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ABSTRACT 

Innovation policy involves trading off monopoly output and pricing in the short run in exchange for 
incentives for firms to develop new products in the future. While existing research demonstrates that 
expected profits fuel R&D investments, little is known about the novelty of the projects funded by 
these investments. Relying on data that describe the scientific approaches used by a large sample of 
experimental drug projects, the researchers expand on this literature by examining the scientific 
novelty of pharmaceutical R&D investments following the creation of the Medicare Part D program. 
They find little evidence that the positive demand shock implied by this program prompted firms to 
undertake scientifically novel R&D activity, as measured by whether the specific scientific approach 
had been used before. However, they find some evidence that firms invested in products involving 
novel combinations of scientific approaches. These estimates can inform economists and 
policymakers assessing the tradeoffs associated with marginal changes in commercial returns from 
newly developed pharmaceutical products.



1 
 

1. Introduction 

 Pharmaceutical pricing attracts large amounts of economic, policy, and political attention. This 

is perhaps not surprising. The five, six, and even seven figure price tags for many drug treatments not 

only bear little relationship to marginal costs, they make potentially life-saving treatments unaffordable 

for nearly anyone who lacks generous insurance coverage, while making insurance itself increasingly 

expensive for everyone. Moreover, many of these high pharmaceutical prices are the result of 

deliberate policy choices. Not only do drug makers receive patent protection, the United States 

government deliberately leaves drug pricing largely to market forces. This stands in sharp contrast to 

most other developed nations, where drug prices are constrained through the exercise of monopsony 

power by purchasing entities. Nevertheless, patent protection and market-based pricing remain a 

pivotal component of the existing U.S. innovative system, as they encourage the development of new 

products by solving a fundamental economic “hold up” problem; i.e. biopharmaceutical firms may be 

unwilling to make value-creating investments in new products without a reasonable belief they will be 

able to appropriate a large enough share of the created value.  

In accordance with the theory underlying these policies, there is broad consensus in the 

academic literature that increases in the expected profitability of new drugs elicits a supply response 

(e.g. Ward and Dranove, 1997; Acemoglu and Linn, 2004; Finkelstein, 2004; Cerda, 2007; Kyle and 

McGahan, 2012; Blume-Kohout and Sood, 2013; Dubois et al., 2015). Opponents of policies intended 

to reduce drug prices cite this body of empirical evidence demonstrating dynamic innovation effects, and 

argue that price regulation would diminish the future supply of potentially life-enhancing and life-

saving breakthrough drugs that offer new treatment pathways.1 Supporters of policies to limit drug 

prices counter that the overall supply response masks considerable heterogeneity in the types of drugs 

                                                 
1 For example, Heartland Institute Senior Fellow Joseph Bast (2004) writes: “Increasing importation means cutting off the stream of 
investment that makes this system sustainable. It means fewer new lifesaving drugs.” 
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developed in pursuit of new market opportunities. Specifically, they argue that dynamic innovation 

effects are largely limited to me-too or follow-on drugs, whereby drug makers “play it safe” and primarily 

duplicate the science of established products.2 The largely unstated assumption in this argument is 

that the welfare created by such products is insufficient to justify the deadweight loss caused by today’s 

higher prices and the associated rent seeking.  

This debate highlights the fact that regulations aimed at reducing drug prices may not only 

impact consumer welfare through changes in the amount of R&D investment undertaken by firms, but 

also through the nature of funded projects. While the existing literature conclusively shows that the 

prospect of lowering expected profits will reduce the total amount of innovation, it provides little 

evidence about the composition of this response.  

In this paper, we expand the existing literature by revisiting the industry response to the 

increase in expected profits created by the passage of Medicare Part D.3 We specifically focus on the 

novelty (rather than the number) of clinical trial activity initiated in response to the positive demand 

shock implied by the program. There are many ways to classify novelty.4 In this paper, we consider 

whether a drug represents the first application of a new molecular-targeting design and would 

therefore be considered novel from a scientific perspective. This definition is intended to capture 

information about how the inherent risk and/or cost of development to the innovative firm varies 

across potential products.   

                                                 
2 For example, Marcia Angell, former editor of the New England Journal of Medicine, states that “[i]n fact, the big drug companies now 
concentrate mainly on … producing variations of top-selling drugs already on the market—called ‘me-too’ drugs (emphasis added). There 
is very little innovative research in the modern pharmaceutical industry, despite its claims to the contrary” (Angell, 2010).  Wikipedia 
defines “me-too drugs” as a drug product that contains an active pharmaceutical ingredient that is chemically related, and usually very 
structurally similar, to a known active pharmaceutical ingredient…The term follows from the phrase "me too" and is usually used in a 
negative way, the idea being the me-too drug simply rode the coattails of the research and development done to develop the prototype 
API.” 
3 In a recent paper that informs our methodology, Blume-Kohout and Sood (2013) find that after the 2003 passage of Medicare Part D, 
which increased the demand for drugs by elderly Americans, drug makers ramped up their research into drugs targeting seniors. 
However, these authors do not examine the novelty of the response, which is the central question of our paper. 
4 For example, in a prior working paper, we considered a measure of whether a drug offered therapeutic innovation, i.e. whether a drug 
under development had the potential to be the first to treat a particular condition (Dranove et al, 2014). One might also examine sales 
of drugs that reach the market, though this is a mixture of both innovation and potential rent seeking.  

https://en.wikipedia.org/wiki/Active_ingredient
https://en.wikipedia.org/wiki/Pharmaceutical
https://en.wikipedia.org/wiki/Chemical_similarity
https://en.wiktionary.org/wiki/me_too
https://en.wiktionary.org/wiki/ride_the_coattails
https://en.wikipedia.org/wiki/Research_and_development
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While it is clear potential new drug products vary in their scientific novelty, there is an obvious 

question as to why firm investment responses to demand shocks may systematically differ based on 

the potential product’s novelty. A simple way to think about this would be to consider that firms make 

investment decisions in new products by selecting projects from a set of opportunities, each of which 

has an expected discounted net present value (NPV). The elasticity of investments in new products 

with respect to a demand shock ultimately depends on the hazard rate of the associated density 

function of these NPVs. It is not hard to imagine that the distribution of NPVs differs based on the 

novelty of the potential product and that there are situations and market conditions where the 

associated hazard rate is smaller for more innovative drugs.5 Lacking knowledge about hazard rates 

by the innovativeness of the project, the magnitude of the elasticity of innovation to expected market 

profits at any given point in time, and whether or not that impact varies by the novelty of the project, 

is an open empirical question that we attempt to address in our setting.  

In answering the question of whether and how the investment decisions of firms vary based 

on scientific novelty, we focus on clinical trial activity rather than the number of released products. 

We do this for several reasons. First, very few experimental drugs actually reach the market, greatly 

limiting the statistical power of any study focusing solely on the introduction of new products. In 

addition, our focus in this paper is on the way firms’ R&D investments respond to changes in expected 

demand, which is better proxied by variation in the number of executed clinical trials rather than that 

of successful products. Our measure of scientific novelty captures an important element of the 

uncertainty facing innovative firms at the time they make investment decisions, and thereby informs 

                                                 
5 It can be shown that for some underlying distributions of NPVs and some range of threshold NPVs above which 
research is undertaken, taking a mean preserving spread over NPVs – which could represent an increase in 
innovativeness – will necessarily reduce the elasticity. 
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the debate on whether drug makers target new market opportunities by engaging largely in safer “me-

too” research, or riskier “breakthrough” research.  

Indeed, as we show below, our measure of scientific novelty is correlated with other potentially 

welfare relevant metrics such as sales revenue and federal designations of therapeutic efficacy. 

Information from scientifically novel activities could even be beneficial by fostering future attempts 

at innovation, even if the original activities did not themselves directly result in a new product. 

Accordingly, our results show that patents underlying the projects that our metric qualifies as 

scientifically novel tend to garner a larger amount of forward patent citations that others deemed less 

novel. This suggests that scientifically novel drug development projects may affect welfare by 

influencing the path of science even if they do not directly result in new products.  

To characterize the scientific novelty of drug development activities (i.e., clinical trials), we 

exploit the fact that the modern drug development process often relies on efforts to increase 

therapeutic value through the deployment of a specific “target-based action” (TBA). Each TBA 

corresponds to a pair of both a targeted biologic entity and the mechanism used to modify its function. 

For example, a drug associated with the TBA “p38 MAP kinase inhibitor” acts by inhibiting the 

function of p38 mitogen-activated protein kinases, while the TBA described as a “thromboxane A2 

antagonist” works by antagonizing (i.e., blocking the response of) the thromboxane A2 lipid. As such, 

TBAs provide precise descriptions of the biological approach used by experimental products to 

produce a pharmacological effect. Given the comprehensiveness of our dataset and the large the 

number TBAs used by products therein (over seven thousand), we can confidently score the scientific 

novelty of R&D activities by assessing the extent to which a given TBA (or combination thereof) has 

been deployed in the past.    

