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Abstract 

A growing number of American children are exposed to gun violence at their 

schools, but little is known about the impacts of this exposure on their human capital 

attainment and economic well-being. This paper studies the causal effects of exposure to 

shootings at schools on children’s educational and economic outcomes, using individual-

level longitudinal administrative data from Texas. The researchers analyze the universe of 

shootings at Texas public schools that occurred between 1995 and 2016 and match 

schools that experienced shootings with observationally similar control schools in other 

districts. They use difference-in-differences models that leverage within-individual and 

across-cohort variation in shooting exposure within matched school groups to estimate the 

short- and long-run impacts of shootings on students attending these schools at the time of 

the shooting. They find that shooting-exposed students have an increased absence rate 

and are more likely to be chronically absent and repeat a grade in the two years following 

the event. They also find adverse long-term impacts on the likelihood of high school 

graduation, college enrollment and graduation, as well as employment and earnings at 

ages 24–26. Heterogeneity analyses by student and school characteristics indicate that the 

detrimental impacts of shootings are universal, with most subgroups being affected.  
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Coordinating Board, the Texas Workforce Commission, the State of Texas, the National Bureau of Economic Research, 
or other supporting organizations mentioned herein. 



1 Introduction

Questions about human capital development have been central in economics research for many

decades (Schultz, 1961; Becker, 1975; Romer, 1986). Because an important part of human

capital accumulation takes place at schools, a large literature investigates how educational

inputs, such as teacher quality and enrichment programs, affect children’s human capital

outcomes (Hanushek et al., 2011, 2016). At the same time, an emerging literature shows

that the formation of human capital can be disrupted by adverse shocks—such as exposure

to violence.1 While nearly 40 percent of American children experience or witness violence

over the course of their childhood (Federal Interagency Forum on Child and Family Statistics,

2018), little is known about the long-term impacts of such exposure on children’s human

capital accumulation and subsequent economic outcomes.

In this paper, we use longitudinal, administrative microdata from Texas to provide the first

comprehensive analysis of the short- and long-run impacts of an increasingly common source

of exposure to violence among children: shootings at schools. The number of shootings at

U.S. schools has doubled in the last two decades, with more than 100,000 American children

attending a school at which a shooting took place in 2018 and 2019 alone.2 While public

discussions often center on the tragic deaths resulting from such events, we find that expe-

riencing gun violence at school has lasting economic implications for survivors. Our results

illustrate that exposure to a shooting at school disrupts human capital accumulation in the

near-term through increased absences, chronic absenteeism, and grade retention; harms edu-

cational outcomes in the medium-term through reductions in high school graduation, college

attendance, and college graduation; and adversely impacts long-term labor market outcomes

including reductions in employment and earnings at ages 24–26.

Our study is motivated by a large interdisciplinary body of research that characterizes the

neurological and physiological mechanisms through which trauma from exposure to violence
1See: Cook and Ludwig (2002); Aizer (2007); Sharkey (2010); Sharkey et al. (2012); Burdick-Will (2013);

Caudillo and Torche (2014); Sharkey et al. (2014); McCoy et al. (2015); Monteiro and Rocha (2017); Duque
(2017); Heissel et al. (2018); Gershenson and Tekin (2018); Sharkey (2018); Ang (2020).

2Information on the number of school shootings per year comes from the Center for Homeland Defense
and Security (CHDS) K-12 school shooting database. To approximate the number of children who attended
a school where a shooting took place in 2018 and 2019, we multiply the number of shootings that took place
on school grounds during school hours as reported in the CHDS by the average enrollment at schools that
experienced a shooting as reported in the Washington Post school shooting database.
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can impact young people, highlighting its influence on both the biological stress system and

brain development.3 Accordingly, a number of studies set in different countries and contexts

have shown that exposure to local community and domestic violence is negatively associated

with children’s educational and behavioral outcomes (Cook and Ludwig, 2002; Aizer, 2007;

Sharkey, 2010; Sharkey et al., 2012; Burdick-Will, 2013; Caudillo and Torche, 2014; Sharkey

et al., 2014; McCoy et al., 2015; Monteiro and Rocha, 2017; Duque, 2017; Heissel et al., 2018;

Gershenson and Tekin, 2018; Sharkey, 2018; Ang, 2020). At the same time, the literature on

child resilience argues that children can “bounce back” after trauma (see, e.g., Agaibi and

Wilson, 2005; Goldstein and Brooks, 2005; Garrett et al., 2019), suggesting that exposure to

violence during childhood may not have lasting effects.

Moreover, the effects of shootings that take place at schools may differ from the effects of

other types of violence previously examined in the literature. Recent work finds that local

exposure to police killings of Blacks adversely affects the mental health of Black adults (Bor

et al., 2018) and the educational outcomes of Black youth (Ang, 2020). Analogously, children

exposed to school shootings may suffer more severely because of their connection to the victims

and the loss of trust in their schools’ ability to keep them safe. Relative to violence in other

settings, shootings that occur at schools may also cause greater disruption to students’ learning

by influencing other educational inputs. For example, school shootings may lead to curriculum

disruptions, resource diversion, or reductions in teaching quality. Finally, since peer effects

have been shown to be particularly important in a school setting, the adverse impacts of

a student’s own trauma from experiencing a shooting may be amplified due to disruptions

caused by other shooting-exposed peers (Carrell et al., 2018).

Our analysis uses longitudinal, administrative microdata on all Texas public school stu-

dents from the Texas Education Agency linked to data on the universe of school shootings

from the Center for Homeland Defense and Security and the Washington Post school shootings

databases. Importantly, these data sets include shootings both with and without fatalities,

therefore capturing less severe incidents that may be more comparable to other forms of mod-

erately traumatic events frequently occurring in schools. Our short-term analysis focuses on
3See, for example: Osofsky, 1999; De Bellis, 2001; Garbarino, 2001; Perry, 2001; Carrion et al., 2002, 2007;

Lieberman and Knorr, 2007; Carrion et al., 2008; Taylor et al., 2009; Carrion and Wong, 2012; De Bellis and
Zisk, 2014; McDougall and Vaillancourt, 2015; Romano et al., 2015; Russell et al., 2017; Heissel et al., 2018.
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the 33 Texas public schools that experienced a shooting on school grounds during school

hours between 1995 and 2016. Since shootings are not distributed randomly across schools,

we analyze changes in educational outcomes within the same students in the years before and

after a shooting. In order to control for general time trends, we compare these within-student

changes to changes in students from control schools that are matched based on institutional

and student characteristics.

We find that school shootings adversely impact the educational outcomes of exposed stu-

dents in the short run. In particular, exposure to a shooting leads to a 0.4 percentage point

(12.1 percent relative to the pre-shooting mean) increase in the share of school days that a

student is absent, a 1.8 percentage point (27.8 percent) increase in the likelihood of being

chronically absent, and a 1.3 percentage point (124.5 percent) increase in the likelihood of

grade repetition.4 We find no significant effects on the frequency of disciplinary actions such

as suspensions, expulsions, or in-school detentions.5 We further find no effects on the likeli-

hood of changing schools within the Texas public school system or of leaving the Texas public

school system altogether.6

For the long-term analysis, we make use of the linkage between the individual-level public

school records and (1) college enrollment and graduation files from the Texas Higher Educa-

tion Coordinating Board and (2) employment and earnings data from the Texas Workforce

Commission. We study the impacts of the eight shootings that took place at Texas public

high schools over the period 1998–2006 on individual outcomes through age 26. Since these

long-term outcomes are only observed after each shooting, we cannot measure within-student

changes in them. We therefore compare cohorts of exposed students to cohorts that attended

the same schools in the years before the shooting occurred. As in the short-run analysis, we

compare these differences in cohort outcomes to the analogous differences in matched control

schools.
4Absences are measured by the ratio of the number of days a student is absent relative to the number of

days a student is enrolled in any school in our data in each academic year. Chronic absenteeism is an indicator
denoting an absence rate of greater than 10 percent.

5Data on disciplinary actions is only available from 1998 onward. We therefore analyze the impacts of 26
school shootings that took place between 2001 and 2016 when studying these outcomes.

6We also have access to data on reading and math scores from standardized tests. However, since Texas
has used different standardized tests that have been administered to different grades over the course of our
analysis time period, we are unable to examine test scores as an outcome.
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We find that school shootings have lasting implications for the educational and labor

market trajectories of exposed students. In particular, students who are exposed to a shooting

at their school in grades 10 and 11 are 2.9 percentage points (3.7 percent relative to the pre-

shooting mean) less likely to graduate high school, 4.4 percentage points (9.5 percent) less

likely to enroll in any college, 5.5 percentage points (17.2 percent) less likely to enroll in a

4-year college, and 3.1 percentage points (15.3 percent) less likely to obtain a Bachelor’s degree

by age 26. We also find that students exposed to shootings in grades 9 through 11 are 4.4

percentage points (6.3 percent) less likely to be employed and have $2,779.84 (13.5 percent)

lower average annual earnings between the ages of 24 and 26. This estimate implies a $115,550

reduction in the present discounted value of lifetime earnings per shooting-exposed student.

