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ABSTRACT 

COVID-19 antibody tests have imperfect accuracy. There has been lack of clarity on the meaning of 
reported rates of false positives and false negatives. For risk assessment and clinical decision 
making, the rates of interest are the positive and negative predictive values of a test. Positive 
predictive value (PPV) is the chance that a person who tests positive has been infected. Negative 
predictive value (NPV) is the chance that someone who tests negative has not been infected. The 
medical literature regularly reports different statistics, sensitivity and specificity. Sensitivity is the 
chance that an infected person receives a positive test result. Specificity is the chance that a non-
infected person receives a negative result. Knowledge of sensitivity and specificity permits one to 
predict the test result given a person’s true infection status. These predictions are not directly 
relevant to risk assessment or clinical decisions, where one knows a test result and wants to predict 
whether a person has been infected. Given estimates of sensitivity and specificity, PPV and NPV can 
be derived if one knows the prevalence of the disease, the rate of illness in the population. There is 
considerable uncertainty about the prevalence of COVID-19. This paper addresses the problem of 
inference on the PPV and NPV of COVID-19 antibody tests given estimates of sensitivity and 
specificity and credible bounds on prevalence. The author explains the methodological problem, 
shows how to estimate bounds on PPV and NPV, and applies the findings to some tests authorized 
by the FDA.

The author is grateful to Michael Gmeiner for helpful comments.
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1. Introduction 

 

 There are now two main classes of tests for COVID-19. Nasal swab tests detect the presence of live 

virus within a person, signaling an active infection. Serological tests detect the presence of antibodies that 

the immune system develops after onset of infection. The presence of antibodies signals that a person was 

infected at some past date. 

 Tests of both types have imperfect accuracy. A false positive occurs when a test result indicates 

infection, but the person has not actually been infected. A false negative occurs when a result indicates no 

infection, but the person has been infected. These concepts are transparent. Yet there has been lack of clarity 

on the meaning of reported rates of false positives and negatives. It is important to interpret them correctly. 

 For personal risk assessment and clinical decision making, the rates of interest are the positive and 

negative predictive values of a test. Positive predictive value (PPV) is the chance that a person who tests 

positive has indeed been infected. Negative predictive value (NPV) is the chance that someone who tests 

negative has not been infected. 

 The medical literature on test accuracy regularly reports statistics other than PPV and NPV, known as 

sensitivity and specificity. Sensitivity is the chance that an infected person receives a positive test result. 

Specificity is the chance that a non-infected person receives a negative result. 

 Knowledge of sensitivity and specificity permits one to predict the test result given a person’s true 

infection status. These predictions are not directly relevant to risk assessment or clinical decisions. For these 

purposes, one knows a test result and wants to predict whether a person has been infected. One does not 

know whether a person has been infected and want to predict a test result. 

 Perceptive writers on diagnostic testing have long warned that PPV-NPV are relevant to risk 

assessment and clinical decisions, whereas sensitivity and specificity are not. Close to thirty years ago, 

Altman and Bland (1994) wrote: 

“The whole point of a diagnostic test is to use it to make a diagnosis, so we need to know the 

probability that the test will give the correct diagnosis. The sensitivity and specificity do not give 
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us this information. Instead we must approach the data from the direction of the test results, using 

predictive values. Positive predictive value is the proportion of patients with positive test results 

who are correctly diagnosed. Negative predictive value is the proportion of patients with negative 

test results who are correctly diagnosed.” 

The warning expressed by Altman and Bland and other writers should be heeded. 

 Given that PPV-NPV are clinically relevant concepts while sensitivity and specificity are not, it is 

natural to ask why the recent medical research on testing for COVID-19 focuses mainly on the latter 

quantities rather than the former. In the case of antibody tests, part of the answer appears to be that medical 

researchers find it easier to measure sensitivity and specificity. 

 Estimation of PPV-NPV requires accurate observation of test results and true infection status for a 

random sample of the relevant population. It is easy to observe rest results but not true infection status. If 

it were easy to observe true infection status, diagnostic tests would serve no practical purpose. 

