efron & 

Tibshirani, 1993). We randomly re-assigned the treatment indicator 𝑃𝑃 = 100,000 times, storing 

the t-test statistic (T) in each replication, then calculating the share of replications where this 

exceeds the t-test statistic from using actual treatment assignment, T*, or 1
𝑃𝑃
∑ 𝐼𝐼(|𝑇𝑇| > |𝑇𝑇∗|𝑃𝑃
𝑖𝑖=1 ).32 

While missingness of outcomes is balanced across treatment and control, as a sensitivity 

analysis we show results that use multiple imputation to fill in missing values. These methods 

assume outcomes are missing at random (MAR), i.e. values are unrelated to missingness 

31 These include test scores from the previous year and, in some models, also include age and grade fixed effects, free 
or reduced lunch status indicators, an indicator for having a learning disability, indicators for black and Latinx, and 
the following academic measures measured in the 2012-13 and 2013-14 baseline school year: GPA, days absent, days 
out-of-school suspension, days in-school suspension, and number of disciplinary incidents. 
32 For the permutation tests for the effects of treatment on the treated (TOT), described below, we randomly re-
assign both the endogenous variable for actual treatment participation (D) and treatment assignment (Z). 
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conditional on observed covariates. We also estimate a quantile regression on median test scores 

and impute arbitrarily low scores (zeros) to students missing tests, given baseline data suggest 

those with missing tests are disproportionately students with low baseline test scores and grades.  

To estimate the treatment-on-the-treated (TOT) effect we use random assignment (Zi) as 

an instrumental variable (IV) for participation (Di), as in equations (2) and (3) (Angrist, Imbens 

& Rubin, 1996; Bloom, 1984). The first-stage equation is: 

(2) 𝐷𝐷𝑖𝑖 =  𝛾𝛾0 +  𝛾𝛾1𝑍𝑍𝑖𝑖 + 𝑋𝑋𝑖𝑖𝛾𝛾2  +  𝐵𝐵𝑖𝑖  +  𝜇𝜇𝑖𝑖

where D is an indicator for having participated in Saga tutoring (defined as having participated in 

at least one Saga tutoring session), the 𝛾𝛾’s are parameters to be estimated, 𝜇𝜇 is a random error 

term, and all other variables are defined as above. The relationship of interest is: 

(3) 𝑌𝑌𝑖𝑖 =  𝛽𝛽0 +  𝛽𝛽1𝐷𝐷𝑖𝑖 + 𝑋𝑋𝑖𝑖𝛽𝛽2  +  𝐵𝐵𝑖𝑖  +  𝜗𝜗𝑖𝑖

The identifying assumption here is that treatment assignment has no effect on the 

outcomes of those assigned to treatment who do not participate. Below we discuss what evidence 

we have about one potential threat to this, the stable unit treatment value assumption (SUTVA). 

The IV estimate for the parameter 𝛽𝛽1 in equation (3) is essentially a ratio of two ITT 

estimates―the ITT effect on the outcome of interest in the numerator, and the ITT effect on 

participation in the denominator. 

The final methodological issue has to do with statistical inference in the presence of 

multiple testing. We group our outcomes into four different “families” that we expect to be 

affected in a similar way by the intervention: (1) mathematics achievement; (2) achievement in 

other academic subjects; (3) school behavior; and (4) out-of-school behavior (arrests). We 
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calculate the false discovery rate (FDR) q-value, which is the share of significant estimates 

within a family that are expected to be false positives (Benjamini and Hochberg 1995).33  

V. MAIN RESULTS

A. Impacts from one year of intervention

The participation rate of study 1 youth in year 1 (defined as receipt of any Saga tutoring 

at all) was 40.2% for those assigned to treatment and 1.1% for controls, and for study 2 was 

36.9% for the treatment group and 7.8% for controls. The most common reasons for non-

participation among those assigned to programming were: (1) we randomized students over the 

summer and then they did not wind up attending the expected study school (this was true of 

20.1% of the study 1 sample and 31.1% of the study 2 sample), or (2) the student had a 

scheduling conflict with a different required class and could not add Saga tutoring as a class in 

their schedule.34 It was rare for students to either decline Saga or ask to be rescheduled out if it 

had been added to their schedule by default.  

Table 3 shows the ITT effect in study 1 on math achievement test scores (EXPLORE and 

PLAN tests) equals 0.082 standard deviations (SD), with a TOT effect of 0.16 SD. One potential 

concern is that perhaps the tutors are just “teaching to the tests” rather than building broad 

knowledge. So it is notable that we see changes in math grades as well, with a TOT impact of 

0.56 points on a 1-4 GPA scale, relative to the control complier mean (CCM) of 1.63; this 

represents a change of about a C- to a C+.35  We also estimate a decline in percent of math 

courses failed of 49% of the CCM (-0.087 / 0.179). Other evidence that the treatment effects are 