An important aspect of our analysis is the recognition that there are two ways to consider 

novelty with respect to TBAs. The first aligns with the usual notion of scientific novelty discussed in 
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the literature, namely, whether an experimental drug is the first to use or “translate” a single given scientific 

approach (i.e., a TBA) for therapeutic purposes. We track this form of novelty through a “translational 

novelty score,” which is based simply on the number of previously tested products using the same 

approach. The underlying assumption behind this measure is that each application of a TBA in a 

clinical trial increases scientific knowledge about that particular TBA, thereby decreasing the riskiness 

of its subsequent applications. In other words, the first firms to deploy a given TBA are making riskier 

investments that have the potential for true scientific breakthroughs but also the greater potential for 

failure. This paves the ways for later firms to deploy the same TBAs with less risk. In addition to 

making smaller scientific contributions, subsequent deployments more closely correspond to the kinds 

of “me-too” investments that tend to be derided by industry critics.  

The second way to measure drug novelty is rooted in the observation that many experimental 

drugs expand treatment options by utilizing more than a single TBA. Scientific novelty can therefore 

also stem from the deployment of new combinations of TBAs. Our interest in this form of novelty spurs 

from the increasingly wide recognition in the medical community that drugs modifying the function 

of a single biological target may be limited in their ability to treat diseases with a complex systems 

biology, like asthma, type 2 diabetes mellitus, HIV, and bacterial infections, among others. As the 

medical community attempts to tackle these more complex conditions, drug combinations or 

“cocktails” are increasingly becoming the standard of care (Fishman and Porter, 2005; Zimmerman et 

al., 2007). Such combinations are purported to enable pharmacological effects that are either more 

robust, complementary or reinforcing (Zimmerman et al., 2007). Accordingly, approximately 24 

percent of the candidates in our data employ multiple TBAs.   

Despite these facts, existing definitions of novelty in the literature largely ignore the potential 

innovation that can come from combinations of existing scientific techniques. Our second measure, 

which we call the “recombinant novelty” score, recognizes that the recombination of scientific 
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approaches previously deployed in isolation is itself risky (albeit potentially not as risky as the first use 

of a TBA in isolation), but can also create new therapeutic value.  This is true even in situations where 

the underlying TBAs of the bundle have themselves been independently deployed. Such previous 

deployments provide some information about the TBAs in isolation but do not necessarily decrease 

the risk of a novel combination of TBAs.  

By classifying both the target and the mechanism, TBAs provide more accurate information 

about scientific novelty than simply considering the broader concept of a mechanism of action. This 

level of detail allows us to more accurately classify whether products represent decisions by firms to 

undertake novel research. This is also true compared to other measures used in previous work where 

novelty was defined based on the number of available treatment options at the condition level 

(Dranove et al., 2014).  

To demonstrate the importance of the detail provided by our two novelty metrics, consider, 

the set of newly developed products to treat hepatitis-C (HCV). In 2008, Vertex initiated a phase III 

clinical trial for telapravir (Incivek). This product was a combination of existing TBAs and under our 

translational novelty metric—which gives zero for the least novel and one for the most novel 

therapies—earned a score of 0.33.6 Given there were existing (but ineffective) hepatitis-C treatments 

available at the time, telapravir would not be scored as particularly novel under a metric based on new 

treatment options at the condition level such as those used in Dranove et al. (2014).  

Approximately 3 years after the release of telapravir, Gilead released its first blockbuster HCV 

cure sofosbuvir (Sovaldi). Again, given sofosbuvir was not the first product to treat HCV and the fact 

that telapravir was a fairly effective treatment, it would not be considered particularly novel under a 

metric based on new treatment options. However, sofosbuvir is classified in the most novel category 

                                                 
6 The product is a combination of the TBA “hepatitis c virus ns3 protease inhibitor” with had zero previous phase 3 deployments and 
“p-glyco protein inhibitor” which had 4 previous phase 3 deployments 
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using our TBA-based metric of translational novelty (i.e. a product using a TBA that has never been 

deployed before in that phase of clinical development). This illustrates the clarity of information 

provided by our TBA-based measure compared to disease-based novelty metrics.   

While sofosbuvir was a dramatic and innovative step forward in HCV, it still was an 

incomplete treatment for many individuals with this condition. Soon after its release, Gilead released 

a product that combined sofosbuvir and ledipasvir into a single product (Harvoni). Under our 

translational novelty metric this product receives a score of 0.29.7 However, this was the first time 

these TBAs were combined and therefore it is classified in the most novel category for recombinant 

novelty. This novelty was rewarded in the market as this combination product quickly surpassed the 

sales of sofosvubir, while also becoming the standard of care for HCV.  

This standard of care, however, still required 12 weeks of treatment and was not available for 

all genotypes. This led to another combination product of glecaprevir and pibrentasvir (Mavyret). As 

the field had meaningfully advanced by this point, this product had a translational novelty score of 

only 0.1.8 However, this was only the second time this combination of TBAs had been deployed in a 

phase 3 trial, so the recombinant novelty score was 0.5. This was again reflected in the data where 

both Mavyret and Harvoni compete heavily for market share in the remaining HCV population (Liu, 

2019). Taken together, the example of HCV products demonstrates how the detail available in our 

TBA based metric allows us to carefully classify the scientific novelty of potential new products.  

To identify the causal effect of Medicare Part D we follow the previous literature and exploit 

the age-specific nature of the beneficiaries of the expansion (e.g., Blume-Kohout and Sood, 2013). 

Older individuals have a different disease profile than their younger counterparts and we calculate the 

                                                 
7 This product was a combination of the TBA “hepatitis c virus ns5b polymerase inhibitor” which had 3 previous phase 3 deployments 
and “hepatitis c virus protein ns5a inhibitor” which had 2 previous deployments. (2 deployments) 
8 This product had the same combination of TBAs as Harvoni, i.e. a “hepatitis c virus ns3 protease inhibitor” and a “hepatitis c virus 
protein ns5a inhibitor.”  



8 
 

share of each clinical indication exposed to patients covered by Medicare. We then examine whether 

changes in this clinical trial activity after the passage of Part D varies systematically with this measure 

of Medicare market share. Our assumption is that if the change in expected returns resulting from 

Part D is driving a change in clinical trial activity, products targeting indications with greater exposure 

to Medicare would experience a larger increase in such activity compared to those with less exposure.  

Overall, our findings suggest the strongest responses to the change in demand caused by the 

increase in Part D come from clinical trials that represent less scientific novelty. For example, we find 

a clear increase in clinical trials for those TBAs most frequently used in prior drug development efforts. 

This increase begins relatively quickly and stabilizes in 2009, suggesting some drugs were likely “pulled 

off the shelf” and entered into clinical trials almost immediately after Part D increased their expected 

profitability. To provide perspective on the overall magnitude of the effect, from 2012-2018 there was 

a 106 percent larger number of clinical trials for these least novel drugs.  

In contrast, the change in clinical trials for the most novel category (i.e. TBAs deployed for 

the first time) was more muted and not evident until 2015. In particular, for the 2012-2018 period, we 

estimate only a 14 percent increase in trials for the most novel drugs. Furthermore, the estimated 

increase in the most novel category was almost entirely driven by small molecule products. Biological 

products saw no increase in clinical trials for previously undeployed TBAs; however, we do estimate 

an increase in the development of biological products for TBAs in all other novelty categories. As we 

discuss below, it is unclear to what degree the use of TBAs in small molecule products is a measure 

of an ex ante decision to undertake a more novel or risker project compared to an ex post rationalization 

of the investment. Looking at novelty among combinations of TBAs, we find increases in clinical trials 

across all levels of novelty. For the least novel recombinant category, we show an 84 percent increase 

in clinical trials compared to a far more modest 14 percent increase in clinical trial activity for the most 

novel combinations. It is possible that this more muted effect for the most novel products reflects a 
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longer development timeline for these products. That said, we do have nearly 15 years of data since 

the passage of Part D so there is a meaningful length of time to observe effects.  

Taken together, our results suggest that the dynamic innovation effects from the passage of 

Part D involves clinical trials that do not represent the largest amounts of scientific novelty. The most 

translationally novel products exhibit little response to the marginal demand shocks. There is, 

however, more novelty in the deployment of combinations of TBAs in response to potential returns. 

As we consider these results, it is important to remember that the demand shock from Part D 

represents a relatively modest shock to a pharmaceutical industry that includes over approximately 

$400 billion in U.S. revenue and over $1 trillion in global revenue per year. As we discuss in more 

detail below, it remains unclear whether a larger shock would change this pattern of novelty, perhaps 

by changing the returns to truly novel products. Before presenting our measures of novelty and main 

results, we next discuss the existing literature, describe our data, and provide a more thorough 

discussion of TBAs and the drug development process.  