 Whereas observation of true infection status for a random sample of persons is difficult, researchers 

have found it possible to do so using data from special samples of persons whose infection status is known. 

This enables estimation of sensitivity and specificity, at least for these special samples. The practice has 

been to estimate in this manner and to assume that the findings obtained for the special samples hold more 

generally. 

 Consider specificity. The virus being novel, it is known that antibodies cannot be present in blood 

drawn from humans prior to the late 2019 onset of the pandemic. Blood drawn from numerous persons is 

held in storage in various locations for multiple purposes. Applying a serological test for antibodies to 

samples of this stored blood should always yield a negative result. Positive test results must be false 

positives. Thus, the specificity of a COVID-19 antibody test when administered to blood drawn prior to 

late 2019 can be estimated by applying the test to samples of such blood. The U.S. Food and Drug 

Administration (FDA) states the idea as follows (FDA, 2020): “A test’s specificity can be estimated by 

testing large numbers of samples collected and frozen before SARS-CoV-2 is known to have circulated to 
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demonstrate that the test does not produce positive results in response to the presence of other causes of a 

respiratory infection, such as other coronaviruses.” 

 Consider sensitivity. Clinicians are confident that they can determine that persons have been infected 

using a highly sensitive type of test thought to have perfect accuracy. FDA (2020) states: “A test’s 

sensitivity can be estimated by determining whether or not it is able to detect antibodies in blood samples 

from patients who have been confirmed to have COVID-19 with a nucleic acid amplification test, or 

NAAT.” Applying a serological test for antibodies to samples of blood from patients who have tested 

positive by the NAAT method should always yield a positive result. Negative test results must be false 

negatives. Thus, the sensitivity of a COVID-19 antibody test when administered to blood drawn from 

patients who have been subjected an NAAT test can be estimated by applying the test to samples of such 

blood. 

 Suppose that sensitivity and specificity have been estimated as described above and that one finds it 

credible to extrapolate the findings from the special samples to the relevant patient population. PPV-NPV 

can then be derived if one knows the prevalence of the disease; that is, the marginal rate of illness in the 

population. In the case of COVID-19, prevalence is the population infection rate. To derive estimates of 

PPV-NPV, FDA (2020) assumes that the infection rate is 0.05. However, the FDA recognizes that this 

assumption lacks foundation, stating (original in bold): “We do not currently know the prevalence of 

SARS-CoV-2 antibody positive individuals in the U.S. population, and prevalence may change based 

on the duration the virus is in the country and the effectiveness of mitigations.” 

 A primary source of uncertainty about the COVID-19 infection rate is a serious problem of missing 

data. Confirmed cases have commonly been measured by rates of positive nasal swab findings among 

persons who have been tested for infection. Infection data are missing for persons who have not been tested. 

The persons who have been tested differ considerably from those who have not been tested. Criteria used 

to determine who is eligible for testing typically require demonstration of symptoms associated with 

presence of infection or close contact with infected persons. This gives considerable reason to believe that 
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some fraction of untested persons are asymptomatic or pre-symptomatic carriers of the COVID-19 disease. 

Presuming this is correct, the actual cumulative rate of infection has been higher than the reported rate. 

 Manski and Molinari (2020) analyze the inferential problem and report credible location and time-

specific bounds on the infection rate. The bounds are wide. For example, on April 24, 2020, the bounds on 

the infection rates in Illinois and New York were [0.004, 0.525] and [0.017, 0.618]. Thus, the FDA estimates 

of PPV-NPV assuming that the infection rate is 0.05 are not well grounded. 

 This paper addresses the problem of inference on the PPV-NPV of COVID-19 antibody tests given 

estimates of sensitivity and specificity and credible bounds on prevalence. I explain the methodological 

problem, show how to estimate bounds on PPV-NPV, and apply the findings to some tests authorized by 

the FDA. 