33 The results are similar if we use the method from Benjamini, Krieger and Yekutieli (2006).  
34 This was most likely to be true for 10th graders, who tend to have less schedule flexibility than 9th graders, who
could replace their second 9th grade algebra “double dose” section with tutoring in study 1.  
35 The College Board lists a 1.7 GPA as C-, 2.0 as C and 2.3 as C+. How to Convert Your GPA to a 4.0 Scale
(collegeboard.org) 

https://pages.collegeboard.org/how-to-convert-gpa-4.0-scale
https://pages.collegeboard.org/how-to-convert-gpa-4.0-scale
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not the result of tutors teaching narrowly to the primary CPS accountability tests is that we find 

TOT effects of 0.19 SD on the math tests we had ISR administer on our behalf (and which 

teachers, tutors and students did not know would happen in advance). These impacts are 

statistically significant with respect to the p-value, calculated using either analytic standard 

errors (Table 3) or a permutation test (see appendix Table 2), as well as with respect to the FDR 

q-value that accounts for the number of tests in this family of outcomes (with the exception of

the math test we gave, with q-value = 0.058). 

The second panel of Table 3 shows that tutoring seems to have some positive spillovers 

on outcomes in other subject areas. Reading test scores do not show significant impacts but the 

TOT effect on grades in non-math courses was 0.20 points (relative to a CCM of 1.72) and 

percentage of courses failed in non-math classes are cut by 23% (-0.056/0.22). There do not 

seem to be any detectable spillovers to behavioral outcomes, as shown in the final two panels of 

Table 3. However, some of the estimated effects on arrests are large relative to the control 

means, though they are not statistically significant. We return to this below. 

Table 4 suggests the learning gains experienced by students in study 1 are not statistical 

flukes, or the result of some unusually good program implementation that cannot be replicated, 

since the effects are at least as large in study 2. The TOT effects are a 0.37 SD increase on the 

EXPLORE and PLAN math tests, a 0.42 point increase in math grades (relative to a CCM of 

1.79), and a 44 percent decline (-0.082/0.187) of math courses failed. There are no statistically 

significant indications of spillovers on non-math courses once we account for multiple testing. 

We see proportionately large changes in arrests, but they are not statistically significant once we 

account for the number of hypotheses we are testing within that family of outcomes. 
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Table 5 reports the results of pooling together the year 1 data from studies 1 and 2 to 

improve statistical power. In the pooled sample, the TOT estimate is a 0.26 SD increase in math 

test scores, a 0.52 point increase in math GPA relative to a CCM of 1.67, and a decline of 0.09 in 

percentage of math courses failed, equal to 47% of the CCM. Pooling the two studies is 

particularly valuable for detecting effects on outcomes that were not the primary target of the 

math tutoring intervention. However even with this added power, the proportionately large 

changes in measures like arrests and out-of-school suspensions are not quite significant.  

B. Effects from two years of intervention 

Our study 1 cohort was able to participate in up to two years of the intervention, which 

raises the question of whether the gains from tutoring each year are cumulative. One challenge is 

that, for year 2, the experiment cleanly identifies the ITT effect, but cannot by itself tell us how 

much of the ITT effect at the end of year 2 is due to gains among treatment youth who received 

tutoring just in year 1 versus in both years 1 and 2. This challenge stems from the fact that we 

did not randomly assign dosage duration.  

However, we can logically bound the possible effects. At one extreme, if there was no 

persistence in effects of year 1 participation on year 2 test scores, the year 2 test score ITT is due 

entirely to year 2 participation. In this case, the effect of two years of Saga can be estimated as a 

TOT where participation is defined as receiving Saga tutoring in year 2. This estimate is 

presented in the column labeled “Effect of Treatment in Year 2 on Treated (TOT)” in Table 6, 

and is equal to 0.84 SD. At the other extreme, if there is no fade out of effects of year 1 

participation, the effect of two years of SAGA can be estimated by a TOT where participation is 

defined as receiving Saga tutoring in either year 1 or year 2, or both years. This estimate is 

shown in table 6 in the column labeled “Effect of Treatment in Year 1 and/or Year 2 on Treated 
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(TOT)” and is equal to 0.30 SD. The true effect of two years of Saga should be in between these 

two bounds. The results suggest the effects are at the least additive in years of participation, and 

perhaps more-than-additive as models of dynamic complementarities in learning would suggest. 

Table 7 provides a different look at the effects of two years of intervention on risky 

behavior and crime victimization, using data from the second wave of surveys to study 1 youth 

given in the fall after year 2 of the program. We focus on the ITT, but the TOT can be calculated 

using the bounds described above. We can see in Panel A that there is a reduction in alcohol use 

that is statistically significant. We also see suggestive reductions in use of drugs (other than 

marijuana) and seriously hurting someone in a fight, though these are not statistically significant 

once we account for the number of hypotheses being tested here. There are no detectable effects 

on the other measures.  

C. Longer-Term Effects  

Do the effects we measure fade out, persist, or grow over time? Table 8 pools together 

data from studies 1 and 2 (for improved power) and examines impacts for students as measured 

in what would be each student’s 11th grade year if they were not retained in grade. Interpretation 

of these results could be complicated if there are treatment-control differences in grade retention, 

but we can rule out effects on this outcome of any larger than plus or minus 2 percentage points 

in ITT terms. We see TOT effects on math test scores in 11th grade of 0.22 SD, about the same 

size as the pooled impact measured at the end of one year of programming, and the TOT on math 

grades is 0.18 GPA points, about 35% of the year one effect. 