 
2. Background 
 
2.1 Prior Literature 
  

The connection between expected profits and investments in innovation has been widely 

examined. Several studies document the link between expected profitability and pharmaceutical R&D. 

Ward and Dranove (1997) and Acemoglu and Linn (2004) examine long-term shifts in U.S. demand, 

based on epidemiological data and demographic trends, respectively. Cerda (2007) extends these 

methods to account for the endogeneity of market size to prior drug discovery, while Dubois et al. 

(2015) extend the prior work to cover global demand. Finkelstein (2004) finds that government 

subsidies to vaccine research generated increased production of new vaccines. Kyle and McGahan 
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(2012) show that increases in patent protection encourage more R&D. None of these papers examine 

whether the response varies with the novelty of the drug.  

The closest paper to ours in this literature is Blume-Kohout and Sood (2013), who also study 

the pharmaceutical innovative response to Part D. Their paper, however, differs from ours in several 

ways. The fundamental difference is that these authors, like the rest of the existing literature, restrict 

their attention to documenting an overall supply response and ignore aspects related to the type of 

drugs whose development is catalyzed. Thus, by construction, they cannot comment on the degree of 

novelty in the innovative response that they identify. Beyond this core difference, we are also able to 

examine a considerably longer sample and separate out the development of small molecules and 

biological drug products, products where the economics of the production process might reasonably 

lead to differential responses to the same demand shock.9 Our results suggest that all of these 

considerations (novel versus non-novel innovation, short versus long-term impacts, small versus large 

molecules) are first order aspects in characterizing the novelty of Part D’s dynamic innovation effects. 

  Another related study is Krieger et al. (2018). This study appears to be even more similar to 

our paper in that the authors also consider questions regarding the scientific novelty of new products 

in response to Medicare Part D. However, our two papers address different underlying economic 

questions. Krieger et al. (2018) is interested in whether firms that gain more access to internal capital, 

as a result of having a stock of products positively affected by the creation of Part D, change the 

riskiness of their R&D investments. They are primarily examining an important corporate finance 

question about potential credit market inefficiencies rather than our separate question about the 

response to a change in expected market size. In addition, these authors rely on a different underlying 

measure of novelty based on the chemical structure similarity of experimental small molecules. While 

                                                 
9 The period covered by sample used by Blume-Kohout and Sood (2013) is 1998-2010 period. The period covered by our sample is 
1997-2018.  
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our “translational” novelty measure is quite similar in spirit to theirs, their approach in measuring 

novelty is limited in the sense that it is only available for chemically synthesized drugs (i.e., small 

molecules) and can’t be readily applied to biological products.10 In recent years, these biological 

products have represented a growing share of high cost drugs and therefore are quite relevant to the 

question about the innovation effects of drug spending.  

2.2 Medicare Part D 

Medicare is a social insurance program in the U.S. that primarily covers individuals over the 

age of 65. First created in 1965, this program originally covered some portion of the costs for physician 

and hospital services, but offered very limited pharmaceutical coverage. As pharmaceutical spending 

grew so did political pressure to expand Medicare to cover these products. This resulted in the passage 

of Medicare Part D as part of the Medicare Modernization Act of 2003. Prior to the Act’s passage, it 

was unclear whether there would be a prescription drug benefit added to Medicare and certainly little 

information about its eventual form. Part D became effective in 2006. In our analysis, we consider 

2004 as the date where firms would first change their investment decisions in response to the law. 

However, we are also cognizant that there was marked uncertainty about the impact of Part D on the 

industry prior to its final regulations were established. Therefore, we allow our estimates of the change 

in the firm’s investments to change over the post-reform time period. 

The implementation of Part D caused an immediate increase in pharmaceutical insurance 

coverage for seniors. In 2006, nearly 26 million elderly individuals were covered by the expansion. 

This number grew to over 30 million by 2011, the end of our sample period. Many of these individuals 

already had coverage and therefore the program is estimated to have provided new coverage to 

                                                 
10 As we explain below in Section 3.2, our treatment of the Part D shock (which follows from Duggan and Scott-Morton, 2010) also 
differs significantly from Krieger et al. (2018). Because they are interested in a firm’s response based on additional internal capital, by 
necessity firms must have at least one product on the market. In contrast, we are interested in the “pull” response from the change in 
market size so we can also include It is also important to note that the many smaller firms without approved drugs might be the source 
of the most novel innovations. 
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approximately 5 million individuals (Gruber and Engelhart, 2011). Therefore, Part D represents a 

change in expected returns that is smaller than might be expected by simply observing the size of the 

program. Despite this relatively high degree of crowd-out, studies have found that the broader Part D 

coverage caused an increase in elderly pharmaceutical use (Ketcham and Simon, 2008; Yin et al., 2008). 

Pharmaceutical companies might be concerned that an expanded Medicare would use its 

monopsony power to reduce drug prices in the same way it does on payments to hospitals and 

physicians. This would decrease the potential increase in revenues resulting from a more broadly 

insured population. However, the structure of Part D made this unlikely. Unlike other government 

programs such as the Veterans Administration, Part D is run by a series of private insurance programs 

(similar to the health insurance exchanges under the Affordable Care Act). In addition, the law 

explicitly prohibits the Center for Medicare and Medicaid Services (CMS) from directly bargaining 

with pharmaceutical firms. This suggests that Part D represented a substantial and positive financial 

shock for pharmaceuticals products targeting conditions with a large number of elderly patients. This 

shock may have been even more apparent for biologic products in our database since the profits of 

small molecule products are generally limited by the eventual prospect of generic entry. For biologicals, 

in contrast, the prospect of generic (biosimilar) competition was a remote possibility over the covered 

period.11 As a result, firms introducing new biologic products could expect near monopoly status on 

their specific product for a longer time horizon than the length of their patent.12 This could be 

particularly important for products that have been “sitting on the shelf” for a period of time resulting 

in less patent protection for firms making new investments to bring the product to market.  

3. Data 

3.1 Pharmaceutical R&D data 

                                                 
11 At the time period of the passage of Part D (and for over a decade after) there was no regulatory process for a firm to introduce 
biosimilars (broadly equivalent to generic biologic products). 
12 Competition for these biological products could still emerge from therapeutic substitutes. 
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We utilize pharmaceutical R&D data from Clarivate Analytics’ Cortellis pharmaceutical 

intelligence subscription service, which is widely regarded as the most comprehensive and up-to-date 

repository of records for international pharmaceutical R&D activities.13 Cortellis uses information 

from a variety of sources, updated and curated daily by more than 500 experts.14 Our April 2019 data 

include information on over 70,000 molecules developed worldwide by over 4,300 companies since 

the early 1970s. These data provide a broad picture of the development efforts of the global 

pharmaceutical industry. We will focus on drug development activities surrounding the 

implementation of Part D, from 1997-2018.  

Cortellis data describe product development histories at the indication level (i.e., 

product/targeted disease level). The data track development from the preclinical stage, when 

molecules are formulated, optimized, and tested with animal and simulation models, through the 

initiation of clinical trials on humans (i.e., Phases 1, 2, and 3), and, finally, through regulatory 

assessment activities (review and eventual approval). Cortellis assigns each record a single date 

indicating when testing begins.  

  Table 1 illustrates how we construct our analytic sample. Throughout the Table, we 

differentiate between the two main types of products: (1) small molecules and (2) biologicals. Panel A 

describes the number of products and trials available from the full dataset. Although companies initiate 

the lion’s share of development activities within our sample period, a significant share was initiated 

before it. We also note that there are about twice as many trials as there are products. This accounts 

for the fact that products often have more than one indication (i.e., targeted condition), each of which 

                                                 
13 The comprehensiveness of the Cortellis dataset has made it a popular data source for recent research in the area (e.g., Chandra et al., 
2019; Krieger et al., 2018; Gaessler and Wagner, 2018; Hermosilla, 2019). 
14 Information sources include company reports, clinical trial registries, academic articles and conferences, regulatory agencies, 
specialized media, among others. 
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requires some amount of independent development activity. Panels B and C describe the subsets of 

the full dataset that have sufficient information for our analysis.  

As we describe in the next section, we base our measures of technological novelty on 

associated target-based actions (TBAs), which broadly correspond to the mechanism by which 

products produce a pharmacological effect. TBA information is available for about 60 percent of 

products in the full dataset (70 percent of trials) and these are the products that we include in our 

analysis.15 As shown in Panel B, products with TBA information are deployed in about 96,000 trials 

across sample and non-sample periods. We utilize this entire set of records to construct the novelty 

metrics.  