We explore heterogeneity in the impacts of shootings at schools by student characteristics,

school resources, and type of shooting. When considering student characteristics such as

race and gender, we find that the detrimental consequences of school shootings are relatively

universal, with all sub-groups being affected. That being said, non-Hispanic Black students

and those who receive free or reduced-price lunch experience relatively larger adverse effects on

some outcomes, suggesting that shootings at schools may exacerbate pre-existing disparities in

student outcomes between more and less advantaged groups. Heterogeneity analyses by school

resources highlight that differences in access to mental health care treatment on campus are

unlikely to account for these patterns: we find no significant differences in the short-run

impacts of shootings across schools with higher versus lower availability of different types of

health professionals (school counselors, psychologists, social workers, physicians, and nurses)

in the year before the shooting. Finally, when we follow Levine and McKnight (2020b) and

assign shootings into four mutually exclusive categories (suicides, personally-targeted, crime-

related, and other), we find that the adverse short-term effects on absenteeism are particularly

large for personally-targeted shootings while the impacts on grade repetition are largest for

crime-related shootings.7

Our study contributes to three strands of literature. The first is a small but growing set of

studies on the impacts of school shootings. Recent work documents that school shootings can

have detrimental effects on the mental health (Rossin-Slater et al., 2020; Levine and McKnight,
7We have too few shootings in the long-run analysis sample to be able to examine heterogeneity by shooting

type or school resources.
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2020a)8 and short-run educational outcomes (Poutvaara and Ropponen, 2010; Abouk and

Adams, 2013; Beland and Kim, 2016)9 of surviving youth. Notably, a contemporaneous study

by Levine and McKnight (2020a) uses school and district-level data on test scores and absences

and shows that these outcomes deteriorated substantially in the years following the Sandy

Hook Elementary School shooting in Newtown, Connecticut. We build upon this work by

using comprehensive, individual-level administrative data that allows us to examine both the

short- and long-term effects of a diverse set of school shooting events. Our use of individual-

level data enables us to identify students exposed to school shootings, precisely estimate the

impacts of this exposure over time, and investigate heterogeneity in these impacts across

student, school, and shooting characteristics. While previous studies have focused largely

on near-term effects of shootings, our linked educational and labor market data provide a

unique opportunity to examine the effects of shootings up to a decade after the event. Finally,

while attention is often focused on indiscriminate mass shootings at schools that result in

numerous fatalities (e.g., Columbine, Sandy Hook, Parkland), mass shootings are rare, and

most shootings that take place at schools result in no deaths. Our analysis captures the effects

of more typical shootings at schools that may be more comparable to other forms of violence

to which children are commonly exposed.10

Our work further contributes to a growing literature on the effects of gun violence more
8Rossin-Slater et al. (2020) analyze 44 school shootings that occurred in the United States between 2008 and

2013 and find that fatal shootings lead to large and persistent increases in antidepressant use among local youth.
Relatedly, Levine and McKnight (2020a) document an increase in external-cause mortality—including suicides
and accidents—among local residents who were aged 14–18 at the time of the 1999 shooting at Columbine
High. Recent work by Soni and Tekin (2020) documents similar mental health effects of mass shootings more
generally, showing that community well-being declines after an event. Brodeur and Yousaf (2020) show that
these reductions in community well-being are accompanied by decreases in local employment, earnings, and
housing prices. See Lowe and Galea (2017), Travers et al. (2018), Iancu et al. (2019), and Rowhani-Rahbar
et al. (2019) for recent overviews of the broader interdisciplinary literature on the mental health impacts of
school and mass shootings.

9Beland and Kim (2016) use school-level data from California high schools and find that 9th grade enroll-
ment and standardized test scores drop in the years following a deadly shooting. Abouk and Adams (2013)
use state-level data on school enrollment and document that private school enrollment increases following a
school shooting. Outside the United States, Poutvaara and Ropponen (2010) analyze the effects of a 2008
university shooting in Finland that took place during the high school graduation exam period and find a
decline in performance among exam-takers.

10In fact, no mass shootings occurred in Texas public schools during the two decades spanned by our
administrative data. In this way, our work complements Levine and McKnight (2020a)’s study of the impacts
of the Sandy Hook Elementary School shooting—a large mass shooting event—on student absences and test
scores. Our combined body of evidence suggests that all types of shootings at schools have detrimental impacts
on survivors’ educational outcomes.
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generally. Ang (2020) documents that police killings in a large urban district in the Southwest

adversely affect the grades and rates of high school graduation and college enrollment among

students living nearby. Our study also complements recent work on exposure to a single,

non-school-based mass shooting in Norway by Bharadwaj et al. (2020), which finds adverse

impacts on teenage survivors’ test scores, health visits, educational attainment, and earnings.

Our study suggests that much less deadly shootings—which are significantly more widespread,

especially in the United States—nevertheless generate large human capital and economic costs

for the many children who are present on school grounds when they occur.

Finally, our work contributes to a broad literature investigating the long-run effects of

childhood circumstances and educational inputs. Prior work has investigated the long-run

effects of preschool programs like Head Start and the Perry Preschool (e.g., Garces et al.

2002; Ludwig and Miller 2007; Heckman et al. 2013), neighborhood quality (Chetty et al.,

2016; Chetty and Hendren, 2018), kindergarten classroom assignment (Krueger andWhitmore,

2001; Chetty et al., 2011; Dynarski et al., 2013), teacher value-added (Chetty et al., 2014),

elementary school class rank (Denning et al., 2020), and the age at which a child starts school

(Bedard and Dhuey, 2006; Black et al., 2011). While much of this research identifies positive

impacts of school- or classroom-level educational interventions in early grade levels, our results

suggest that an increasingly common adverse school-level shock in later grades—exposure to

a shooting—can offset substantial advantages from earlier inputs. Our work demonstrates

that policy discussions about improving children’s long-term economic outcomes through the

school system should go beyond traditional educational inputs and consider how to prevent—

and mitigate the harmful effects of—exposure to trauma at school.

The remainder of the paper proceeds as follows. Section 2 provides additional details on

the data, and Section 3 outlines the empirical strategies. Section 4 provides main results,

heterogeneity analyses, robustness exercises, and a discussion. Section 5 concludes.
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2 Data

2.1 Shootings at Schools

Our data on shootings at schools come from two sources. First, we use the Center for Home-

land Defense and Security (CHDS) K-12 school shooting database, which is a comprehensive

account of all incidents in the United States in which “...a gun is brandished, is fired, or a

bullet hits school property for any reason, regardless of the number of victims, time, day of the

week.”11 The database starts in 1973 and is continuously updated with new information; the

version of the database used in our analysis was downloaded in July 2019. The data contain

information on the school name and location, date and time of the incident, information on

the number of deaths and physical injuries, and a summary of the event (e.g., “Teen fired shot

at another group of teens during a dispute”).

Second, we cross-check and augment the shootings observed in the CHDS data with those

listed in the Washington Post school shootings database. The Washington Post data contain

information on acts of gunfire at primary and secondary schools since the Columbine High

massacre on April 20, 1999.12 The database excludes shootings at after-hours events, acciden-

tal discharges that caused no injuries to anyone other than the person handling the gun, and

suicides that occurred privately or posed no threat to other students. As with the CHDS, the

Washington Post database is updated as facts emerge about individual cases; the version of

the database used in our analysis was downloaded in April 2019.

As outlined in Section 2.2, our outcome data span the academic years 1992–1993 to 2017–

2018. During this time period, there were 66 shootings at Texas public schools. Two schools

experienced two shootings over our sample period; we only consider the first shooting at a given

school (64 shootings). Since we are interested in studying the impacts of exposure to shootings

on student outcomes, we further limit the sample to the 43 shootings that occurred during

school hours (i.e., we drop shootings that occurred on weekends, evenings, or during school
11The CHDS data are compiled from more than 25 different original sources including peer-reviewed stud-

ies, government reports, media, non-profit organizations, private websites, blogs, and crowd-sourced lists.
Additional information is provided here: https://www.chds.us/ssdb/about/.

12To compile the Washington Post database, reporters used LexisNexis, news articles, open-source databases,
law enforcement reports, information from school websites, and calls to schools and police departments.
The data are available for download here: https://www.washingtonpost.com/graphics/2018/local/
school-shootings-database/.
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breaks) and on school grounds (i.e., we drop shootings that occurred off school property). In

addition, in order to measure outcomes three years before to two years after a shooting in the

short-run analysis, we focus on the 33 shootings that took place between the academic years

1995–1996 and 2015–2016.13 For the long-run analysis, we consider the eight shootings that

took place at Texas high schools between the academic years 1998–1999 and 2005–2006. This

allows us to measure outcomes at all ages between 18 and 26 for all cohorts.