 Table 9 shows that the estimated TOT effect on graduating on time from high school, 

pooling the study 1 and 2 samples again, is positive 1.9 percentage points relative to a CCM of 

77.2%, but this is imprecisely estimated. The standard error of 3.4 percentage points means we 
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cannot rule out a decline in graduation rates as large as -4.8 percentage points or an increase as 

large as +8.6 points.36 The point estimate for the effects of tutoring on graduation is close to the 

effect we might expect just from higher math test scores alone. This comes from multiplying the 

experimental impact on math test scores (0.26 SD from Table 5) by the coefficient of a non-

experimental regression of graduating on time on 9th grade math test scores controlling for 

student characteristics. That exercise suggests higher test scores would boost graduation by 3.0 

percentage points, well within the confidence interval around our estimated effect of the 

intervention on graduation directly.37 

D. Robustness checks and extensions 

The estimated effects on math outcomes we measure are robust to a range of estimation 

decisions; the non-math GPA result (but not classes failed in non-math subjects) is somewhat 

more sensitive to these choices. Appendix Table 11 shows what happens when we change the set 

of baseline covariates we control for in our regression, while Appendix Tables 12 and 13 show 

the results if we drop from the analysis sample students we thought would be in our study 

schools during the summer months when we carried out random assignment but wound up not 

showing up at those schools in the fall. Appendix Tables 14 and 15 show the results using 

multiple imputation for missing outcomes and, for continuous outcomes, quantile regression 

where missing values are imputed arbitrarily low (in this case, zero) values. 

The counterfactual condition in our study is easiest to describe for those students enrolled 

in 9th grade; for them, the most common alternative to Saga tutoring is the second period of 

 
 
36 Results for the study 1 and 2 cohorts separately are in Appendix Tables 8 and 9, while results for the pooled 
cohorts and the full set of graduation outcomes that can be calculated using the CPS data are in Appendix Table 10. 
37 That regression uses data on N=24,782 students in 9th grade in AY2013-14 for whom we have valid test scores 
and later graduation outcomes (82% of the total cohort of AY2013-14 9th graders). The coefficient on 9th grade math 
scores in that regression equals 0.116. 
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“double dose” algebra provided as part of the regular CPS curriculum in a standard classroom 

setting. In contrast, as noted above, for 10th graders the counterfactual treatment is whatever 

elective a student chose not to take. Appendix Table 16 shows results for 9th graders are similar 

to those from the pooled sample of 9th and 10th graders, consistent with the findings of Nomi and 

Allensworth (2009) suggesting the effects of CPS double dose algebra are limited. Appendix 

Table 17 replicates this analysis for the sample of 10th graders pooled from both studies.  

The comparison of year 1 impacts of study 1 versus study 2 is complicated somewhat by 

the fact that study 2 includes female as well as male students. Appendix Table 18 shows that the 

results for female students are not so different from those of the full study 2 results that pool 

males and females together. (For completeness Appendix Table 19 presents results for males 

only, pooling together data from studies 1 and 2.) 

The racial / ethnic composition of the study 1 sample is also fairly different from the 

study 2 sample; 46% of the study 1 sample are Black students, while in study 2, 64% of students 

are Black. We test the interaction of treatment with student race/ethnicity but do not see 

differential treatment effects for Black and Latinx students (Appendix Tables 21 and 22 present 

the pooled ITT and TOT results for this subsample of students, respectively). 

Finally, the SUTVA assumption could be violated if tutoring has some spillover effects 

on control students, for example if control students see benefits of higher-achieving peers. If 

control students are most affected when exposed to relatively more higher-achieving peers, then 

our estimated effect of tutoring on student learning outcomes should be inversely related to the 

share of students assigned to treatment within each of our randomization blocks. Figure 1 plots 

these randomization-block-specific treatment assignment rates against block-specific TOT 

effects. We see that the treatment effect actually seems to increase (rather than decrease) with 
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larger share of individuals within a block who are randomized to treatment. This is the opposite 

relationship we would expect if control group students were benefitting from positive spillovers, 

and so at least under this test we do not see evidence for violation of the SUTVA assumption. 

VI. MECHANISMS

In this section we explore patterns of impacts across schools, across students, and across 

specific items on the math achievement tests, in order to learn more about mechanisms.  

A. Is this an academic or non-academic intervention?

Given the positive effects this tutoring intervention seems to have, and given that most

previous academic interventions for economically disadvantaged teenagers yield disappointing 

results while many non-academic ones yield encouraging results (for example Heller et al., 

2017), one might wonder whether this is actually a non-academic intervention instead? That is, 

perhaps the very small student-to-instructor ratio make Saga tutoring effectively a non-academic, 

mentoring program instead. One finding already presented cuts against this interpretation. The 

academic subject matter of the tutoring was specifically math, and we find significant positive 

effects on math test scores, but no effects on reading test scores. An obvious interpretation of this 

pattern of results is that the academic subject matter of the tutoring sessions matters; tutoring 

students in math helps them to learn math. However, we find effects on non-math grades, 

suggesting there is at least some spillover of the learning or behavioral changes induced by 

tutoring that affects learning in other areas.  