While Cortellis data describe the targeted condition by each indication, our analysis is 

conducted using slightly more aggregated cross-sectional units, 3-digit ICD-9 disease category codes.16 

As detailed below, this aggregation is required to link to our proxy for the magnitude of the Part D 

demand shock across targeted conditions. Panel C of Table 1 reports statistics for the subset of the 

data for which the proxy was successfully linked. This subsample includes over 76,000 trials initiated 

during the sample period (corresponding to about 36,000 unique products).  

Figure 1 presents the distribution of trials across therapeutic areas, showing a marked 

domination of cancer-targeted research. This distribution is broadly consistent with the patterns 

reported by Ernst & Young (2012), which aims to describe the overall state of the industry. Figure 2 

presents the number of trials initiated each year, by stage. The bulk of trials (about 60 percent) 

                                                 
15 The Cortellis editorial team collects drugs’ TBA information from the same types of sources from which other drug information is 
obtained (company websites, press releases, journal articles, clinical trial registries, conferences, etc.). According to our communication 
with the company, “if that field [i.e., TBA] is empty it means either that information has not been publicly released, or is not relevant to 
that particular drug” (quote from email exchange with Cortellis’ support team, bracketed clarification added). Whereas missing TBA 
information for small molecules may primarily stem from cases in which these have not been ascertained, for biologicals it is likely due 
to firms’ secrecy concerns. There could be a concern that firms developing truly novel products may be more likely to obscure this 
information from the market. In Appendix A we examine whether the creation of Part D resulted in products with more exposure to 
Medicare being less likely to provide TBA information. We find no evidence of such an effect.  
16 ICD stands for International Classification of Diseases. The ICD-9 ontology (now ICD-10) is the standard categorization used for 
medical billing.  



15 
 

correspond to preclinical development. Phase 1 and Phase 2 each account for about 15 percent and 

Phase 3 accounts for about 5 percent. Whereas the number of Phase 1-3 trials display a slight 

increasing trend, the number of preclinical trials experiences a sharp increase in 2008-2010.   

3.2 Measuring the Part D demand shock across targeted conditions 

To measure the impact of Part D on the demand for drugs across targeted conditions, we 

adopt the strategy of Duggan and Scott-Morton (2010) and Blume-Kohout and Sood (2013). This 

strategy relies on a variable called “Medicare Market Share” (“MMS”), which reflects the varying 

importance of drug consumption by Medicare enrollees across treatment areas. We identify the effect 

of Part D by examining changes in the number of clinical trials for conditions that are more or less 

exposed to the expansion as measured by MMS.  

We compute MMS using the Medical Expenditure Panel Survey (MEPS). This is a large and 

representative sample for the utilization of prescription drugs, medical services, and insurance in the 

United States. MMS is constructed from the yearly “prescription” and “insurance” MEPS files of years 

prior to the enactment of Part D (1997-2003). Prescription files list the drugs consumed by 

respondents. The associated medical conditions are reflected by a 3-digit ICD-9 treatment area code 

for each record. Insurance files report the type of insurance coverage held by the respondent each 

year. Combining the information of these two files, we compute MMS as share of prescriptions issued 

to Medicare enrollees within each 3-digit ICD-9 disease category.17 A high MMS value will reflect a 

larger impact of the Part D shock on the demand for drugs within a certain ICD-9 disease category.  

We link MMS to our main dataset by classifying targeted diseases in the Cortellis dataset into 

their respective ICD-9 categories.18 The matched dataset covers 337 different ICD-9 categories, each 

                                                 
17 MEPS representativeness weights are used to construct MMS. While our definition MMS is similar in spirit to Duggan and Scott-
Morton (2010), it is not exactly the same. In particular, because their analysis is focused on prices at the brand name drug level, their 
MMS variable is computed as the percentage of Medicare patients using the drug prior to the passage of Part D.  
18 Two expert medical coders independently assigned 3-digit ICD-9 codes to the targeted conditions listed in the Cortellis dataset. 
Coding differences were then resolved by one of the authors in consultation with the coders.  
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of which includes, on average, 3.8 conditions of the Cortellis disease ontology. In line with this 

aggregation procedure, we will henceforth use “condition” to refer to each 3-digit ICD-9 category. 

Figure 3 describes the resulting variation of MMS across conditions. The distribution makes intuitive 

sense: conditions commonly associated with younger people tend to receive lower MMS values; those 

associated with older populations, larger ones. For example, MMS equals or approaches zero for 

conditions such as infertility, acne, and contraception. Conditions such as ischemic stroke, bipolar 

disorder, and headaches are associated with MMS values around the distribution’s median. Macular 

edema, Parkinson’s disease, heart failure, and dementia have MMS values in the upper decile.  

4. Measuring translational and recombinant novelty using target-based actions (TBAs) 

In this section we discuss the science of target-based drug discovery, how we measure scientific 

novelty, and how our measure of novelty compares to the existing literature. 

 

4.1 Target-based drug discovery  

Until the 1980s, drug discovery was primarily an empirical endeavor where firms screened 

thousands of chemically-synthesized molecules (“small molecules”) in search of symptom reduction 

(Boyd, 1999). From a pharmacological point of view, such effects could only arise if the screened 

molecule bound to a disease-modifying biological target such as a protein (Zheng et al., 2006). During 

this period, however, it was rarely known before screening whether and which target a molecule would 

bind to. Ex-post studies could help to ascertain this mechanistic knowledge, but techniques available 

to do so were still incipient. As a result, most drugs went through early stages of development without 

a clear understanding of how they modified the biology of the targeted disease (Drews, 2003; Swinney 

and Anthony, 2011).  

 The so-called “biotechnology revolution” ignited by the scientific breakthroughs of the 1970s 

and 1980s fundamentally changed this drug discovery paradigm. These advances allowed researchers 
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to better understand the biological mechanisms deployed by small molecule drugs and implement a 

process of rational drug design. More importantly, they also made it possible to “engineer” biological 

drugs (also referred to as “large molecule” drugs). As opposed to small molecules, biological products 

are living organisms (e.g., antibodies) purposefully designed to bind to specific targets.  

Fueled by the realization that mechanistic knowledge of the drug target could help develop 

more effective and safe drugs (for example, through improved dosing or sharper characterization of 

response and toxicity), target-related information became an important input for drug discovery. 

Besides enabling the design of biologicals, target-related knowledge also catalyzed the innovation of 

small molecules by helping to “direct” randomized screenings towards chemical structures associated 

with favored mechanisms. This “hypothesis-based” or “target-based” approach has become a leading 

way by which the modern pharmaceutical industry identifies new compounds (Swinney, 2004).  

To interpret TBA data and how it relates to the strategic decisions of firms, it is important to 

highlight the differences in the discovery process for small molecules versus biologicals. By definition, 

biologicals are always formulated through target-based drug discovery. Thus, the respective novelty 

of TBAs can be seen as the fundamental technological choice made by the developer. For small molecules 

on the other hand, TBAs reflect a technological choice only if knowledge of the target actually guided 

the screening process. In cases where this information was absent or ignored at the discovery stage, 

TBAs should be interpreted as an incidental property of the molecule rather than a strategic decision 

of the firm. While pipeline data (such as Cortellis) do not tell us whether TBA information guided the 

discovery of each small molecule product, an in-depth review of the protocols used to discover drugs 

approved by the FDA between 1999 and 2008 found that about one-third of approved small 

molecules had been discovered without reliance on mechanistic knowledge of the target (Swinney and 

Anthony, 2011). This suggests that, over the period covered by our sample, non-targeted discovery 
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was still extensively utilized. Therefore, as we interpret our results, TBA deployment among small 

molecules should be taken as a less deliberate choice than for biologicals.  

4.2 Patterns of TBA deployment 

We base our novelty metrics on the idea that each time a product is tested in a clinical trial, 

information that characterizes the performance of its underlying scientific approach is produced and 

dispersed among the scientific community. This information likely reduces the risk of subsequent 

deployments of the particular scientific approach. Thus, for a product with a given TBA, our measure 

of novelty is based on the number of other products with the same TBA that have been previously 

tested. We refer to this number as the number of prior TBA “deployments.” Here we review the three 

main patterns of TBA deployment that we observe in our sample.  

The first of these patterns corresponds to the continuous growth in the stock of “known” 

TBAs (i.e., the set of unique deployed TBAs). At the beginning of our sample (1997), products listed 

by Cortellis referenced 1,064 unique TBAs. Over time, this number grew at a roughly stable rate of 

about 350 TBAs a year. By 2018, the number of known TBAs reached 7,627. This trend suggests the 

industry has continuously engaged in attempts to translate novel science for therapeutic use.  

Over this period, each known TBA also accumulated deployments. For example, at the 

beginning of our sample, the average TBA had been deployed in approximately 4 different 

experimental products. By 2018, this number was about 7.2. Throughout the sample period, the 

distribution of deployments exhibits a long tail. The vast majority of known TBAs are rarely deployed 

(five or fewer times), while a small minority accumulates a large number of deployments.  