The 33 shootings included in our sample vary in severity. While no shootings led to

multiple deaths, approximately half of the shootings (15) resulted in one fatality. Among the

18 non-fatal shootings, 11 led to at least one (physically) injured victim, with 1.45 victims

being injured on average. These statistics underscore the fact that most shootings that occur

in schools are not as deadly as those typically covered in the media. Nevertheless, these

shootings may affect the thousands of students who are at school when they occur.

Figure 1 displays the locations of the shootings used in our analyses. The spread of

shootings across the state largely reflects the distribution of Texas’s population. In addi-

tion, Appendix Figure A1 depicts the number of shootings per academic year. All but three

years over our analysis period had at least one shooting, with the 2006–2007 academic year

witnessing the maximum of six shootings.

2.2 Educational and Labor Market Outcomes

Our outcome data come from three sources. First, we use individual-level, administrative

data from the Texas Education Agency (TEA).14 The TEA data cover all students in all

public K–12 schools in Texas over the academic years 1992–1993 through 2017–2018 and

include information on students’ attendance, graduation, and disciplinary actions (i.e., sus-

pensions, expulsions, and in-school detentions).15 The data further contain information on

student characteristics—such as age, gender, race/ethnicity, and receipt of free or reduced-

price lunch—and the number of different types of staff employed at each school in each year.
13Among these 33 shootings, 32 (9) are included in the CHDS (Washington Post) data. Eight of the shootings

are included in both data sets.
14The TEA data are stored at the Texas Education Research Center (TERC). Information about access to

these data is available here: https://research.utexas.edu/erc/.
15As previously noted, data on disciplinary actions is only available from the academic year 1998–1999

onward.

8

https://research.utexas.edu/erc/


We use the TEA records to create five outcomes for each student at an annual (academic

year) level: (1) the rate of absenteeism, measured as the ratio of the number of days a student

is absent relative to the number of days a student is enrolled in any school in our data; (2)

an indicator denoting chronic absenteeism, which we define as an absence rate of greater than

10 percent; (3) an indicator denoting grade repetition; (4) the number of days of disciplinary

action taken against a student; and (5) an indicator denoting whether the student switched

schools.16 We also obtain information on whether a student graduated high school—and if so,

at which age—from these records.17

Second, we use administrative microdata on enrollment and graduation from all public

institutions of higher education in the state of Texas from the Texas Higher Education Co-

ordinating Board (THECB). The THECB data are linked to the TEA data at the individual

level, allowing us to follow students from elementary school through college. We measure

three outcomes in the THECB data for each individual at age 26: (1) an indicator for ever

having enrolled in college, (2) an indicator for ever having enrolled in a 4-year college, and

(3) an indicator for ever having obtained a Bachelor’s degree. We do not have information

on enrollment at private universities in Texas or out-of-state college enrollment; we discuss in

Section 3.3 how this is expected to influence our results.

Finally, we use quarterly, administrative data on employment and earnings for all workers

covered by the Unemployment Insurance (UI) program from the Texas Workforce Commission
16The number of days of disciplinary action is windsorized at the 99th percentile to reduce the influence

of outliers. We measure school switches with an indicator that is set to one when a student is enrolled in a
school at the beginning of the academic year that is different from the one in which he/she was enrolled in
at the beginning of the previous academic year, excluding “natural” transitions from elementary to middle
and middle to high school. We have further considered an indicator denoting that a student is in a special
education program as an outcome. However, since only 0.1 percent of all student-year observations in our
analysis sample are enrolled in special education, we are underpowered to detect any significant effects.

17As previously noted, we further have access to data on reading and math scores from standardized tests.
However, it is difficult to examine test scores as an outcome for two reasons. First, Texas has used different
standardized tests that have been administered to different grades over the course of our analysis period: the
Texas Assessment of Academic Skills (TAAS) was used until 2002, the Texas Assessment of Knowledge and
Skills (TAKS) was used from 2003–2011, and the State of Texas Assessments of Academic Readiness (STAAR)
have been used since 2012. Second, while 3rd and 8th grade test scores are comparable over time, the majority
of the shootings in our analysis sample occurred in high schools (see Appendix Table A1). While we therefore
do not consider test scores as an outcome, we do use test scores in a robustness exercise. In particular, as
outlined in Section 4, we augment the matching algorithm used to select control schools to include school-level
average test scores and the share of students with non-missing test scores as matching variables.
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(TWC).18 As with the THECB data, the TWC data are linked to the TEA data at the

individual level. This allows us to follow students from school to the labor market. We use

the TWC data to create three outcomes, all of which are measured once for each individual

when they are aged 24–26: (1) an indicator for being employed, measured by ever having

positive earnings; (2) average real annual earnings, measured in 2018 dollars; and (3) average

non-zero annual earnings (i.e., conditional on having positive earnings in a given year). We do

not observe information about employment outside of Texas; see Section 3.3 for a discussion

of how we expect this to influence our estimates.19

3 Empirical Design

Our goal is to analyze the causal effects of exposure to a shooting at school on students’

short- and long-term outcomes. We use two types of difference-in-difference (DD) models to

deliver these estimates, comparing either within-student or across-cohort changes in outcomes

among students at schools that experienced a shooting to analogous changes in outcomes

among students at schools that did not experience any shootings. In this section, we begin

by describing our process for choosing control schools. We then present our samples and

regression models for the short- and long-run analyses.

3.1 Matching Schools with Shootings to Control Schools

As noted in Section 2, 33 public schools in Texas experienced a shooting during school hours

and on school grounds over the academic years 1995–1996 to 2015–2016. To reduce concerns
18UI covers all workers whose employers pay at least $1,500 in gross earnings to employees or have at

least one employee during twenty different weeks in a calendar year. Federal employees are not covered. See
https://www.twc.texas.gov/tax-law-manual-chapter-3-employer-0 for more details.

19The TEA records are linked to the THECB and TWC records using a unique identifier, which is
an anonymized version of an individual’s social security number (see: https://texaserc.utexas.edu/
wp-content/uploads/2016/03/Matching_Process.pdf). Individuals with invalid identifiers cannot be
matched to the THECB and TWC data and are thus excluded from the long-run analysis of college and
labor market outcomes. Approximately 8.8 percent of students eligible for our long-run analysis sample (out-
lined in Section 3) have invalid identifiers in the TEA data. Reassuringly, we find no systematic difference
in the likelihood of having an invalid identifier between shooting-exposed and non-exposed students. Note
that students with valid identifiers in the TEA data who do not appear in the THECB or TWC data are still
included in our long-run analysis (and are considered to have not attended a public university in Texas and
to not be employed in Texas, respectively).
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about differential trends between schools with and without shootings biasing our estimates,

we choose control schools that are similar on a set of observable characteristics using a nearest-

neighbor matching procedure.

Specifically, for each school with a shooting, we first identify all other schools that are in

a different district but offer the same grade levels (e.g., high schools are only matched with

other high schools), have the same “campus type” (which is one of 12 categories based on

population size and proximity to urban areas), and have the same charter school status.20 We

then use the nearest-neighbor matching algorithm to select the two “nearest” control schools

based on a “fuzzy match” on the following school-level characteristics: share female students,

share students receiving free or reduced-price lunch, share non-Hispanic white students, share

non-Hispanic Black students, share Hispanic students, and total enrollment. We measure

these variables in the first six-week grading period of the academic year of the shooting. In

additional specifications, we explore the sensitivity of our estimates to alternative matching

strategies (see Section 4 for more details).

Appendix Table A1 presents average school characteristics for schools that experience a

shooting (column (1)), matched control schools (column (2)), and all Texas public schools (col-

umn (3)). The fourth column presents p−values from tests of differences between mean char-

acteristics of shooting and matched control schools, while the fifth column presents p−values

from tests of differences between mean characteristics of shooting schools and all Texas public

schools. Panels A and B present statistics separately for high school and non-high schools,

respectively.

Comparing columns (1) and (3), it is evident that schools that experience shootings are

not randomly selected. Relative to the average public high school in Texas, high schools that

experience shootings have higher enrollment, are located in more urban areas, and have higher

shares of non-Hispanic Black students. Non-high schools with shootings are also larger and

have lower shares of non-Hispanic white students than the average public elementary or middle

school in Texas. Reassuringly, our matching algorithm is successful at selecting control schools
20The National Center for Education Statistics classifies schools into different 12 “campus types”: City-

Large, City-Midsize, City-Small, Suburban-Large, Suburban-Midsize, Suburban-Small, Town-Fringe, Town-
Distant, Town-Remote, Rural-Fringe, Rural-Distant, Rural-Remote. Note that schools in the same dis-
trict can have different campus types. See https://tea.texas.gov/reports-and-data/school-data/
campus-and-district-type-data-search for more details.
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that are similar to schools that experience shootings: as shown in column (4), there are no

significant differences in these characteristics across treatment and control schools.