We investigate this hypothesis further by analyzing treatment effects on student 

responses to the first wave of survey questions we administered, at the end of year 1 for study 1. 

Panel A of Table 10 shows no statistically significant changes in the number of adults the student 

reports having available to talk to in their school, the number of adults they think care about 
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them, or their willingness to talk to adults in the school. Panels B, C, and D show there are no 

statistically significant changes in measures of “grit”, conscientiousness, or (after multiple 

testing corrections) locus of control, respectively. These results are not different if we look at an 

index of outcomes in each family instead. One might wonder if tutoring affects learning by 

changing who the student spends time with. Panel E shows the only significant change in our 

collection of social-network measures is for Saga participants compared to controls to think it is 

less likely their friends think studying is important; whether this is due to an actual change in 

friends, or a new appreciation of what it means to take studying seriously, is not clear. 

Because the wave 1 surveys were carried out mostly in May or June of the first year of 

intervention for the study 1 students, perhaps this is just too soon to see very large changes in 

some of these measures of candidate mechanisms of action. Table 11 shows results from wave 2 

of our survey, which was carried out after the second year that cohort 1 received the intervention. 

Here again we see no detectable impacts on perceptions about supportive adults, grit, 

conscientiousness, locus of control, growth mindset, or social networks. 

What we do see impacts on are measures of how connected, engaged or ambitious 

students are with respect to their studies, as in Table 12. Panel A shows, in the first wave of our 

survey, that participants are more likely than controls to say it is important to get good grades in 

math, and a marginally significant increase in the share who say they like math (FDR q-value = 

.085). Panel B shows this result does not persist until the fall after the 2nd year of the program.  

Taken together, these results seem to suggest that the subject matter focus on math was 

important to generating the treatment effects on learning, and that tutoring seems unlikely to 

have boosted learning solely through a mentoring effect.  

B. Classroom management
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A different hypothesis for how intensive tutoring improves student learning is by making 

it much easier to handle “classroom management” than it is in a typical classroom setting, so that 

students then experience fewer disruptions to learning and more time-on-task. In-person 

observations we conducted of the Saga program suggest students were spending approximately 

90% of their time on math. This figure is high relative to other published figures for regular 

public school classrooms, but we could not carry out similar observations for the specific CPS 

classrooms that serve as the control condition in this study.  

An alternative empirical test comes from examining across-school variation in impacts. 

Specifically, we would expect the benefits of fewer disruptions to instruction with Saga to be 

more pronounced in schools where the baseline levels of classroom disruptions are most 

pronounced, since that is where the gains from reduced disruption are largest. Table 13 measures 

the level of disruptions within a school as the number of disciplinary incidents per study student 

in a given school during the study year. This is taken from the CPS administrative school records 

and calculated for the first year of intervention separately for study 1 and study 2.38 We find that 

the difference in impacts on academic outcomes are not statistically significant across high-

disruption and low-disruption schools. All else equal, this would not seem to support the 

hypothesis that improved classroom management is a key driver of the overall Saga impacts.  

These results do not seem sensitive to our reliance on CPS disciplinary actions as our 

measure of school behavioral climate, since we see qualitatively similar results when we use 

arrests of students in a school instead (see Appendix Table 20). In addition, in the first wave of 

38 Given that randomization block fixed-effects fully explain school fixed-effects, we cannot estimate the main effect 
for the 'above median per capita disciplinary incidents' dummy variable, so we do not report these estimates in the 
table. However, we can recover and report the interaction effect and see if impacts differ between these groups. 
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surveys we administered to students to measure mechanisms, we asked if “disruptions by others 

get in the way of my learning.” We see no statistically significant impact on this outcome.39 

C. Personalization  

An alternative hypothesis for these effects is that high-dosage tutoring makes it easier for 

instructors to personalize instruction relative to the classroom-teaching condition. We would 

expect this benefit to be largest for those students whose academic level is furthest from the level 

to which teachers target classroom instruction. Unfortunately, we do not have any direct measure 

of the level at which CPS math teachers target classroom instruction. In a more stylized setting 

Bloom (1984) found that teachers may target instruction to the top third of the class distribution. 

If that were true for CPS math classrooms as well, we would expect to see (all else equal) 

students at the bottom of the achievement distribution benefit the most from high-dosage 

tutoring. But testing that hypothesis is complicated by the possibility of ‘floor effects’ with our 

math test score measures, because floor effects would cause the test results to understate any 

gains in math skills among those at the bottom of the achievement distribution.  