Finally, we note the frequent joint deployment of more than one TBA by a single experimental 

product. As discussed above, Zimmerman et al. (2007) notes combination products like these can be 

beneficial in the treatment of complex diseases that affect multiple tissues or cells (such as diabetes), 

or for multigenic diseases with sparse genetic triggers (as many forms of cancer). One example of this 
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type of multi-TBA products is the lung cancer drug Lometrexol (Eli Lilly). This product is an 

antimetabolite, acting by down-regulating the function of metabolites (chemicals that partake in the 

process of metabolism). Specifically, Lometrexol interferes with the use of folic acid, which is why it 

is associated to the TBA “folate receptor antagonist.” Since Lometrexol also exhibits antineoplastic 

properties, it is also associated to the TBA “gar transformylase inhibitor.”19 About 30 percent of the 

trials (24 percent of products) in our data are for multi-TBA drugs. The majority of these are associated 

with two TBAs.20 As with individual TBAs, the number of known TBA bundles (i.e., unique TBA 

combinations including more than one TBA) growths at a roughly constant pace throughout the 

sample, going from about 504 in early 1997 to 6,153 by late 2018. 

4.3 Translational novelty  

Our measure of translational novelty quantifies the intensity with which the TBA (or set of 

TBAs) used by a drug entering a clinical trial has been previously deployed. To describe the metric, 

formally consider a trial i which deploys a single TBA k, and let 𝐷𝐷𝑘𝑘(𝑖𝑖) represent the number of previous 

deployments of TBA k in stages that are at least as advanced as that of trial i. For example, if i was a 

Phase 2 trial, 𝐷𝐷𝑘𝑘(𝑖𝑖) would represent the count of other products associated with k that have been 

tested in Phase 2 and/or Phase 3 prior to the initiation of trial i.21 However, 𝐷𝐷𝑘𝑘(𝑖𝑖) would not count 

any deployments of the TBA in a Phase 1 trial. We introduce this restriction because testing at more 

advanced stages produces results of higher evidentiary value (e.g., Phase 3 results will improve the 

ability to predict a TBA’s performance in preclinical testing, but not vice versa). With this, the novelty 

of trial i is computed as:  

                                                 
19 See https://pubchem.ncbi.nlm.nih.gov/compound/Lometrexol. 
20 In particular, 71.4 percent of trials are associated to a single TBA, 20.3 percent to two TBAs, 4.72 percent to three, and the remainder 
(3.5 percent) to four or more.  
21 A product that has been tested in more than one phase counts as single deployment. 

https://pubchem.ncbi.nlm.nih.gov/compound/Lometrexol
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        𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 =  
1

1 + 𝐷𝐷𝑘𝑘(𝑖𝑖) 
∈ (0,1]      (1) 

Thus, the score equals 1 only if trial i deploys k for the first time (𝐷𝐷𝑘𝑘(𝑖𝑖) = 0). If 𝐷𝐷𝑘𝑘(𝑖𝑖) = 1, the score 

is 0.5; if 𝐷𝐷𝑘𝑘(𝑖𝑖) = 2, the score is 0.33; and so on. That is, the score decreases convexly as the number 

of k’s previous deployments increases.  

For our measure of translational novelty, trials for products with TBA bundles require us to 

choose a method to aggregate the individual scores of each included TBA (i.e., the right-hand side of 

the above expression) into single translational novelty trial score.22 Our primary approach is to simply 

average the number of deployments across all included TBAs. Thus, for these “multi-TBA trials,” the 

score equals one only if all included TBAs are deployed for the first time. For trials that combine 

TBAs that have been previously deployed with others that are being deployed for the first time, 

resulting scores will be lower than one, outside the 1/n sequence, and often within the (0.5,1) interval. 

Because the specific values taken by novelty scores are largely irrelevant for our analysis (i.e. we rely 

on the ordering of these scores and not their particular magnitude), these aggregation issues are not 

meaningful to our results, and we show in section 5.2 that they do not drive our conclusions.  

Figure 4 describes the resulting dispersion of translational NOVELTY scores. The distribution 

shows a marked bimodal shape, with about 13 percent of trials scoring 1 (completely novel TBAs) 

and 57 percent scoring below 0.1 (which corresponds to a TBA previously deployed more than 10 

times). Thus, a relatively small share of trials can be deemed as translationally novel while the bulk of 

trials leverage existing scientific knowledge from previous deployments.  

  We previously noted that TBAs accumulate deployments throughout the sample. This implies 

that NOVELTY scores will, on average, decrease in later years. Since the implementation of Part D 

                                                 
22 This is not a concern for our measure of recombinant novelty where we are concerned with the novelty of the bundle and not its 
individual components. 
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occurs in the latter portion of our sample, this accumulation of TBA deployments could bias our 

estimates towards finding stronger responses among less novel drugs. In Appendix B, we present an 

alternative metric formulation that addresses this issue by quantifying novelty through each TBA’s 

percentile in up-to-date deployment distributions. The two formulations produce highly correlated 

metrics and thus the corresponding results are quite similar.   

4.4 Recombinant novelty  

As described earlier, approximately 30 percent of the trials in our data are for multi-TBA drugs. 

We compute a second recombinant score for this set, measuring deployments at the TBA bundle level. 

For example, a trial for the multi-TBA Lometrexol referenced earlier would count as single 

deployment of the two-TBA bundle that includes both the “folate receptor antagonist” and the “gar 

transformylase inhibitor” TBAs. Deployment counts are then inputted into equation (1) to score the 

novelty of the combination. Measured in this way, about a third of multi-TBA trials receive scores 

lower than one (i.e., at least one previous deployment of that exact combination of TBAs). The 

remainder of trials (all of which deploy a TBA bundle for the first time) can be split in two categories: 

(i) those of which all included TBAs have been previously deployed in the context of either a different 

bundle or in isolation (39 percent overall) and (ii) those which are novel because they include a TBA 

that is itself being deployed for the first time (28 percent overall) – either on its own or in combination 

with another TBA. For ease of reference in separating these two groups of novel recombinations, we 

call the first type of bundle, where novelty comes solely from the new combination of TBAs and not 

the individual components, “pure recombination” trials.  

4.5 Caveats and relationship to other approaches to measure drug novelty  

Our approach to measuring novelty differs from the bulk of existing literature in two main 

ways. First, whereas the literature has primarily focused on characterizing novelty through counts of 

regulatory approvals, our approach fits into the relatively small subset of studies that assess novelty by 
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looking “under the hood” of drug products, through the lens of a fine-grained categorization of 

underlying technologies.23 Two of these studies are the descriptive works and of Kneller (2010) and 

Lanthier et al. (2013). Kneller (2010) classifies the 252 New Molecular/Biological Entities approved 

by the FDA between 1998 and 2007 into two novelty categories (follow-ons and scientifically novel) 

according to whether the associated mechanism of action had been previously deployed by an 

approved drug. Lanthier et al. (2013) also focus on New Entities approved by the FDA (1987-2011), 

classifying them into “first-in-class,” “advance-in-class,” and “addition-to-class” or “me-too”.24 

Although their partition by pharmacological classes is coarser than it would be if based on TBAs, it is 

difficult to assess by how much. Shih et al. (2018) examine pharmaceutical pipelines (1996-2016), 

focusing on the deployment of novel mechanisms of action at the targeted disease level. Their analysis 

addresses translational novelty by partitioning projects into those deploying “validated” mechanisms 

(i.e., products deploying them have previously reached regulatory approval or near-approval), those 

deploying “un-validated” mechanisms (i.e., products deploying them have failed development), and 

those deploying “emerging” mechanisms (i.e., products deploying them could get approval but have 

still not been submitted). Shih et al. find that the deployment of novel mechanisms has been relatively 

more successful for rare/orphan diseases.   

Another study in the same realm is Krieger et al. (2018, “KLP”), who assess translational 

novelty based on a measure of chemical structure similarity. KLP define a molecule’s novelty as the 

inverse similarity score with respect to the most similar other (known) molecule. Their approach is 

premised on the “Similarity Property Principle,” which states that structurally similar molecules are 

likely to have similar functional properties (Johnson and Maggiora, 1990). Since TBAs correspond to 

precise characterizations of the mechanisms of action of a drug product, the KLP approach targets 

                                                 
23 This literature is reviewed by Kesselheim et al. (2013). Other approaches described in this review rely on counts regulatory designations 
and measures of novelty self-reported by developers.  
24 Lanthier et al. (2013) define classes based on FDA-established pharmacologic class designations. 
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the same notion of translational novelty of our framework.25,26  

 Beyond these differences, we offer three important caveats to our approach to measuring 

novelty. First, Krieger (2019) shows that products targeting the same TBA may vary in terms of their 

chemical structures, suggesting additional TBA deployments may propose a measure of therapeutic 

novelty that our methodology does not fully capture. Second, while Cortellis is regarded as 

comprehensive and up-to-date, there is wide recognition that information for a non-negligible share 

of all pharmaceutical R&D does not enter the public domain and may thus be “missing” from all 

datasets (e.g., Doshi et al., 2013). This consideration suggests that, if anything, our metrics may at 

times overstate “true” novelty – however this would only be a concern to which this differed 

systematically with exposure to Medicare. Finally, there could be a concern that previous deployments 

that resulted in successful trials may provide more information to subsequent innovators than those 

which didn’t provide such information. In this sense, these deployments might be more “novel.” 