3.2 Short-Run Analysis

In the short-run analysis, we focus on outcomes that can be measured both before and after

a shooting occurs for a given student in the TEA data (e.g., attendance). To construct our

short-run analysis sample, we begin by considering all students who were enrolled in the

33 shooting and 66 control schools in the academic semester during which a shooting took

place.21 We further restrict our sample to students who are observed in the data three years

before to two years after the shooting (i.e., a six-year period); this requirement leads us to

study students who were in grades 3–10 at the time of the shooting. Importantly, we do not

require that students stay in the same school over their six years in the TEA data.22 Our final

short-run analysis sample consists of 62,228 students (22,363 at shooting schools and 39,865

at matched control schools).

We use this sample to estimate DD models in which we compare within-student changes

in outcomes following a shooting between the shooting and matched control schools. Our

regression models take the form:

Yisgt = βShootingSchools × Postt + αi + θgt + εisgt (1)

where Yisgt is an outcome in academic year t for student i who was enrolled in school s in

match group g at the time of the shooting. ShootingSchools is an indicator denoting schools

that experienced a shooting, and Postt is an indicator denoting observations in the academic

year of the shooting and the following two years.23 We include individual fixed effects, αi,
21Enrollment information is available for every student for six six-week grading periods per academic year.

We define the fall (spring) semester as containing the first (last) three six-week periods. We include all students
who are enrolled in the shooting and control schools at any point in the semester of the shooting (e.g., a student
who is enrolled in a shooting school in the beginning of the semester of a shooting, but switches to a different
school by the end of the semester, is included in our sample).

22That is, we keep students who attend other schools either before or after the academic year of the shooting,
as long as they are in our Texas public schools database. Students at control schools who have ever been enrolled
in a shooting school (3.6 percent of all students at the control schools) are excluded from our sample.

23Since grade repetition reflects academic performance the previous academic year, we exclude the year of
the shooting from Postt when analyzing this outcome. We also include a separate interaction term between
ShootingSchools and an indicator for the year of the shooting.
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which account for all time-invariant differences between shooting-exposed and non-exposed

students. We also include a full set of match group–by–academic year fixed effects, θgt, which

flexibly account for match group–specific trends in outcomes. Standard errors are clustered

by school (i.e., we account for 33 + 66 = 99 clusters of shooting and control schools). The key

coefficient of interest is β, which measures the difference in the change in student outcomes

following a shooting between shooting and control schools within each match group.

Causal interpretation of β relies on a standard “parallel trends” assumption in the DD

framework. That is, we must assume that outcomes would have evolved similarly for students

enrolled at the shooting and control schools within each match group in the absence of a

shooting. To assess the validity of this assumption, we compare raw trends in outcomes

between shooting and control schools. In addition, we estimate event study models of the

following form:

Yisgt =
2∑

t=−3,t6=−1
ρtShootingSchools × 1t + σi + κgt + ηisgt (2)

where academic year t is measured relative to the year of the shooting in each match group,

and all other variables are defined similarly to those in equation (1). The key coefficients of

interest are ρt, which capture the year-by-year differences in within-student changes among

students enrolled in shooting schools compared to those enrolled at control schools at the time

of the shooting. As discussed in Section 4.1, the event study estimates and the raw data plots

reveal no evidence of differential pre-trends that would bias our estimates.

An additional concern for our short-run analysis is that of possible selective attrition from

the sample. That is, our short-run estimates would be biased if students systematically left

the Texas public school system—either because they switched to private schools or because

they moved out of state—as a result of exposure to a shooting. This type of response has

been documented in prior studies analyzing aggregate data on school enrollment (Abouk and

Adams, 2013; Beland and Kim, 2016).

To assess the importance of this concern, we analyze an unbalanced panel of students.

This sample is constructed in the same way as our primary analysis sample described above

except that we do not make any restrictions on the number of years that a student must be
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observed in the data. In Appendix Figure A2, we plot the share of students who appear in

the TEA data in each year surrounding a shooting, separately for students at shooting and

control schools. While about 8 percent of students are missing in a given year on average, we

find no difference in the rates of attrition between students at shooting and control schools.

Thus, it does not appear that selective attrition out of the Texas public school system is likely

to bias our estimates. In addition, we show in Section 4 that our short-run estimates are very

similar whether we use a balanced or unbalanced panel.

Finally, an advantage of using individual-level data covering the entire Texas public school

system is that we can observe students switching across Texas public schools. Using the same

balanced panel of students as in our main analysis, we compare school switching rates between

students enrolled at the shooting and control schools at the time of a shooting. As we discuss

in Section 4, we do not find any evidence that students enrolled at schools that experience a

shooting are more or less likely to switch to other Texas public schools after the event.

3.3 Long-Run Analysis

Our long-run analysis focuses on outcomes that can only be observed once for each student

in the TEA, THECB, or TWC data (e.g., high school graduation by age 26 or employment

at ages 24–26). Since we only observe each outcome once, we cannot include individual

fixed effects in our regression models. Instead, our DD models compare differences in cohort

outcomes between students who were enrolled in shooting schools at the time of the shooting

and students who were enrolled in the same schools five years earlier, relative to analogous

differences in cohort outcomes at matched control schools. As outlined in Section 2.1, we limit

our analysis to the set of eight shootings that took place at Texas high schools between the

1998–1999 and 2005–2006 academic years. This allows us to observe outcomes between the

ages of 18 and 26 for all of the cohorts.

We construct our long-run analysis sample by first considering all students who were in

grades 9–12 in the academic year of a shooting at one of the shooting or matched control

schools. We then include students who were too old to be exposed to the event by including

students who were enrolled in grades 9–12 at the same schools five years before the year of the
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shooting.24 That is, our “too old” cohorts would be in “expected” grades 14–17 at the time of

the shooting.

We use this sample to estimate two types of models. First, we examine within–match

group differences between cohorts at shooting and control schools using a model of the form:

Yisdg =
17∑

d=9,d6=13
πdShootingSchools × 1d + λdg + δ′Xi + εisdg (3)

where Yisdg is an outcome for student i in cohort d who was enrolled in school s in match

group g at the time of the shooting (or five years before the shooting for the “too old”

cohorts). ShootingSchools is again an indicator denoting schools that experienced a shooting.

We include a full set of match group–by–cohort fixed effects, λdg, where the set of cohort

indicators denote each of the possible grade levels at the time of the shooting (9–12 for those

enrolled at the time of the shooting; 14–17 for the “too old” cohorts). These match group–

by–cohort fixed effects flexibly account for trends in outcomes across cohorts within each

match group. We also include a vector of individual-level controls, Xi, indicating student

race/ethnicity (non-Hispanic white, non-Hispanic Black, Hispanic, other) and gender. We

cluster standard errors at the school×cohort level. The key coefficients of interest are πd,

which measure the differences in outcomes between students in shooting and control schools

in each cohort d within each match group.

An advantage of equation (3) is that we can explicitly examine whether there are pre-trends

in outcomes by looking at the πd coefficients for the cohorts who are in expected grades 14–17

at the time of the shooting. We should not expect to see statistically significant differences

in trends in cohort outcomes between students at shooting and control schools among cohorts

who are too old to have been exposed to the shooting. However, by estimating separate

interaction coefficients πd for these “too old” cohorts, we cannot additionally include school
24We use students enrolled five years before the shooting as our “too old” cohorts because we want to account

for the effect on grade repetition that we uncover in our short-run analysis (see Section 4). Students who are
enrolled in a shooting school four years before the shooting may still be there at the time of the shooting if
they repeat a grade.
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fixed effects. Therefore, we also estimate models of the form:

Yisdg =
12∑

d=9
ψdShootingSchools × 1d + νdg + τs + ω′Xi + uisdg (4)

where τs are school fixed effects, and all other variables are defined similarly to those in equa-

tion (3). We again cluster standard errors at the school×cohort level. The key coefficients of

interest are ψd, which measure the “double difference” in outcomes, or differences in outcomes

between exposed versus “too old” cohorts across shooting and matched control schools.

As noted in Section 2.2, we do not observe college enrollment and completion information

for out-of-state public colleges or private institutions. We also do not observe labor market in-

formation for individuals who leave Texas. From our short-run analysis, we find that exposure

to a school shooting does not lead individuals to be more or less likely to continue enrollment

in Texas public primary and secondary schools, suggesting that exposure to a shooting does

not impact whether a student moves out of state in the short-run. If exposure to a school

shooting makes a student less likely to leave Texas in the long-run (e.g., less likely to pursue

out-of-state college or labor market opportunities), our analysis will underestimate the effect

of school shootings on long-run outcomes such as college attendance, college completion, and

labor force participation.