 To learn more about this hypothesis, we use machine learning techniques to estimate 

personalized treatment effects (PTE’s) for every individual in the sample. Intuitively, machine 

learning procedures use the data to identify the groupings defined by baseline covariates that are 

as similar as possible with respect to their estimated treatment effects. Rather than considering 

just a few interactions between covariates and treatment assignment, as would be the normal 

approach in economics, we can search over all covariates and even complicated functions of the 

covariates to model the structure of heterogeneity in effects across observations. To reduce the 

risk of fitting noise rather than true structure, these types of machine learning procedures focus 

 
 
39 The regression coefficient on the Z-score version of the outcome is -.057 (se=.089) for the intention-to-treat effect. 
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on maximizing out-of-sample fit. Whereas standard prediction tasks use machine learning to 

predict the average outcome for different subgroups defined by partitions of the baseline 

characteristics space, here we follow the recent literature in economics, statistics and computer 

science to use machine learning to predict treatment effects. 

The specific procedure we use to estimate these PTE’s for each student is Athey, 

Tibshirani and Wager’s (2019) Generalized Random Forest (GRF) method. GRF is an adaptive 

locally weighted matching estimator that yields very flexible estimates of conditional average 

treatment effects. GRFs basically work in two steps. First, a causal forest is estimated, which can 

essentially be thought of as an average of many decision trees (Wager and Athey, 2018).40 

Rather than directly estimating treatment effects by averaging predicted treatment effects across 

the causal trees in the forest (as in Wager and Athey, 2018), GRF generates adaptive weights 

using the frequency with which observations occur in the same terminal nodes together. Because 

each tree’s splits are determined by a criterion that (approximately) minimizes the expected 

mean squared error of treatment effect predictions (Athey and Imbens, 2016), observations in the 

same terminal node should have similar treatment effects. This step yields a separate set of 

adaptive weights for each observation indicating how similar treatment effects are likely to be 

between the observation and other observations. Second, PTEs for each observation, 𝜏̂𝜏𝑖𝑖,  are 

estimated using separate weighted least squares regressions of the outcome on treatment for each 

observation using the individualized similarity weights determined in the first step.  

 
 
40 Our causal forest includes 100,000 trees. For each outcome, we select the tuning parameters (the fraction of the 
sample used to build each tree, the fraction of the subsample used for determining splits rather than estimating 
effects, the number of variables tried at each split, the minimum node size, and a penalty for imbalance in 
observations across splits) by cross-validation on smaller causal forests with 1,000 trees. Note that GRFs determine 
splits using an approximation to the Athey and Imbens (2016) criterion, whereas Wager and Athey (2018) use the 
exact criterion. Both yield heuristic solutions to the optimization problem because splits are determined sequentially 
using a greedy algorithm rather than jointly (which is currently computationally infeasible). 
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Before using the PTEs to evaluate mechanisms, we assess how well the predictions 

correlate with the true underlying heterogeneity. To this end, we estimate the best linear 

predictor (BLP) of conditional average treatment effects based on the estimated PTEs using the 

following weighted least squares regression (Chernozhukov et al. 2019): 

(4)𝑌𝑌𝑖𝑖 = 𝛼𝛼0 + 𝛼𝛼1 𝑌𝑌�0,𝑖𝑖 + 𝛼𝛼2 𝜏̂𝜏𝑖𝑖 + 𝛼𝛼3�𝑍𝑍𝑖𝑖 − 𝑍̂𝑍𝑖𝑖� + 𝛼𝛼4�𝑍𝑍𝑖𝑖 − 𝑍̂𝑍𝑖𝑖�(𝜏̂𝜏𝑖𝑖 − 𝐸𝐸[𝜏̂𝜏𝑖𝑖]) + 𝜀𝜀𝑖𝑖,

where 𝑌𝑌�0,𝑖𝑖 is a random forest prediction of the outcome using only control group observations, 

and 𝑍̂𝑍𝑖𝑖  is the probability of treatment for observation i (i.e. the block mean of treatment for i’s 

block). The weights are given by 𝑤𝑤𝑖𝑖 = �𝑍̂𝑍𝑖𝑖�1 − 𝑍̂𝑍𝑖𝑖��
−1

. If the GRF procedure is successfully

predicting variation in treatment effects, we would expect the estimate of 𝛼𝛼�4 to be close to 1. In 

contrast, if the estimated PTEs are essentially noise, the estimate of 𝛼𝛼�4 would be close to 0.  

The BLP estimates, shown in appendix figure 1, suggest that we may be picking up 

structure rather than noise with heterogenous treatment effects for our math outcomes, because 

the 𝛼𝛼�4 estimates are close to one. But even with our large sample (relatively speaking from the 

perspective of social science experiments), we are barely powered if not slightly under-powered 

even to detect heterogenous treatment effects on math outcomes. We do not focus on non-math 

outcomes in what follows given the poor fit of our heterogeneous treatment effect models. The 

fact that our predictions are only correlated with underlying heterogeneity for some outcomes, 

but not others, highlights the importance of first doing these kinds of performance checks before 

using the predictions for other purposes.  