 

2. Methods 

 

 Consider the problem of predicting whether a person in a population of interest has been infected, 

given observation of an antibody test result. Let y = 1 denote when a person has been infected and y = 0 

otherwise. Let x = p denotes a positive test result and x = n a negative result. A false positive result occurs 

when x = p but y = 0. A false negative means that x = n but y = 1. 

 Let P(y, x) denote the population distribution of illness and test results. The marginal probability P(y 

= 1) is the prevalence of the illness and P(x = p) is the rate of positive test results. Assume that 0 < P(y = 1) 

< 1 and 0 < P(x = p) < 1. Then the conditional probability distributions P(y|x) and P(x|y) are well-defined. 

PPV and NPV are the conditional probabilities P(y = 1|x = p) and P(y = 0|x = n). Sensitivity and specificity 

are the conditional probabilities P(x = p|y = 1) and P(x = n|y = 0). 

 If one can observe data on (y, x) randomly drawn from P(y, x), one can estimate PPV-NPV using 

standard statistical methods. The concern is inference when one does not have random sample data, but one 

has data that are informative about some aspects of P(y, x). One may have information on test sensitivity 
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P(x = p|y = 1), specificity P(x = n|y = 0), the rate of positive test results P(x = p), and/or the population 

infection rate P(y = 1). 

 Suppose that sensitivity and specificity are known. Bayes Theorem and the Law of Total Probability 

provide the mathematical relationship connecting PPV-NPV with sensitivity and specificity. 

 

                                            P(x = p|y = 1)P(y = 1)                             P(x = p|y = 1)P(y = 1) 

(1a)      P(y = 1|x = p)  =   ──────────────  =   ────────────────────────── , 

                                                        P(x = p)                    P(x = p|y = 1)P(y = 1) + P(x = p|y = 0)P(y = 0) 

 

 

                                            P(x = n|y = 0)P(y = 0)                             P(x = n|y = 0)P(y = 0) 

(1b)      P(y = 0|x = n)  =   ──────────────  =   ────────────────────────── . 

                                                        P(x = n)                    P(x = n|y = 0)P(y = 0) + P(x = n|y = 1)P(y = 1) 

 

 

Inspection of the right-hand-side shows that one can compute PPV-NPV if one can combine knowledge of 

sensitivity and specificity with knowledge of the population infection rate. To estimate PPV-NPV, the FDA 

combines estimates of sensitivity and specificity with the assumption that the population infection rate P(y 

= 1) = 0.05. As discussed earlier, this assumption lacks foundation.  

 Suppose that one has no knowledge of P(y = 1). Then inspection of (1a)-(1b) shows that no conclusions 

can be drawn on the magnitudes of PPV and NPV if specificity or sensitivity is respectively less than one. 

As P(y = 1) increases from 0 to 1, equation (1a) shows that P(y = 1|x = p) increases from 0 to 1. As P(y = 

0) increases from 0 to 1, (1b) shows that P(y = 0|x = n) increases from 0 to 1. 

 Now consider an intermediate situation in which one does not know P(y = 1) but one can place credible 

lower and upper bounds on its value, say PL(y = 1) ≤ P(y = 1) ≤ PU(y = 1). For example, one might use the 

bounds derived in Manski and Molinari (2020). Then inspection of (1a)-(1b) shows that the bound on P(y 

= 1) implies bounds on PPV-NPV. 

 PPV is an increasing function of P(y = 1), so 
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                                   P(x = p|y = 1)PL(y = 1) 

(2a)      ────────────────────────────  ≤  P(y = 1|x = p) 

             P(x = p|y = 1)PL(y = 1) + P(x = p|y = 0)PU(y = 0) 

 

                                                                                                             P(x = p|y = 1)PU(y = 1) 

                                                                              ≤    ───────────────────────────── , 

                                                                                      P(x = p|y = 1)PU(y = 1) + P(x = p|y = 0)PL(y = 0) 

 

 

where PU(y = 0) = 1 − PL(y = 1) and PL(y = 0) = 1 − PU(y = 1). NPV increases with P(y = 0), so 

 

                                   P(x = n|y = 0)PL(y = 0) 

(2b)      ────────────────────────────  ≤  P(y = 0|x = n) 

             P(x = n|y = 0)PL(y = 0) + P(x = n|y = 1)PU(y = 1) 

 

                                                                                                             P(x = n|y = 0)PU(y = 0) 

                                                                              ≤    ───────────────────────────── . 