4 Results

4.1 Short-Run Effects of School Shootings on Student Outcomes

Figure 2 presents raw trends in our short-run outcomes over a six-year period surrounding

a shooting, separately for shooting and matched control schools. For both the continuous

absence rate and the indicator for chronic absenteeism in sub-figures (a) and (b), respectively,

we observe very similar trends in the three years before a shooting across the shooting and

control schools. However, starting with the academic year of the shooting (denoted as year 0

on the x−axis), we see a divergence in these trends, with students at shooting schools having

higher rates of absences and chronic absenteeism. The divergence persists in the two years

following the shooting. Grade repetition rates (sub-figure (c)) are almost identical in the
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shooting and control schools in the years before the shooting, but are substantially higher in

shooting schools than in the control schools in the two years after the shooting. In sub-figure

(d), we observe that students in shooting schools tend to have a higher mean annual number of

days of disciplinary action than students in control schools before the shooting, but that they

follow parallel trends. This difference becomes a bit larger in the year of and year after the

shooting, and falls back to the pre-shooting level two years after the shooting. Lastly, when

we consider school switching in sub-figure (e), we find similar trends for students in shooting

and control schools both before and after the shooting.

The raw trend graphs provide suggestive evidence that: (1) there are no noticeable differ-

ences in outcome pre-trends between students at shooting and control schools, and (2) there

is a deterioration in several student outcomes after the shooting. The results from the event-

study models, presented in Figure 3, confirm that these conclusions hold up once we include

individual and match-group by academic year fixed effects. Specifically, the sub-figures of

Figure 3 display event-study estimates for each of our short-run outcome variables, plotting

the coefficients on the interaction term between the indicator for a shooting school and the

indicators for each of the years before and after the shooting, along with the associated 95%

confidence intervals. We observe no evidence of any significant differences in our outcomes

of interest between shooting and matched control schools in the pre-shooting period. This

evidence strongly supports the plausibility of the central identifying assumption of our DD

model. The estimates in sub-figures (a) and (b) of Figure 3 indicate an immediate increase

in the absence rate and the likelihood of chronic absenteeism, respectively, in the year of

the shooting and persisting over the following two years. When we analyze grade repetition

in sub-figure (c), the effect materializes in the year after the shooting, which is the earliest

academic year when we could see an effect on an outcome that reflects inadequate academic

progress in the prior year. For both the number of disciplinary action days (sub-figure (d))

and school switching (sub-figure (e)), there appears to be a slight increase in the years after

the shooting, but the individual event-study coefficients are statistically insignificant.

Table 1 presents DD estimates, in which we pool the post-shooting years to represent the

mean effect of school shootings on these short-run outcomes. Exposure to a school shoot-

ing is associated with an increase in the mean school absence rate by 0.4 percentage points
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(p−value=0.022), or 12.1 percent on a baseline (pre-shooting) mean of 3.65 percent. Be-

yond impacting the mean absence rate, exposure to a shooting increases the rate of chronic

absenteeism. The estimates indicate that chronic absenteeism rises by 1.8 percentage points

(p−value=0.027), which represents a 27.8 percent increase relative to the baseline mean of 6.43

percent. Moreover, in the two years following a shooting, the estimates show there is a 1.3

percentage point increase in grade repetition (p−value=0.016), which represents more than a

doubling of the baseline grade repetition rate.25 For the number of days of disciplinary actions

and the school switching rate, the estimates are not statistically significant at conventional

levels. That said, the coefficients suggest there may be a 0.25 day increase in the annual num-

ber of disciplinary action days (p−value=0.145), and a 1.3 percentage point (p−value=0.241)

increase in the likelihood of switching to a new Texas public school following a shooting.

Heterogeneity analyses. Having shown that school shootings impact several short-run

student outcomes, we explore heterogeneity in these estimates across shooting, student, and

school characteristics. Using the categorization suggested by Levine and McKnight (2020b),

we classify shootings into four mutually exclusive categories: suicides, personally-targeted,

crime-related, and other types.26 For each category of shootings, Figure 4 displays coefficients

and associated 95% confidence intervals from DD models that pool the post-shooting years

(analogous to the specifications in Table 1).27 The baseline results from the full set of shootings

are displayed at the top of each sub-figure for reference. While many of the confidence intervals

overlap across the types of shootings, there are a few patterns in the point estimates worth

noting. First, the effects on absences and chronic absenteeism are largest for personally-

targeted shootings. Second, we see the coefficient estimates for grade repetition are particularly

large for crime-related shootings, followed by personally-targeted shootings. For the number
25Because the earliest academic year where grade repetition could be affected is the year after the shooting,

we exclude the shooting year itself from the Postt indicator variable in the specification that uses grade
repetition as the outcome.

26More specifically, we use the more detailed categories available in the CHDS data to make these groups.
Personally-targeted shootings include: escalation of dispute, anger over grade/suspension/discipline, bullying,
domestic disputes with a targeted victim, and murder. Crime-related shootings include: gang-related, hostage
standoffs, illegal drug related, and robberies. The other category includes: mental health-related, intentional
property damage, officer-involved shooting, racial, self-defense, accidental, and unknown. Among our 33
shootings, two are crime-related, 11 are suicides, four are personally-targeted, and 16 are other shootings.

27Since we have relatively few shootings in some of the categories and therefore few clusters, we present 95%
confidence intervals based on a wild cluster bootstrap.

18



of days of disciplinary action and school switching, the confidence intervals for all sub-group

estimates include zero, precluding us from detecting clear patterns in heterogeneity by shooting

type.

Our individual-level data also allows us to explore heterogeneity in the effects by student

characteristics. We estimate our DD specifications for sub-groups defined by the following

characteristics: gender, race/ethnicity, grade at time of shooting (high school or non-high

school), and ever receiving free/reduced price lunch in the pre-shooting period.28 Figure 5

displays the coefficient estimates, as well as the associated 95% confidence intervals. Perhaps

the most striking finding in this figure is that there appear to be substantial impacts within

each of the sub-groups analyzed. This highlights the broad-reaching, universal impacts of

school shootings on students attending the school at the time of the shooting. While there

are apparent effects in all sub-groups for absences, chronic absenteeism, and grade repetition,

the pattern in the point estimates indicate that the effects may be more concentrated among

students ever-receiving free or reduced price lunch and non-Hispanic Black students. While

insignificant, the impacts on the number of days of disciplinary actions appear more concen-

trated among male rather than female students, and among non-high school rather than high

school students.29

Lastly, we analyze heterogeneity in effects across schools with different resources to help

students cope with trauma, as measured by the availability of various health professionals

on school campus in the year prior to the shooting. Specifically, our data provide informa-

tion on the amount of full-time employment (FTE) allocation of these professionals for each

school campus. This means, for example, that if a given school psychologist splits his/her

time between four schools equally, then each school receives a 0.25 value for the FTE school

psychologist allocation. We split schools into categories based on whether they have an above-

or below-median number of per-pupil counselors and physicians/nurses. We also split schools

based on whether they have any positive FTE allocation of school psychologists or social work-
28In these analyses, we drop schools in which there are fewer than 10 students in a particular category, and

only use match groups that contain three schools (one shooting and two control schools).
29Figure 5 reports estimates of the DD coefficients that are not scaled by sub-group dependent variable

means. However, analyses that instead compare relative effects in terms of percentages of the sub-group
means yield very similar patterns—see Appendix Figure A3.
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ers.30 Figure 6 presents the coefficients and 95% confidence intervals—we find no evidence of

differential impacts based on the presence of health professionals at schools.31

4.2 Long-Run Effects of School Shootings on Educational and Eco-

nomic Outcomes

Figure 7 presents results from our long-run models on educational outcomes. In each sub-

figure, the graph on the left-hand side presents the coefficients and 95% confidence intervals

on the interaction terms between the shooting school indicator and the cohort indicators from

estimating model (3), while the graph on the right-hand side presents the coefficients and

95% confidence intervals on these interaction terms from estimating model (4). An advantage

of model (3) is that we can explicitly examine the possibility of differential cohort trends

by estimating coefficients on placebo exposure for “too old” cohorts who are in “expected”

grades 14–17 at the time of the shooting. Across all four of the educational outcomes shown

in Figure 7—high school graduation, enrollment in any college, enrollment in a 4-year college,

and Bachelor’s degree receipt—we find no evidence of significant impacts of placebo exposure,

providing support for the validity of our research design. At the same time, we observe signif-

icant adverse impacts on long-run educational outcomes of exposure to shootings, especially

when the exposure occurs in 10th and 11th grades. These impacts are robust to the inclusion

of school fixed effects in model (4) in the right-hand graphs. Note that the lack of significant

coefficients on exposure in 12th grade is consistent with the long-run effects operating through

a deterioration in high school performance in earlier grades that is consequential for meeting

high school graduation and college admission requirements.

Table 2 reports the coefficient magnitudes, standard errors, and p−values from model (4)

for each of the educational outcomes. Averaging across the coefficients on exposure in grades

10 and 11, we estimate that experiencing a school shooting is associated with a 2.9 percentage

point (3.7 percent relative to the mean) reduction in the likelihood of graduating high school

by age 26. We also find that shooting exposure in grades 10 and 11 leads students to be 4.4
30Only seven out of the 33 shooting schools have any positive FTE allocation of school psychologists or

social workers in the year before the shooting.
31Since we have fewer clusters in these sub-group analyses, we calculate standard errors using a wild cluster

bootstrap.
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percentage points (9.5 percent) less likely to enroll in any college, 5.5 percentage points (17.2

percent) less likely to enroll in a 4-year college, and 3.1 percentage points (15.3 percent) less

likely to receive a Bachelor’s degree by age 26.