Figure 2 plots PTEs for math achievement test scores.41 We can see that there are 

enormous differences in the estimated average effects for the quartile of students who benefit the 

41 We also recreate this plot for our predicted treatment effects on Math GPA in appendix figure 2.
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most (average PTE = 0.21 SD in ITT terms) versus the smallest-effect quartile (average PTE = 

0.007 SD). But it’s also the case that the baseline math scores are strikingly different across these 

quartiles as well, with those in the top quartile having scores 0.61 SD above our study sample 

average at baseline and those in the bottom quartile 1.2 SD below average at baseline. This 

highlights the difficulty of interpreting the low estimated PTEs for this bottom quartile. If 

Reardon’s (2011) estimate is right that high school students gain 0.2 SD on average for each year 

in school, the bottom quartile is about 6 years behind the average student in our study. This is a 

group for whom the risks of floor effects with these tests would be most pronounced. 

Figure 3 provides us with a different way to see this; for each student in our out-of-

sample validation set, we plot their estimated PTE on math test scores on the x-axis and their 

estimated PTE on math GPA on the y-axis. For data visualization purposes we also do K-means 

clustering and then show students in each ‘cluster’ in a separate color, and outline the outer 

boundary of students in each group. This gives us another way to see that a sizable share of 

students are estimated to have PTE’s that are close to zero or even negative with respect to math 

test scores. On the other hand, almost all students have positive estimated PTE’s on math grades. 

For present purposes the most relevant feature of Figure 3 is the fact that around one-

quarter of our study sample has estimated math test score gains in the neighborhood of zero or 

negative, but positive (and sometimes substantially positive) gains in math GPA. In principle this 

could be due to some gain in school effort or study skills from Saga, if math GPA is more 

sensitive to such changes than is math test scores. But in the CPS administrative data we do not 

see those students showing particularly large gains (or any gains for that matter) in measures of 

effort such as school attendance or school disciplinary infractions. Nor in the survey data do we 
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see any changes in measures like time spent on homework, or share homework completed. The 

figure is at the very least consistent with, if not definitive proof for, floor effects with math tests. 

Note that unfortunately math grades can’t help us determine which students benefit the 

most, even though we can see almost all students derive some non-zero math grade benefit. The 

nice feature of standardized test scores for measuring treatment heterogeneity is that (setting 

aside floor effects) they are continuous measures designed to capture the normed, latent 

distribution of student ability in a given student population in addition to being tied to standards 

that quantify mastery on subject-specific skills and content. The standardized test scores used by 

CPS―the EXPLORE / PLAN tests developed by ACT, Inc. ―are both norm-referenced tests 

and criterion-referenced tests, meaning that we are able to compare students’ position in 

achievement compared to their peers, as well as (aspirationally) consistently quantify the amount 

of learning that occurs from one point in the latent distribution to another throughout this 

distribution. In contrast, there is no guarantee that a given unit change in grades need mean 

remotely the same thing at different points in the GPA distribution. 

Perhaps our best test then of the personalization-of-instruction hypothesis comes from 

exploiting the fact that we have access to item-level test score data from the math achievement 

tests that we administered to study participants ourselves. We first calculate the difficulty of each 

item (j) on the math test by using the testing summary statistic ‘P+ Score’, calculated as the share 

of students in our sample who answer the item correctly (Lord, 1980). We divide the sample into 

whether students had baseline CPS test scores above versus below study median. Above-median 

students score higher than below-median students on every item, and in both groups, the share 

who answer a question correctly increases with the P-score (see appendix figure 3). 
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 Figure 4 provides suggestive visual evidence that reduced ‘academic mismatch’ could 

play a role. On the x-axis we rank order the individual test-score items by their P-score, and then 

plot the ITT effect for each item for those students whose baseline CPS math test score was 

above vs. below the median value for our sample. We then fit a kernel-weighted local 

polynomial to these individual test score items for both groups of students. We test the null 

hypothesis that there is no difference in the relationship between ITT effects and question 

difficulty between students with above and below median test scores using a permutation test 

(Canay, Romano, and Shaikh 2017). Let A be a vector indicating whether students had above or 

below median test scores and let X denote the remaining data.  𝑇𝑇(𝑋𝑋,𝐴𝐴) is the average absolute 

difference in ITTs between the two groups across all questions. We estimate the p-value for the 

null hypothesis that there is no difference between the two groups using: 

(5) 𝑝̂𝑝 =
1

10,000
� 1{𝑇𝑇(𝑋𝑋,𝑔𝑔𝑖𝑖𝐴𝐴) ≥ 𝑇𝑇(𝑋𝑋,𝐴𝐴)}
10,000

𝑖𝑖=1

, 

where {𝑔𝑔𝑖𝑖}𝑖𝑖=1
10,000 are 10,000 randomly selected within randomization block permutations on the 

above/below median classifications (A). While this test is a bit under-powered and we cannot 

reject the null hypothesis that the effect is the same for most items (p=.53), visually it looks like 

below-baseline-median students seem to benefit the most on items in the bottom or middle of the 

difficulty distribution while the above-median may benefit the most on more difficult items.  

 Recognizing that the confidence intervals are somewhat large around both of our kernel-

weighted polynomials, what would the difference in shapes of the two curves imply if we took 

the results at face value? The fact that below-median-at-baseline students seem to benefit more 

on relatively easier items from Saga tutoring and above-median students may benefit more on 

harder items would be consistent with the extra personalization built into the Saga program 
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design, where tutors are instructed to devote some time each session to working with students 

where they are academically as determined by frequent formative testing. Unfortunately, we 

cannot document this mechanism directly because we do not have direct measures of the 

academic level at which tutors devoted their time, nor do we have that for classroom teaching. 