                                                                                      P(x = n|y = 0)PU(y = 0) + P(x = n|y = 1)PL(y = 1) 

 

 Note the asymmetric manner in which the bound PL(y = 1) ≤ P(y = 1) ≤ PU(y = 1) on prevalence 

determines the bounds on PPV and NPV. PPV increases with prevalence, so the lower bound on prevalence 

yields the lower bound on PPV and the upper bound on prevalence yields the upper bound on PPV. NPV 

decreases with prevalence, so the upper bound on prevalence yields the lower bound on NPV and the lower 

bound on prevalence yields the upper bound on NPV. Section 3 will give examples of this asymmetry. 

 Bounds (2a)-(2b) are a simple application of the type of analysis performed in econometric research 

on partial identification. See, for example, Manski (2003, 2007). Analysis of partial identification aims to 

avoid making unjustified strong assumptions about the magnitudes of unknown quantities, such as the 

COVID-19 infection rate. Instead, the objective is to determine the inferences that are feasible with weaker 

but more credible assumptions. The results are bounds on quantities of interest rather than precise 

valuations. 

 Further results on partial identification of PPV-NPV, beyond those needed in this paper, have been 

proved in econometric research on inference under response-based sampling. In the terminology of that 

subject, a test result is a covariate and illness status is a response. The research objective is to learn the 
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distribution of response conditional on covariates. The sampling process reveals the distribution of 

covariates conditional on responses. See Manski (2003, Chapter 6) and Manski (2007, Chapter 6). 

 

3. Application to COVID-19 Antibody Tests 

 

 FDA (2020) reports estimates of sensitivity and specificity for antibody tests developed by twelve 

companies, each of which was granted an Emergency Use Authorization. It reports estimates of PPV-NPV 

under the assumption that the population infection rate equals 0.05. In most cases, the estimates of either 

or both of sensitivity and specificity are based on blood drawn from a small number of persons. I focus on 

three tests in which each of the samples used to estimate sensitivity and specificity had at least one hundred 

observations. 

 Table 1 uses the sensitivity and specificity estimates in FDA (2020) to estimate bounds on PPV and 

NPV. The sensitivity and specificity estimates are plugged in for P(x = p|y = 1) and P(x = n|y = 0) in (2a)-

(2b). The bounds are computed under the assumption that the prevalence P(y = 1) lies in the interval [0.017, 

0.618] reported by Manski and Molinari (2020) for New York on April 24, 2020. 

 The table also shows confidence intervals for the partially identified PPV and NPV. The lower (upper) 

limit of each confidence interval is computed using the lower (upper) limits of the confidence intervals for 

sensitivity and specificity stated in FDA (2020). The latter confidence intervals have nominal coverage 

0.95. Hence, the confidence intervals derived for PPV and NPV have nominal coverage 0.952 = 0.9025. 

 The heading for each panel gives the name and type of the antibody test in which sensitivity and 

specificity are measured. The first two rows show the sensitivity and specificity estimates reported in FDA 

(2020). The third and fourth rows show the FDA estimates and confidence intervals for PPV and NPV, 

assuming P(y = 1) = 0.05. The fifth and sixth rows show the estimated bounds and confidence intervals for 

PPV and NPV, computed using (2a) and (2b). 

 For all three tests, the table shows a striking asymmetry in the positions and widths of the estimated 

bounds for PPV and NPV. The estimated lower bounds on NPV are all greater than 80% and the upper 
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bounds are near 100%. The associated confidence intervals are only slightly wider, with lower bounds 

greater than 75% and upper bounds again near 100%. Thus, persons receiving negative test results can be 

reasonably confident that they do not have antibodies to COVID-19. 