Figure 8 and Table 3 present the analogous results for labor market outcomes measured

at ages 24–26. Again, we see no evidence of statistically significant placebo coefficients for

the “too old” cohorts, while exposure in grades 9 through 11 negatively affects economic well-

being. Averaging across coefficients for exposure in grades 9 through 11, we find that shootings

lead to a 4.4 percentage point (6.3 percent) reduction in the likelihood of employment and

$2,779.84 (13.5 percent) lower annual earnings at ages 24 to 26. While some of the reduction

in annual earnings is driven by the extensive labor supply response, we also observe reductions

on the intensive margin as measured by non-zero earnings (i.e., conditional on employment).32

Since we only have 8 shootings in the long-run analysis, we are unable to explore het-

erogeneity by shooting or school characteristics. We can, however, examine heterogeneity in

long-run impacts across students of different genders, races/ethnicities, and free/reduced-price

lunch receipt. Appendix Figures A5 and A6 present the results for the long-term educational

and labor market outcomes, respectively. As with the results on short-run outcomes, we find

no evidence of significant differences in long-run impacts across these characteristics. Instead,

it appears that the adverse long-term impacts of exposure to shootings are relatively universal.

4.3 Sensitivity Analysis

Our baseline short-run models use a balanced panel of students who are observed in the Texas

public schools data in each of the 3 years before to 2 years after the shooting. In Appendix

Figure A7, we explore the sensitivity of our estimates to using an unbalanced panel. We

overlay our baseline event-study graphs with event-study graphs estimated on a sample in

which we do not make any restrictions on the number of years that students are observed in

the data. The results across the two samples are very similar, indicating that our results are

not driven by the balanced panel restriction.
32Our results on short-run outcomes using the sample of 8 long-run analysis schools are very similar to those

found in the baseline models. If anything, the magnitudes of the effects on short-run outcomes are somewhat
larger in the 8-school sample. See Appendix Table A2 for the DD estimates, and Appendix Figure A4 for the
event-study graphs.
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We also test the robustness of our estimates to alternative ways of matching the shoot-

ing schools to control schools. Appendix Figure A8 presents the DD coefficients and 95%

confidence intervals from estimating model (1) using different samples of schools based on

alternative matching strategies of the 33 shooting schools to their nearest-neighbor control

schools. We try the following adjustments to the matching strategy: (1) Adding the mean 8th

grade reading and math test scores among those who took 8th grade tests before the shooting,

as well as the shares of students with non-missing 8th grade test scores to the set of variables

on which we do our “fuzzy” match;33 (2) in addition to the variables in (1), also doing an

exact match based on the 10 Texas educational regions;34 (3) in addition to the variables in

(2), also adding the share of students who are in the gifted program, the share of students in

LEP, and the share of students who are immigrants to the “fuzzy” match; (4) same matching

variables as the baseline, but using 4 control schools instead of 2; (5) same matching variables

as the baseline, but matching in reverse order; (6) same matching variables as the baseline,

but matching using characteristics measured in the year before the shooting (rather than the

year of the shooting). For ease of comparison, the baseline DD estimate for each outcome

is presented at the top of each graph. Our results are robust across all of these matching

strategies.

4.4 Discussion

The magnitudes of our estimates suggest that the costs of shootings at schools—even those

that have few or no deaths, as is the case in the majority of shootings in our analysis—are

large. We conduct a back-of-the-envelope calculation based on our estimates of the effects

of shooting exposure on annual earnings at ages 24–26. Using the average of the effects of

exposure across grades 9, 10, and 11 (see Table 2), and assuming a constant effect over the

age profile, we calculate a $115,550 reduction (in $2019) in the present discounted value of
33We add these variables only when matching high schools (since matching variables are measured in the

year of the shooting, the mean 8th grade test score among middle school students could be endogenous to the
shooting). If a student repeats 8th grade, we use the first observed test score.

34See: http://www.txhighereddata.org/Reports/Performance/P16data/TxEdregionslist.pdf.
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lifetime earnings per shooting-exposed student.35

It is helpful to compare our effect magnitudes to those found in recent work on exposure

to other types of violence. Our estimate of the impact of exposure to a shooting at school

can be compared with Carrell et al. (2018)’s estimate of the long-term effect of exposure to a

classroom peer who experiences domestic violence at home. They use administrative data on

elementary school students in a Florida county, and find that an additional domestic-violence-

exposed peer in an elementary school classroom with 25 students leads to a 3 percent reduction

in earnings at ages 24–28. Our estimated 13.5 percent reduction in earnings is thus equivalent

to the impact of having approximately 4.5 violence-exposed peers. Our larger effect size is

consistent with the possibility that the harm of a student’s own trauma from experiencing gun

violence at school is amplified by the peer effects of other shooting-exposed peers. Moreover,

relative to violence that occurs in children’s homes, shootings that take place at schools are

more likely to influence other educational inputs—such as teacher quality and other school

resources—which in turn have been shown to impact long-run student outcomes.

Our findings can also be benchmarked relative to Ang (2020)’s estimates of the impacts

of local exposure to police brutality. Using data from a large urban school district in the

Southwest, he finds that, relative to students who live 0.5 to 3 miles away from any police

killing, those who live within 0.5 miles of such an event have a 3.5 percent lower likelihood of

high school graduation and a 2.5 percent lower likelihood of college enrollment, with effects

concentrated among students exposed in 10th and 11th grades.36 We find 3.7 and 9.5 percent

reductions in high school graduation and college enrollment, respectively, which are also driven

by 10th and 11th grade exposure. Our relatively larger magnitudes are again consistent with

the idea that shootings at schools are more disruptive to educational inputs than violence

that takes place elsewhere. Moreover, it is possible that the estimates reported in Ang (2020)

represent lower bounds, if the control group of students living slightly further away from police
35To calculate the present discounted value (PDV) of lifetime earnings, we sum over the distribution of

earnings from ages 15 to 64 in the 2019 March Current Population Survey (CPS), and assume that earnings
are discounted at a 3 percent real rate (i.e., a 5 percent discount rate with 2 percent wage growth) back to age
15 (i.e., around the start of high school). This calculation yields a total PDV of $888,844. We then multiply
this number by the average percent effect of exposure to a shooting in grades 9–11 on annual earnings (13
percent). This yields $115,550. The CPS data are downloaded from the Integrated Public Use Microdata
Series (IPUMS) (Flood et al., 2020).

36Ang (2020) does not analyze labor market outcomes.
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brutality is also impacted.

Further, we can compare our effect sizes to those reported in Bharadwaj et al. (2020)’s

study on the impacts of exposure to the 2011 mass shooting in Utøya, Norway. They find

that survivors of this tragedy are 12 percent less likely to complete college and have 12 percent

lower earnings than a matched control group. Our estimated 15.3 decrease in the likelihood of

Bachelor’s degree receipt and 13.5 percent reduction in earnings are quite similar. While the

shooting incidents that we study are much less deadly than the one in Norway, we note that our

analysis populations and settings are also very different. Children who were attending a youth

camp in Utøya at the time of the shooting come from overwhelmingly high socioeconomic

status backgrounds; moreover, relative to Texas, Norway has a broader safety net system and

more affordable higher education. This suggests that there may be less scope for large adverse

long-run effects on human capital and economic outcomes in the Norwegian setting than for

the Texas public school students in our study.

Lastly, we put our estimates in broader context of the literature on the long-run impacts of

educational inputs on adult earnings. Chetty et al. (2011) find that a one standard deviation

increase in “class quality” (a measure that includes teachers, peers, and any class-level shock)

for one year among students in Kindergarten through 3rd grade leads to a 9.6 percent increase

in earnings at age 27. Chetty et al. (2014) estimate that a one standard deviation increase

in teacher quality for one year among students in grades 4 through 8 results in a 1.3 percent

increase in earnings at age 28. Our estimated 13.5 percent reduction in earnings is thus

equivalent to a 1.4 standard deviation decrease in class quality for one year, or a one standard

deviation reduction in teacher quality for ten years. Given that our long-run estimates are

based off exposure to shootings in high school, our findings suggest that adverse shocks at

older grade levels can offset any large improvements in educational inputs in younger grades.

5 Conclusion

Mass shootings—especially those that appear indiscriminate and lead to a large number of

deaths—receive a significant amount of media attention, and incite vigorous policy debates

about how these tragedies can be prevented. At the same time, data show that mass shootings
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account for a very small fraction of all gun deaths in America (Gramlich, 2019). Thus, if

policymakers wanted to curb the costliest gun violence in terms of the number of lives lost,

one might argue that they should focus their attention on “everyday” gun violence occurring

in people’s homes, communities, and schools.37 Further, decades of research on exposure to

trauma suggest that the costs of gun violence extend beyond the death toll. Hundreds of

thousands of American children have been exposed to school shootings and have survived,

and these shootings vary substantially in their circumstances, number of injuries, and deaths.