But at the very least the differential shapes of the below- and above-median curves in Figure 4 

suggest student learning is concentrated on the math topics close to their baseline levels of 

knowledge. The implication is that even if Saga were not personalizing, the item-level results 

imply that personalizing (concentrating instructional time on where students are academically) 

would be an effective strategy.42 

VII. CONCLUSION 

One way to read the results reported here is as a test of a specific intervention strategy for 

urban public school systems. Fryer (2014) shows that identifying a handful of strategies from ‘no 

excuses’ charter schools and incorporating them into public schools can improve student 

achievement. But many of those strategies are complicated to implement with fidelity and may 

be politically difficult to implement at large scale throughout urban public school systems. The 

present paper shows that substantial progress can be made by narrowing down even further the 

set of strategies adopted from ‘no excuses’ charter schools to just a single element that is easier 

to implement and hence scale: high-dosage tutoring. A key innovation of the specific high-

dosage tutoring model we study here is that the provider, Saga, has figured out a way to deliver 

 
 
42 That is, if we took the results in Figure 4 at face value (ignoring the low power of the test that the shapes of the 
two curves are the same) they would imply either that (a) below-baseline-median students were showing their 
biggest gains on relatively easier items (and vice versa for above-baseline-median students) because Saga tutors 
concentrated their instructional effort on items tailored to where students are, or (b) Saga tutors tried to cover 
material across the difficulty distribution, and students just benefited most for the content closest to the student’s 
own academic level, which implies that efforts to further concentrate instruction on that content (i.e. personalization) 
would yield even bigger benefits to students. 
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this at relatively low cost given the intensity of the educational intervention. This stands in 

contrast with how tutoring services are often provided to school systems like Chicago’s, where a 

tutoring provider hires (say) former teachers at prevailing full-time teacher wages, which then for 

a given level of spending per pupil means students get just a fraction of the number of 

instructional hours as they do with the intervention we study here. 

One way to think about the viability of this strategy at scale is that if personalization is 

indeed a key mechanism through which Saga works, then the system goal for tutoring would be 

to deliver each student enough ‘dosage’ to eventually get them up to grade level and more 

productively engage with grade-level classroom instruction. That is, getting every student up to 

speed improves the degree to which regular classrooms are ‘personalized.’ Our best estimate for 

the cost per participant during our study period is roughly $3,800, with a defensible range of 

$3,500 to $4,300. CPS already receives around $300 million in Title 1 grants each year, and 

existing research suggests for the average district how these funds are deployed leads to few 

detectable improvements in student learning (Deke, et al., 2012, Dragoset, et al., 2017). As a 

thought exercise, that funding, if repurposed to Saga tutoring, would be enough to serve around 

80,000 students per year, or 23% of the system’s total enrollment of 355,000.43 Proposals for 

how to scale nationally are in Ander, Guryan and Ludwig (2016) and Kraft and Falken (2021). 

But there is another, perhaps more important way to read this study: As a demonstration 

that it is not too late or too difficult to substantially change the academic outcomes of children 

who are struggling academically even once they have reached adolescence. The lesson may be 

that it is possible to improve academic skills by accounting for the challenges of individualizing 

 
 
43 This calculation is based on Saga’s program cost during our study period ($3,800).  
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instruction―among other things―and that these strategies can be effective even when 

implemented in regular public high schools to broad, representative samples of students. 

The benefit-cost ratio of Saga tutoring seems to be comparable in magnitude to that of the 

most successful early childhood programs, like the Abecedarian Project and the Perry Preschool 

Program, as well as interventions at scale to improve student outcomes such as the Tennessee 

STAR experiment.44 Chetty et al. (2011) show that each one-percentile increase in 8th grade test 

scores is associated with $150 in additional annual earnings at age 27. We find that, on average, 

Saga increases student’s test scores by six percentile points in study 1 and by 14 percentile points 

for study 2.45 Together, these two findings suggest Saga increases participants’ adult earnings by 

$900 each year for study 1 and $2,100 each year for study 2. Assuming these gains persist from 

ages 25 to 59 and discounting at a 5% rate to age 15, the present discounted value of the gains is 

about $9,000 for study 1 and $21,000 for study 2. With per-student costs of $3,500 to $4,300, 

this implies the benefit cost ratio is 2.1 to 2.6 in study 1 and 4.9 to 6.0 in study 2.46  

By way of comparison the benefit-cost ratios that have been estimated for model early 

childhood programs are on the order of 1.9 and 2.2 for the Abecedarian Project (Masse and 

Barnett, 2002), and between 3.9 and 6.8 for the Perry Preschool Program (Heckman et al., 2010), 

both estimated using a 5% discount rate. Krueger (2003) estimates that a 7-student reduction in 

 
 