Therefore, in our robustness results below we will also present evidence on whether firms differentially 

target TBAs which have been “validated” (i.e. resulted in successful products) compared to those that 

have not.  

5. Part D impact on translational novelty 

5.1 Main effects  

                                                 
25 KLP note that a molecule’s chemical structure may not fully characterize its pharmacological effect---“similar molecules may have 
divergent properties.” This suggests that, by relying on TBAs instead of structural similarity, we are reducing the amount of noise 
embedded in our measure of technological novelty. 
26 There are two additional points of differentiation between the KLP approach and ours. First, since chemical structures are available 
for small molecules only, the KLP approach cannot be directly used to score the novelty of biological products. This is an important 
caveat since biologicals account for a large percentage of R&D (about one third of trials in our data) and are often perceived as the 
more active source of therapeutic breakthroughs. Second, the variation of novelty scores resulting from their and our method has a 
different interpretation, particularly at lower realms of the novelty distribution. To see this recall that our approach awards a low 
translational novelty score if the tested TBA has a relatively large number of previous deployments. In contrast, low KLP scores follow 
from the existence of at least one other molecule of high structural similarity. This means that: (i) whereas our scores are determined by 
global patterns of TBA deployment, KLP scores are primarily driven by local patterns (i.e., similar innovation), and (ii) low KLP novelty 
scores do not necessarily reflect the repeated deployment of a specific scientific approach (in their case, chemical structure). 
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To estimate potential changes in the novelty of R&D investments in response to the Part D 

demand shock, we group our trials into four groups based on their NOVELTY score. The first three 

groupings involve drugs with NOVELTY < 1; i.e., drugs with TBAs that were used at least once 

before. We divide these into three equal-sized groups: Categories T1 (least novel), T2, and T3.27 On 

average, trials in Category T1 have NOVELTY = 0.02 (65 previous deployments), whereas those in 

Category T3 have NOVELTY = 0.33 (2.6 previous deployments). Category T4 includes trials with 

NOVELTY = 1 (i.e. those for which all associated TBAs are deployed for the first time). Thus, our 

categorization primarily relies on the ordering of novelty scores, not their specific values.  

Figure 5 shows the total number of trials initiated each year. Each panel presents the trials for 

products in each category of novelty, split by whether the target indication has an above- or below-

median MMS value. Prior to the passage of Part D in 2003, the number of below- and above-median 

MMS trials displayed broadly similar patterns, suggesting the absence of confounding pre-trends. This 

stability continued through 2004 and 2005 while the specifics of the regulatory framework for Part D 

were being debated. After Part D went into effect in 2006, there was a gradual increase in the number 

of trials for products deploying less novel TBAs (those in categories T1 and T2) and targeting 

conditions with an above-median MMS, compared to similarly novel trials targeted below-median 

MMS conditions. Consistent with the results of Blume-Kohout and Sood (2013), this response 

magnifies through 2009 and appears to stabilize around 2012. The change is a far less pronounced for 

trials in Category T3 and not noticeable at all for the most novel trials of Category T4. Together, these 

patterns suggest that the Part D demand shock primarily fueled clinical trial activity for the less 

translationally novel drugs.  

                                                 
27 Category T3 includes the vast majority of multi-TBA trials that include a TBA being deployed for the first time. 
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To quantify these graphical relationships, we turn to regression analysis. We define 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 as 

the total number of stage s trials initiated during year t, which target condition i (3-digit ICD-9) and 

belong to translational novelty category c. We estimate the following negative-binomial specification:  

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑓𝑓 �𝛼𝛼𝑐𝑐 + 𝛽𝛽0𝑐𝑐 ∙ 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 + ��𝛽𝛽𝑝𝑝𝑝𝑝  ∙  𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 ∙  1[𝑡𝑡 ∈ 𝑝𝑝]�
𝑝𝑝

+ 𝜂𝜂𝑎𝑎(𝑖𝑖) + 𝛿𝛿𝑠𝑠 + 𝜆𝜆𝑡𝑡�    (2) 

The summation index p represents a series of five consecutive time periods (2004-5, 2006-8, 2009-11, 

2012-14, 2015-18), which we introduce as means to understand the potentially gradual unfolding of 

the impact of Part D on trial activity. These are captured by the category-specific parameters β, each 

of which represents the period-specific gradient of trial activity to shock exposure (MMS). Parameters 

α correspond to category-specific intercepts, and η, δ, and λ respectively represent fixed effects for 

therapeutic area, stage, and trial initiation year.  

Under the assumption that there was no relationship between MMS and development activity 

prior to 2003, positive β� estimates indicate that the Part D demand shock led to increased trials 

initiated in a given time period/novelty category. Since there is a large percentage of istc observations 

with zero initiated trials (about 75 percent), f corresponds to the zero-inflated version of the negative 

binomial count model. Throughout our analysis, we estimate robust standard errors that allow for 

arbitrary correlation among observations. 

  Table 2 presents the estimates obtained from the full sample of trials. The estimated effect of 

Part D on clinical trial activity varies systematically across novelty categories. The change in clinical 

trials is most immediate and largest in magnitude for the trials that exhibit the least translational 

novelty. For Category T1 trials (least novel), there is a nearly immediate effect after the program’s 

passage. This effect grows over time. For the Category T2, the effect of Part D is milder and delayed, 

with the first noticeable increase beginning in 2009. For Categories T3 and T4, the effect of Part D 
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only appears in the last period (2015-18) and the effect is meaningfully smaller than for the less novel 

categories. The long delay in this effect could reflect the fact that truly innovative activity takes a longer 

time to respond. We are not aware of any confounding factors in the market affecting drugs for seniors 

that occurred after the creation of Part D.  

To illustrate the magnitude of the implied effects in Table 2, in Figure 6 we compare the actual 

pattern of trials (solid lines) against the prediction in the counterfactual where Part D was not 

implemented (dashed lines).28 For graphical clarity, we only present the least and most novel categories 

(respectively shown by red and blue lines). The effect of Part D on Category T1 trials emerges 

promptly in 2004 and stabilizes around 2012. For the latter period (2012-18), estimates imply that the 

Part D shock lead to a 106 percent increase in the number of initiated trials in this category. In contrast, 

for Category T4, the actual and counterfactual trends are relatively close throughout the sample. Over 

the 2012-18 period, our estimates indicate that Part D led to a 14 percent increase in the number of 

initiated trials in this category. For the second and third categories that we omitted from the figure, 

the estimated 2012-18 impacts are 32 percent and 11 percent respectively.  

5.2 Robustness of our main results 

As we mentioned before, Appendix B describes an alternative specification for the novelty 

metric that accounts for the fact that average novelty declines in time due to TBAs’ deployment 

accumulation. Key results are qualitatively replicated. Appendix C presents a falsification test as well 

a series of additional robustness checks for the results presented in Table 2. For falsification, we deploy 

our model on 1997-2003 data assuming that Part D was enacted in 2001. Key interactions are not 

statistically significant.  

In terms of robustness, we first focus on potential concerns posed by the large share of 

Oncology trials in our sample. It may be that (i) cancer-specific patterns in the translation of new 

                                                 
28 These counterfactual predictions are obtained by setting β� estimates to zero. 
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science drive the results in the broader sample, and (ii) the impact of Part D on cancer-targeted 

innovation may be confounded by the availability of Medicare Part B insurance for cancer treatment. 

The primary pattern of our results remains largely unchanged when we exclude cancer-targeted trials. 

We also address the aggregation of TBA-specific translational novelty scores for multi-TBA trials. We 

re-estimate our model under three protocols: (i) multi-TBA trials excluded from the estimation sample, 

(ii) aggregation of TBA-specific scores NOVELTY chooses the maximum score among included 

TBAs, and (ii) aggregation chooses the minimum score. In every case, results quite similar to our main 

estimates of Table 2. 