Knowledge about the short- and long-term causal effects of shootings on students’ outcomes

is critical both for targeting resources to mitigate against their potential harms, as well as for

informing policy discussions that compare the costs of different types of gun violence.

This paper draws on comprehensive longitudinal administrative data from Texas to in-

vestigate the impacts of school shootings on students’ educational and economic outcomes

through age 26. We study the universe of shootings that occurred during school hours and on

school grounds at Texas public schools between 1995 and 2016, and leverage within-individual

and across-cohort variation within matched school groups using difference-in-differences and

event-study models. We find that exposure to a school shooting leads to increased absences

and an elevated incidence of chronic absenteeism and grade repetition in the two following

years. We also document adverse long-run impacts of exposure to a school shooting, with

reductions in the likelihoods of high school graduation, college enrollment, and college grad-

uation, as well as a decreased likelihood of employment and lower earnings at ages 24–26.

Heterogeneity analysis indicates the effects are broad, reaching across nearly all sub-groups

analyzed.

Thus, our results demonstrate that students exposed to shootings at their schools expe-

rience substantial reductions in their human capital accumulation and detrimental effects on

their labor market outcomes in early adulthood. We calculate a $115,550 loss (in $2019) in the

present discounted value of lifetime earnings per shooting-exposed student. As shootings may

influence other measures of well-being not captured in our data, this is likely a lower bound

estimate of the total cost of experiencing, and surviving, a school shooting in the United

States.
37For an example of such an argument, see, e.g.: https://www.vox.com/2015/10/1/18000524/

mass-shootings-rare.
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Further, the fact that we find large adverse impacts of exposure to shootings on long-term

outcomes suggests that current interventions and resources devoted to helping school shooting

survivors are not sufficient to counteract these effects. Future research is needed to investigate

effective interventions that may help affected students overcome the trauma associated with

experiencing gun violence at their schools.
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6 Figures and Tables

Figure 1: Map of Shootings at Texas Public Schools: 1995–1996 to 2015–2016 Academic Years

Short−Run Analysis

Short−Run + Long−Run Analyses

Notes: This figure shows a map of the locations of the 33 shootings that occurred during school hours and
on school grounds at Texas public schools between the academic years 1995–1996 and 2015–2016. The subset
of shootings used in the analysis of long-run outcomes is denoted in blue. The data on school shootings are
compiled from the Center for Homeland Defense and Security (CHDS) K-12 school shooting database and the
Washington Post school shootings database.
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Figure 2: Raw Trends in Short-Term Outcomes in Shooting Versus Control Schools
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Notes: The sample of analysis in sub-figures (a)–(c) and (e) is the universe of students who were enrolled in
the 33 shooting and 66 control schools in the academic semester during which the shooting takes place. In
sub-figure (d), we use students enrolled in 26 shooting and 52 control schools because data on disciplinary
actions is only available from 1998 onward, so we analyze the impacts of 26 school shootings that took place in
the period 2001–2016 when studying this outcome. In each graph, we further restrict the sample to students
who are observed in the data over the period of three years before to two years after the shooting. These
figures plot trends in each of the five outcomes denoted in sub-figure headings, separately for treatment and
matched control schools over the six-year period surrounding the shooting.
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Figure 3: Event-Study Estimates of Effects of School Shootings on Short-Term Outcomes
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Notes: These graphs present estimates from event-study versions of model (1) that replace the Postt indicator
with indicators for each year relative to the shooting. The coefficients on the interaction terms between the
shooting school indicator and each year indicator are plotted, along with the corresponding 95% confidence
intervals. The interaction between the shooting school indicator and the indicator for the year before the
academic year of the shooting is the omitted category. These regressions control for individual fixed effects
and match-group-by-year fixed effects. Standard errors are clustered on the school level.
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Figure 4: Heterogeneity in the Effects of School Shootings on Short-Term Outcomes, by
Shooting Type
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Notes: These graphs present the DD coefficients and 95% confidence intervals based on a wild cluster bootstrap
from estimating model (1) using sub-samples of shooting and their matched control schools that fall into
different shooting type categories as denoted on the y−axis. The baseline DD estimate using the entire sample
is presented at the top of each graph. These regressions control for individual fixed effects and match-group-
by-year fixed effects. Standard errors are clustered on the school level.
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Figure 5: Heterogeneity in the Effects of School Shootings on Short-Term Outcomes, by
Student Characteristics
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Notes: These graphs present the DD coefficients and 95% confidence intervals from estimating model (1) using
students that belong to different sub-groups denoted on the y−axis. We drop schools in which there are
fewer than 10 students in a particular category, and only use match groups that contain three schools. The
baseline DD estimate using the entire sample is presented at the top of each graph. These regressions control
for individual fixed effects and match-group-by-year fixed effects. Standard errors are clustered on the school
level.
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Figure 6: Heterogeneity in the Effects of School Shootings on Short-Term Outcomes, by School
Mental Health Resources
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Notes: These graphs present the DD coefficients and 95% confidence intervals based on a wild cluster bootstrap
from estimating model (1) from estimating model (1) using sub-samples of shooting and their matched control
schools that fall into different categories of health professionals available on school campus as denoted on
the y−axis. The baseline DD estimate using the entire sample is presented at the top of each graph. These
regressions control for individual fixed effects and match-group-by-year fixed effects. Standard errors are
clustered on the school level.

36



Figure 7: Effects of School Shootings on Long-Term Educational Outcomes
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Figure 7: Effects of School Shootings on Long-Term Educational Outcomes (continued)

(d) Bachelor’s Degree
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Notes: In each sub-figure, the graph on the left-hand side presents the coefficients and 95% confidence intervals
on the interaction terms between the shooting school indicator and the cohort indicators from estimating
model (3), while the graph on the right-hand side presents the coefficients and 95% confidence intervals on
these interaction terms from estimating model (4). Both models control for match-group by cohort fixed effects
and a vector of individual-level controls for student race/ethnicity (non-Hispanic white, non-Hispanic Black,
Hispanic, other) and gender. Model (4) additionally includes school fixed effects. Standard errors are clustered
on the school by cohort level.
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Figure 8: Effects of School Shootings on Labor Market Outcomes
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Notes: See notes under Figure 7.
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Table 1: Effects of Shootings on Students’ Short-Run Outcomes

Absence Chronic Grade # Days of Switch
Rate Absenteeism Repetition Disc.Act Schools
(1) (2) (3) (4) (5)

Shooting School x Post 0.0044 0.0179 0.0132 0.2482 0.0130
(0.0019) (0.0079) (0.0053) (0.1685) (0.0110)
[0.022] [0.027] [0.016] [0.145] [0.241]

Pre-period mean of dependent variable 0.0365 0.0643 0.0106 1.9998 0.1060
Student x academic year observations 373,368 373,368 373,368 277,176 371,285
R-squared 0.553 0.481 0.233 0.426 0.276

Notes: This table presents the DD coefficients, standard errors (in parentheses), and p−values (in brackets) from estimating model
(1). All regressions include individual fixed effects, as well as a full set of match-group by academic year interactions. Because the
earliest academic year where grade repetition could be affected is the year after the shooting, we exclude the shooting year itself
from the Postt indicator variable in the specification that uses grade repetition as the outcome. Standard errors are clustered on
the school level.

Table 2: Long-Run Effects of Shootings on Students’ Educational Outcomes

(1) (2) (3) (4)

Graduate Enroll Enroll Bachelor’s
HS Any Col 4yr Col Degree

Shooting School x Cohort 12 -0.0011 -0.0003 0.0040 0.0011
(0.0201) (0.0272) (0.0176) (0.0145)
[0.956] [0.990] [0.821] [0.939]

Shooting School x Cohort 11 -0.0265 -0.0436 -0.0509 -0.0372
(0.0164) (0.0171) (0.0174) (0.0117)
[0.108] [0.012] [0.004] [0.002]

Shooting School x Cohort 10 -0.0305 -0.0442 -0.0595 -0.0240
(0.0175) (0.0151) (0.0130) (0.0135)
[0.083] [0.004] [0.000] [0.077]

Shooting School x Cohort 9 -0.0103 -0.0121 -0.0412 -0.0134
(0.0177) (0.0180) (0.0162) (0.0094)
[0.560] [0.504] [0.012] [0.159]

Mean of dependent variable 0.7645 0.4642 0.3212 0.2000
Student observations 59,146 53,927 53,927 53,927
R-squared 0.119 0.065 0.081 0.082