44 Borman and Hewes (2002) show that the Success for All model yields similar math test score gains per $1,000 as 
the model programs discussed here (a 0.04 SD improvement in math per $1,000). Saga also performs favorably 
based on this metric, with math TOT effects per $1,000 of 0.04 to 0.05 in Study 1 and 0.09 to 0.11 in Study 2. 
Success for All, however, also improves reading scores (a 0.09 SD improvement per $1,000).  
45 The test score percentile data is not available for study 2. Therefore, we estimate the percentile effect by assuming 
the ratio of the TOT effects in study 1 and 2 is the same standard deviations and percentiles. 
46 Alternatively, Hanushek and Woessman (2008) review several studies that consistently find a one standard 
deviation increase in test scores is associated with about a 12 percent increase in earnings. Applying this effect size 
combined with our estimated increase on standardized math test scores to a quadratic wage/salary earnings age 
trajectory estimated using data on Black and Latinx individuals from Chicago in the 2019 ACS (and discounted to 
age 15 at a 5% rate) implies slightly smaller benefit-cost ratios of 1.6 and 3.8, respectively.  



37 
 

class size in grades K-3 yields a benefit-cost ratio of about 2 using a 4% discount rate (and so 

would be below 2 with a 5% discount rate). These studies have long been cited as arguments for 

investments in early childhood compared to later life stages; evidently, however, adolescence is 

not too late to also realize large social benefits from human capital investment.  
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Technical Appendix 

A. Building Grade Variables 

Students participating in the intervention were assigned to participate in a tutoring 

session for one class period every day in addition to their regular math class. It is important to 

note that while the control condition for study 2 participants was overwhelmingly an elective 

course, the control condition for study 1 9th -graders―i.e., the majority of the study 1 

sample―was a second hour or “double-dose” Algebra. 

In building grade variables (overall GPA, non-math core GPA, math GPA, and course 

failures) used as covariates and outcomes, we want to ensure that we have comparable 

schedules between treatment and control students, taking the above into account. We use the 

following criteria to ensure we have comparable course schedules between treatment and 

control groups. We present our preferred specifications in the main results, and also include 

other variations in the appendices as robustness checks. Our results hold across different 

methods of variable calculation.  

CPS defines ‘core’ courses as courses in core subjects: math, social science/history, 

science, and reading/English. Our baseline covariates include core GPA (and number of A’s, 

B’s, C’s, D’s, and F’s in core courses). We look at GPA and course failures (percent of courses 

failed) separately for math and non-math core subjects as our outcomes. CPS grades are 

administered each semester, and we use courses from both semesters of the intervention year to 

calculate our yearly grade variables.  

Math Courses 

We first exclude ‘Math Lab’ (the Saga tutoring class) as well as double-dose Algebra 

(the class which Saga takes the place of) when calculating math course variables. A vast 
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majority (over 97%) of study students for whom we have grade data only take one math class 

each semester after excluding Math Lab and double-dose Algebra.  

For students who take multiple math classes in a semester, our preferred method is to 

select the appropriate grade-level math grade for each student as their main ’math course’— 

e.g. for a 9th grader, if they are in only one math course that semester, we take that course as 

their semester math class; if they are in multiple math courses that semester and take the grade-

level appropriate math course (e.g. Algebra I for 9th graders, and Geometry for 10th graders), we 

use that course for variable calculation. If they are in multiple math classes in that semester and 

take a math course above their grade level (such as a 9th grader taking Geometry or a 10th 

grader taking Algebra II with Trigonometry), then we use that course as their ‘main’ math 

course. Otherwise, we randomly select a course and use that as their ‘math course’ for that 

semester.  

The method where we ‘select’ the appropriate math course is presented in our main 

results and is used throughout our analysis. We also present a version of the results where we 

exclude students who we have to make a ‘selection’ for (presented in appendix table 23 and 

denoted with a ‘no selections’ marker).   

Non-Math Core Courses 

For non-math core courses (that is, courses in science, social studies, and 

reading/English), selecting the appropriate ‘grade-level’ course in each is less straightforward, 

and there is also possibility that including Saga in students’ schedules affects which other 

‘core’ courses they can take. Thus, we present five methods to calculate non-math core grade 

variables. Our results calculated with each of these methods can be found in appendix table 23.  
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- Method 1: ‘All Classes’ – Include all courses taken by a given student in non-

math core classes in the calculation of GPA and course failures. This is our preferred method.  

- Method 2: ‘High grade by subject’―Selects the highest grade for each non-math 

core topic in each semester and uses those courses to calculate the outcomes. For example, if a 

student takes two science classes and two English classes in a semester, we take their highest 

science course grade and highest English course grade (as well as their one social science 

grade) and use those to calculate GPA and course failures. 

- Method 3: ‘Low grade by subject’―Same as the above, but instead of selecting 

the highest grade for each core subject area in a semester, we use the lowest grade in each core 

subject area. This method in conjunction with the above method can help us bound the effects 

of the intervention on non-math core grades.  

- Method 4: ‘Top 3 classes each semester’ uses a student’s three highest non-math 

grades in core subject areas in a semester regardless of subject. 

- Method 5: ‘Top 6 classes in that year’ uses a student’s six highest non-math 

grades in that school year, regardless of subject. 
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