We also address whether the firm investments may differ based on whether a TBA had 

achieved validation in the form of an approved product. We base our analysis on the above-referenced 

work of Shih et al. (2018), who classify drug development projects based on whether the deployed 

mechanism has received regulatory approval. To gauge where our novelty measure should account for 

the possibility that firms differ in their selection of products based on whether a TBA had been 

validated, Figure 7 shows the percentage of trials deploying validated TBAs, differencing by whether 

the targeted condition has an above- or below-median MMS score.29 About half of all trials deploy 

validated TBAs, a figure that is largely stable over time. More importantly, there do not appear to be 

meaningful differences based on Medicare orientation—the two trends are highly correlated, both 

before and after the passage of Part D. That is, whereas regulatory validation may release information 

that reduces the technological uncertainty of TBAs in question, it does not appear that regulatory 

validation was a first-order dimension guiding the firm’s selection of R&D investments following the 

passage of the Part D program. 

5.3 Small molecules versus biologicals 

                                                 
29 We use the same definition of Shih et al. (2018). This is, a trial is said to deploy a validated TBA if at the time the trial is initiated, 
the TBA has reach the pre-registration stage or above (i.e., registration or market launch).  
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There are fundamental differences in the drug development process for small molecule 

products compared to biologicals. Recall that many small molecule products include TBAs as an ex 

post feature of drug development while for nearly all biological products it is an ex ante feature of the 

development decision. To more fully understand the riskiness of firm investment decisions, and not 

just the novelty of the projects they pursue, we separately analyze trials for small and large molecules.  

Table 3 reproduces our main estimates for small molecules (Panel A) and biologicals (Panel 

B). While both set of results retain the broad pattern of the full-sample estimates, they also suggest 

that the impact of Part D was generally smaller for small molecules than for biologicals. In addition, 

the impact of Part D for biologicals is stronger for less translationally novel categories. This invites 

questions as to whether the late-period increase in Category T4 trial activity, which is exclusively 

attributable to small molecules, was the result of a fully premeditated strategy or was more of an 

incidental outcome given TBAs are ascertained ex-post for many small molecules. Future research 

should further consider the strategic decisions of firms with respect to novel small molecule products.  

5.4 Early versus late-stage development  

The drug development process involves multiple stages of clinical trials. After each completed 

trial, firms receive information about the efficacy and potential commercial success of the underlying 

product. They then make decisions about whether to move forward based on this information. 

Assuming a positive trial outcome in a phase, the decision to continue investing in a particular drug is 

a result of the firm’s expectations of commercial success. Therefore, it is conceivable that at any one 

time firms have a stock of products that have made their way through some stages of development 

but have stalled do to a lack of commercial potential. A demand shock could justify moving these 

marginal products back “off the shelf” and into additional trials.  

Table 4 decomposes the increase in R&D activity into early and late stage trials. Early stage 

activities are given by preclinical trials in Panel A while late stage activities are comprised of Phases 1-
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3 of clinical trials in Panel B. Whereas results for late-stage activities closely resemble those in the full 

sample, for early stage development we observe a relatively more uniform impact across novelty 

categories. This suggests that the Part D shock may have prompted a degree of experimentation with 

novel approaches in the context of the relatively less expensive pre-clinical testing that was not fully 

followed up by more expensive later-stage development. We also find prompt and strong impacts on 

late-stage Category T1 trials (estimated 195 increase for 2012-18). This suggests that some of the early 

responses to the Part D shock may have resulted from the re-activation of the development of 

previously shelved products (likely those considered marginally unprofitable prior to the shock).   

6. Part D impacts on recombinant novelty 

We previously described how novelty stemming from specific TBA combinations used by 

multi-TBA products may entail a distinct type of therapeutic value. By relying on metrics that average 

the individual novelty of TBAs in bundles, our previous analysis has neglected this source of novelty 

stemming from the bundle itself. Here we investigate whether the Part D shock fueled novel trial in 

the sense that the tested molecule comprises a previously unexploited combination of TBAs.  

Figure 8 plots the fraction of all trials initiated each year for multi-TBA products, separating 

them according to whether the targeted disease has a below- or above-median MMS score. Both series 

exhibit a marked increase around 2003, which could be driven by the boost that genomic science 

received around that time due to the completion of the Human Genome Project (whose first draft 

and final versions were respectively made available in 2000 and 2003). However, these trends are 

broadly parallel over most of the sample period, which suggests this increase results from broad 

changes in science rather than Part D increasing clinical trials for products combining TBAs.  

To evaluate whether Part D may have fueled pharmaceutical R&D of different degrees of 

recombinant novelty we restrict our attention to multi-TBA trials for which this notion of novelty is 

pertinent (21,780 trials) and again partition them into categories. Recall that category R1 represents 
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the least novel combination, as these drugs involve bundles of TBAs that have previously been tested 

in the same combination. On average, products in this first category had 13 previous deployments. 

The remaining trials are split into Categories R2 and R3. Category R2 involves “pure recombination” 

trials, for which the novelty is only based on the new combination of products. Category R3 trials in 

which at least one TBA has never been previously tested individually or in a bundle. The drugs are 

largely even split across these categories: 32 percent of multi-TBA trials are placed into Category R1, 

40 percent into Category R2, and 28 percent into Category R3.30  

Figure 9 shows the number of trials initiated each year within each category based on whether 

they target a condition with an above or below median MMS. Consistent with a positive Part D impact, 

the gap between the number of above- and below-median trials in Categories R1 and R2 is roughly 

constant prior to the passage of the program but widens in the years after. This serves as suggestive 

evidence of a positive Part D impact that starts to manifest in 2009 for Category R2 and in 2012 for 

Category R1. Part D effects are largely imperceptible for Category R3.  

Econometric estimates (from the same specification in the previous section) are largely 

consistent with these graphical findings. Results in Table 5 imply that the Part D shock led to an 

increment of 84 and 55 percent in the number of trials initiated in Categories R1 and R2 over the 

2012-18 period, respectively. Consistent with our results for Category T4 in the previous section, the 

estimates of Table 5 suggest that the impact on Category R3 (TBA bundles using a translationally 

novel TBA) was a much more modest, at about 14 percent.  

Tables 6 and 7 report effects by molecule size and development stage respectively. Part D 

prompted a relatively larger increase of R2 trials for biologicals (93 percent) than small molecules (58 

percent) over 2012-18. In line with earlier results, there is no measurable impact for biologicals. Similar 

to our analysis for translational novelty, the effect of Part D unfolds more promptly for late stage than 

                                                 
30 While this split is fairly even, there is no reason by construction this needed to be true. 
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preclinical activities, being first perceptible during 2006-8 (category R2) for the former but only during 

2012-14 for the latter. Over 2012-18, the impacts on categories R1 and R2 are 70 and 40 percent for 

early stage activities, and 86 and 66 for late-stage activities.  

7. Relationship between novelty and welfare 

Our estimates demonstrate the clinical trials initiated in response to higher expected profits 

caused by the creation of Medicare Part D varied markedly in their scientific novelty. An important 

caveat for economists and policymakers is that far more work is needed to understand how this 

novelty translates to welfare. It is not clear there is a one-to-one relationship between scientific novelty 

and the economic value created by products. Several studies offer evidence to the idea that increased 

flows of follow-on pharmaceutical innovation may yield welfare gains by widening choice sets and/or 

intensifying price competition (Arcidiacono et al., 2013; Bokhari and Fournier, 2013; Branstetter et al., 

2016; Chaudhuri et al., 2006; Dutta, 2011; Granlund, 2010). Therefore, it is possible even the least 

novel products (i.e. those where we observe large innovation investments) could increase welfare.  

That said, these benefits likely pale in comparison to those provided by truly novel 

innovations, whose impact on quality, price competition, and as means to facilitate follow-up 

innovation should be larger. To support this point, we note our novelty measures are correlated with 

other characteristics that might be more directly welfare relevant. As a starting point, drug revenue 

likely has some relation to welfare as it is bounded from above by the willingness to pay of the 

consumer. If we compare the products listed in the MedAd News list of the top 200 highest selling 

drugs in 2017 against a benchmark sample of products launched between 2008 and 2017,31 we find 

that products included on the list had an average translational novelty score for their Phase 3 trials of 

0.39 compared to a score of 0.29 for those not included on the list. Similarly, if we look at recombinant 

                                                 
31 Out of the 200 products listed in the MedAd News list, we identified 196 in our data. TBA information was available for 167 of these. 
The benchmark sample contains other 858 products for which we also have TBA information.  
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novelty, the Phase 3 novelty score for products included on the list was 0.79 compared to 0.71 for 

those not included on the list. Both of these differences are statistically significant at a p-value < 0.001.  

This result appears to extend beyond the novelty of phase III trials, as shown by the estimates 

in Table 8. To produce these estimates, we first summarize a product’s scientific novelty (which varies 

across the product’s different trials) through a “novelty fixed effect.” 32  We then use these fixed effects 

to explain the probability that each product is listed on the MedAd News ranking. The estimate in the 

first column of Table 8 addresses translational novelty. The positive and precisely estimated coefficient 

suggests that more translationally novel products are associated with higher listing probabilities. 