Notes: This table presents the coefficients, standard errors (in parentheses), and p−values (in brackets) on the
interaction terms between the shooting school indicator and the cohort indicators from estimating model (4). All
specifications control for match-group by cohort fixed effects, school fixed effects, and a vector of individual-level
controls for student race/ethnicity (non-Hispanic white, non-Hispanic Black, Hispanic, other) and gender. Stan-
dard errors are clustered on the school by cohort level.
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Table 3: Long-Run Effects of Shootings on Students’ Labor Market Outcomes

(1) (2) (3)

Ever Earnings Non-Zero
Employed Earnings

Shooting School x Cohort 12 -0.0198 -1,265.02 -1,273.02
(0.0165) (977.91) (1,053.43)
[0.230] [0.198] [0.229]

Shooting School x Cohort 11 -0.0472 -3,316.19 -2,867.87
(0.0139) (953.31) (1,183.25)
[0.001] [0.001] [0.017]

Shooting School x Cohort 10 -0.0597 -2,389.54 -1,199.10
(0.0097) (793.63) (1,063.11)
[0.000] [0.003] [0.261]

Shooting School x Cohort 9 -0.0236 -2,633.79 -2,982.86
(0.0098) (1,094.13) (1,316.82)
[0.017] [0.017] [0.025]

Mean of dependent variable 0.6928 20,597.57 31,168.48
Student observations 53,927 53,927 37,363
R-squared 0.015 0.014 0.021

Notes: See notes under Table 2.
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A Appendix Figures

Figure A1: Number of Shootings by Academic Year in Texas Public Schools: 1995–1996 to
2015–2016 Academic Years
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Notes: This figure plots the number of school shootings at Texas public schools per academic year over our
analysis time period. The subset of shootings used in the analysis of long-run outcomes is denoted with gray-
filled bars. The data on school shootings are compiled from the Center for Homeland Defense and Security
(CHDS) K-12 school shooting database and the Washington Post school shootings database.
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Figure A2: Trends in Sample Attrition Rates in Treatment Versus Control Schools
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Notes: This figure uses a sample of all students who were enrolled in the 33 shooting and 66 control schools in
the academic semester during which the shooting takes place (denoted by time 0 on the x−axis on the graph).
It then plots the share of these students who are observed in our data (i.e., they are enrolled in any Texas
public school) in each of the three years before the shooting and two years after the shooting, separately for
students at treated (shooting) and control schools.
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Figure A3: Heterogeneity in the Effects of School Shootings on Short-Term Outcomes, by
Student Characteristics, Normalized Relative to Sub-Group Means
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Notes: These graphs present the DD coefficients and 95% confidence intervals from estimating model (1),
which are scaled relative to the baseline outcome means for each sub-group. See notes under Appendix Figure
5.
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Figure A4: Event-Study Estimates of Effects of School Shootings on Short-Term Outcomes,
Comparing Results from Baseline Models and Models Using Long-Run Analysis Schools
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Notes: See notes under Figure 3. Here, we overlay our baseline event-study estimates with event-study
estimates that use a sample of the 8 shooting schools and their matched control schools that we use in the
long-run analysis.
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Figure A5: Heterogeneity in Effects of School Shootings on Long-Term Educational Outcomes
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Figure A5: Heterogeneity in Effects of School Shootings on Long-Term Educational Outcomes
(continued)
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Notes: In each sub-figure, the graphs present the coefficients and 95% confidence intervals on the interaction
terms between the shooting school indicator and the cohort indicators from estimating model (4), separately
for students from different sub-groups denoted in the legends. The baseline estimates for the whole sample
are depicted with gray dashed lines. See notes under Figure 7 for more details on the specifications. “Ever
disadvantaged” refers to students who ever receive free or reduced-price lunch, while “never disadvantaged”
refers to students who never receive free or reduced-price lunch in our data. We drop schools in which there
are fewer than 10 students in a particular category, and only use match groups that contain three schools (one
shooting and two control schools).
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Figure A6: Heterogeneity in Effects of School Shootings on Labor Market Outcomes
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Notes: See notes under Appendix Figure A5.
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Figure A7: Event-Study Estimates of Effects of School Shootings on Short-Term Outcomes,
Comparing Results from Balanced and Unbalanced Panels
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Notes: See notes under Figure 3. Here, we overlay our baseline event-study estimates with event-study
estimates that use an unbalanced sample of students, in which we do not make any restrictions on the number
of years that students are observed in the data.
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Figure A8: Robustness of the Short-Run Results to Alternative Matching Strategies
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Notes: These graphs present the DD coefficients and 95% confidence intervals from estimating model (1) using
different alternative samples of schools based on alternative matching strategies of the 33 shooting schools to
their two nearest-neighbor control schools. The baseline DD estimate using our baseline matching algorithm
is presented at the top of each graph. These regressions control for individual fixed effects and match-group-
by-year fixed effects. Standard errors are clustered on the school level.
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B Appendix Tables

Table A1: Means of School Characteristics

Shooting Control All p-val p-valSchools Schools Schools
Matching Variables (1) (2) (3) (1)-(2) (1)-(3)

A. High Schools

A.1. Exact Matching
Lowest grade 9.000 9.000 8.356 . 0.072
Highest grade 12.000 12.000 11.916 . 0.377
Fraction city 0.364 0.364 0.284 1.000 0.408
Fraction suburban 0.364 0.364 0.175 1.000 0.020
Fraction town 0.136 0.136 0.161 1.000 0.757
Fraction rural 0.136 0.136 0.381 1.000 0.018

A.2. Nearest Matching
Female 0.484 0.490 0.462 0.286 0.521
Free/reduced-price lunch 0.442 0.442 0.417 0.999 0.652
Non-Hispanic white 0.387 0.413 0.456 0.764 0.314
Non-Hispanic Black 0.222 0.204 0.129 0.785 0.020
Hispanic 0.359 0.356 0.397 0.966 0.577
Number of students 1,650.182 1,564.614 772.355 0.707 0.000

Number of schools 22 44 3,053

B. Non-High Schools

B.1. Exact Matching
Lowest grade 4.000 4.000 0.869 1.000 0.002
Highest grade 7.273 7.273 6.091 1.000 0.121
Fraction city 0.636 0.636 0.395 1.000 0.101
Fraction suburban 0.182 0.182 0.252 1.000 0.593
Fraction town 0.000 0.000 0.130 . 0.200
Fraction rural 0.182 0.182 0.224 1.000 0.737

B.2. Nearest Matching
Female 0.487 0.496 0.478 0.263 0.690
Free/reduced-price lunch 0.419 0.487 0.523 0.530 0.219
Non-Hispanic white 0.149 0.144 0.388 0.953 0.010
Non-Hispanic Black 0.196 0.173 0.141 0.818 0.342
Hispanic 0.637 0.666 0.447 0.815 0.047
Number of students 865.727 825.636 550.822 0.711 0.001

Number of schools 11 22 9,459

Notes: This table presents means of school characteristics, separately for high schools and non-high schools in our
data, in Panels A and B, respectively. Panels A.1 and B.1 present means of characteristics on which we do an
exact match separately for the schools with shootings and their matched control schools in columns (1) and (2),
respectively. These variables measured in the first six-week grading period of the academic year of the shooting.
For all Texas public schools in column (3), we present averages of these variables calculated over academic years
1993-1994 to 2017–2018. In column (3), schools with any missing variables, except for campus type (which is only
available for schools that existed in the last year of the data), are dropped. Panels A.2 and B.2 present the means
for characteristics on which we do a “fuzzy match”.
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Table A2: Effects of 8 Long-Run Analysis Shootings on Students’ Short-Run Outcomes

Absence Chronic Grade # Days of Switch
Rate Absenteeism Repetition Disc.Act Schools
(1) (2) (3) (4) (5)

A. Baseline Estimates

Shooting School x Post 0.0044 0.0179 0.0132 0.2482 0.0130
(0.0019) (0.0079) (0.0053) (0.1685) (0.0110)
[0.022] [0.027] [0.016] [0.145] [0.241]

Pre-period mean of dependent variable 0.0365 0.0643 0.0106 1.9998 0.1060
Student x academic year observations 373,368 373,368 373,368 277,176 371,285
R-squared 0.553 0.481 0.233 0.426 0.276

B. Effects of 8 Long-Run Analysis Shootings

Shooting School x Post 0.0088 0.0339 0.0259 0.3433 0.0143
(0.0026) (0.0105) (0.0129) (0.3112) (0.0097)
[0.003] [0.004] [0.058] [0.293] [0.154]

Pre-period mean of dependent variable 0.0366 0.0622 0.0083 2.5953 0.0719
Student x academic year observations 76,920 76,920 76,920 24,996 76,466
R-squared 0.531 0.465 0.253 0.362 0.281

Notes: Panel A repeats the baseline DD estimates from Table 1. Panel B presents the DD coefficients, standard errors (in paren-
theses), and p−values (in brackets) from estimating model (1) using only the 8 shooting schools and their matched control schools
that are used in the long-run analysis. All regressions include individual fixed effects, as well as a full set of match-group by aca-
demic year interactions. Standard errors are clustered on the school level.
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