 In contrast, the estimated bounds on PPV have widths ranging from about 40% to 70%, with even 

wider confidence intervals. The upper bounds are all near 100%. The problem for risk assessment is that 

the lower bounds are quite low in magnitude, being 60.4%, 28.9%, and 55.9%. The lower bounds of the 

confidence intervals are considerably lower still. Thus, persons receiving positive test results should not be 

confident that they have antibodies to COVID-19. 

 The asymmetry in the bounds on PPV and NPV is a consequence of the asymmetry in how the bound 

[0.017, 0.618] on prevalence determines these bounds, noted in Section 2. The lower bound on PPV occurs 

when prevalence is 0.017 and the upper bound when prevalence is 0.618. The lower bound on NPV occurs 

when prevalence is 0.618 and the upper bound when prevalence is 0.017. The lowest prevalence value 

0.017 is much closer to zero than the highest value 0.618 is to one. 

 

4. Conclusion 

 

 COVID-19 antibody tests have imperfect accuracy. For risk assessment and clinical decision making, 

test accuracy should be measured by PPV and NPV. Yet the medical literature regularly reports sensitivity 

and specificity. Given estimates of sensitivity and specificity, PPV and NPV can be derived if one knows 

the prevalence of the disease, but there is considerable uncertainty about the prevalence of COVID-19. This 

paper has shown how to derive bounds on PPV and NPV given estimates of sensitivity and specificity and 

credible bounds on prevalence. Applying these bounds to tests authorized by the FDA, narrow bounds for 

NPV and wide bounds for PPV are found to hold with the current limited knowledge of prevalence. 
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Table 1: Test Performance 

 

Autobio Anti-SARS-CoV-2 Rapid Test, Combined IgG/IgM 

 
Performance Measure Estimate of Performance Confidence Interval 

Sensitivity 88.1% (357/405) (84.6%, 90.9%)   95% coverage 

Specificity 99.0% (309/312) (97.2%, 99.7%)   95% coverage 

PPV, prevalence = 5% 82.9% (61.4%, 94.1%)   95% coverage 

NPV, prevalence = 5% 99.4% (99.2%, 99.5%)   95% coverage 

PPV, prevalence [1.7%, 61.8%] [60.4%, 99.3%] (34.3%, 99.8%)   90.25% coverage 

NPV, prevalence [1.7%, 61.8%] [83.7%, 99.8%] (79.6%, 99.8%)   90.25% coverage 

 

 

Cellex qSARS-CoV-2 IgG/IgM Rapid Test, Combined IgG/IgM 

 
Performance Measure Estimate of Performance Confidence Interval 

Sensitivity 93.8% (120/128) (88.2%; 96.8%)   95% coverage 

Specificity 96.0(240/250) (92.8%; 97.8%)   95% coverage 

PPV, prevalence = 5% 55.2% (39.2%; 69.8%)   95% coverage 

NPV, prevalence = 5% 99.7% (99.3%; 99.8%)   95% coverage 

PPV, prevalence [1.7%, 61.8%] [28.9%, 97.4%] (17.5%, 98.6%)   90.25% coverage 

NPV, prevalence [1.7%, 61.8%] [90.5%, 99.9%] (82.9%, 99.9%)   90.25% coverage 

 

 

Wadsworth New York SARS-CoV Microsphere Immunoassay for Antibody Detection, Pan-Ig 

 

Performance Measure Estimate of Performance Confidence Interval 

Sensitivity 88.0% (95/108) (80.5%; 92.8%)   95% coverage 

Specificity 98.8% (428/433) (97.3%; 99.5%)   95% coverage 

PPV, prevalence = 5% 79.4% (61.1%; 90.7%)   95% coverage 

NPV, prevalence = 5% 99.4% (99.0%; 99.6%)   95% coverage 

PPV, prevalence [1.7%, 61.8%] [55.9%, 99.2%] (34.0%, 99.7%)   90.25% coverage 

NPV, prevalence [1.7%, 61.8%] [83.6%, 99.8%] (75.5%, 99.9%)   90.25% coverage 
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