Specifically, the coefficient implies that a one standard deviation larger novelty fixed effect is 

associated with a 0.024 higher listing probability (30 percent increase over the baseline probability). 

When we repeat the exercise to study recombinant novelty (second column), we obtain a similar result, 

although the parameter is imprecisely estimated. In this case, a one standard deviation larger 

(recombinant) novelty fixed effect is associated to 0.019 higher probability (17 percent increase) of 

making it to the MedAd News list. The estimate of the third column provides support for the concept 

that multi-TBA products could provide specific additional value. According to the model estimate, 

these products appear in the ranking with an about 0.06 higher probability (105 percent increase).  

Regulatory designations are another potentially relevant welfare metric. As part of the approval 

process, regulators award different types of designations to products that, if approved, would expand 

the assortment of therapeutic alternatives in specific ways. Broadly, these designations fall into two 

categories: (i) those rewarding products that target unmet needs or might constitute real advances over 

                                                 
32 These fixed effects are obtained from a regression that uses the novelty score as dependent variable, and which also includes month, 
therapeutic area, and stage fixed effects. Fit statistics suggest that the product-level fixed effects explain the majority of novelty score 
variation: the R-squared falls from 0.93 to 0.06 when they are excluded from the specification. Fixed effects are entered into the Probit 
regression after normalizing them to the unit interval. The Probit specification also includes fixed effects for each product’s market 
launch year and for whether each product is a biologic.  
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existing alternatives, and (ii) those targeting rare diseases.33 Relying again on “novelty fixed effects,” 

Table 9 shows Probit estimates that relate scientific novelty with the probability of at least one 

designation of each category.34 The positive coefficients indicate that products of higher translational 

and recombinant novelty levels are associated with higher probabilities of receiving designations, with 

one standard deviation marginal effects ranging between 35 and 55 percent of the baseline 

probabilities. As shown by the estimates of the last two columns, move novel multi-TBA products are 

also significantly more likely to receive these awards.  

Lastly, we investigate whether our measures of novelty provide some evidence about the way 

that clinical trial activity could influence future scientific efforts. As we note above, one reason to 

examine changes in clinical trial activity (rather than simply products that are released) is that such 

scientific efforts could serve as the basis of future products. At a minimum, they could reduce the risk 

of future drug development efforts using the same TBAs. To that end, we investigate the correlation 

of our scientific novelty measures with forward citations of each product’s associated US patent. 

Forward citations can be taken as a proxy for how much a product has fostered follow-on innovation, 

but also, as a measure of the created economic value (Trajtenberg, 1990; Hall et al., 2005). Table 10 

presents the coefficients that we obtain when we regress the log number of forward citations 

(measured over three- and five-year horizons) on our product-level measures of scientific novelty.35 

Results indicate that the patents of more translationally novel products tend to receive a larger number 

                                                 
33 In the first category we include “fast track,” “accelerated approval,” “breakthrough,” “priority review” and “promising medicine” 
designations. The second category includes “orphan drug” and “rare disease” designations.  
34 Designations are aggregated into two categories because they are relatively infrequent events: the percentage of product receiving 
designations is 8 and 15 for the first and second designation type, respectively. In addition, whereas our data reports whether each 
product has been awarded a designation, it does not indicate when designations have been awarded. To control for potential censoring 
effects, the Probit model also includes fixed effects for the year in which each product initiates its first clinical trial.  
35 For a subset of products listed in the Cortellis dataset, we observe the patent number of each product “key patent.” The dataset 
analyzed here considers only products in our sample for which we observe a key patent that has been granted by the USPTO. Forward 
citations were retrieved during 2018, based on the number of other USPTO patents that cite the former. Patent statistics are available 
for a total of 6,597 products in our sample. However, to avoid censoring issues, our analysis of 3-year citations uses the data of products 
whose patents were granted no later than 2014 (N=5,521); the analysis of 5-year citations, those whose patents were granted no later 
than 2012 (N=4,709). 
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of forward citations, with estimates pointing to a one-standard-deviation effect of between 4% (five-

year horizon) and 5% (three-year horizon). We also find products scoring higher on recombinant 

novelty also tend to produce a larger number of citations, although the effect is quite imprecise. While 

this effect may stem from the reduced number of observations entering the regression, it could also 

be expected that patents that simply recombine ideas have a smaller impact on follow-on innovation.36  

8. Discussion and Conclusion 

Although there exists robust evidence documenting that changes in expected market 

profitability impact the amount of pharmaceutical R&D (e.g., Acemoglu and Linn, 2004, Blume-

Kohout and Sood, 2013, Dubois et al., 2015), these findings almost universally refer to aggregate 

effects. Policymakers interested in determining the optimal tradeoff between pharmaceutical profits 

and the incentives for innovation also require some notion of how changes in market size affect the 

nature of R&D. Since much of the debate fueled by potential regulation on drug prices hinges on 

whether it may hinder the innovation of potential breakthrough drugs (e.g., Danzon, 2000; Bast, 2004), 

it is important to understand how these regulations might impact the future supply of the most 

innovative drugs. We fill a gap in the literature by implementing a large-scale analysis of the 

pharmaceutical industry’s innovative response to an exogenous demand shock (Medicare Part D) that 

differentiates between innovative activities based on their scientific novelty. 

Our main result is obtained by categorizing development activities (i.e., clinical trials) based 

on the novelty of the underlying science of the tested product, which in our data is reflected by 

descriptions of the targeted biological entities and method used to modify their functions. As such, 

our measure of novelty speaks directly to firms’ willingness to respond to a marginal change in 

expected demand by engaging in the novel therapeutic translation of science. We find that whereas 

                                                 
36 This finding mirrors that of Krieger et al. (2018), who also find that key patents of more novel drugs tend to be associated 
with a larger number of forward citations. 
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the Part D demand shock led to a prompt and economically significant increase in the amount of 

development activities oriented at the development of scientific follow-ons, it had a meaningfully more 

modest and delayed positive impact on those for potential scientific breakthroughs, i.e., the first time 

a particular scientific approach is deployed in the context of drug development.  

This result is robust to a series of checks and holds independently in leading subsets of the 

data. The finding is also consistent with results from the medical literature. For example, examining 

the targets employed by drugs approved by the FDA between 2000 and 2005, Zheng et al. (2006) 

observe that “it appears that the majority of the successful targets have been continuously explored 

for deriving new therapeutic agents.”  In the same vein, Zimmerman et al. (2007) note that 

“unfortunately, few new drugs act at novel molecular targets.” and Shih et al. (2018) that “industry 

output in terms of successful projects in this period [1996-2016] has come primarily from a limited set 

of well-validated therapeutic mechanisms.”37 

There are several economic theories that could rationalize our main empirical results. Focusing 

on the demand side, at any point in time, firms have a set of potential projects with a distribution of 

discounted excepted net present values (NPVs). The elasticity of drug candidate supply with respect 

to a demand shock depends on the shape of the associated density function of NPVs of candidate 

drugs. It is easy to imagine situations where the number of available infra-marginal projects is smaller 

for more innovative drugs than for less novel projects.  

There may also be explanations linked to the supply side. For example, the development of 

potential breakthrough drugs may simply depend on basic science, which is relatively insensitive to 

demand (Ward and Dranove; 1997). The large risk associated with the development of potential 

breakthroughs (Hara, 2003) may also contribute to our findings. Sams-Dodd (2005) and Torbert 

(2003) flesh out some of the sources of this increased risk, indicating that the usual process of novel 

                                                 
37 The time period shown in brackets has been added to the quote the purposes of clarity.  
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target validation is challenging and may take several years. Even when usual validation standards are 

met, questions may remain regarding the target’s interaction with the broader organism. These risks 

may increase the spread of the potential returns of breakthrough drugs, implying that a smaller 

percentage of these types of drugs are marginally profitable. Put differently, a disproportionate share 

of breakthrough drugs would have been extremely profitable both before and after the passage of 

Medicare Part D. 

Additional reasons may stem from the organization and interactions between the 

pharmaceutical and academic sectors. For example, Kneller (2010) finds that academic institutions 

and small biotech firms have a disproportionally large role in the generation of scientifically novel 

FDA-approved drugs. Relative to well-funded large pharmaceutical firms, these organizations may be 

more mission-oriented and resourced constrained, and hence less reactive to changes in market 

conditions.38 A more nuanced aspect may be rooted on the potentially uneven applicability of novel 

scientific approaches across markets. Specifically, Lowe (2010) suggests that novel scientific 

approaches (i.e., targets) may be intrinsically more adept for the targeting of small-market (orphan) 

diseases, which might involve early stage research that is less likely to meet expected profitability 

standards required by large pharmaceutical firms.  

Finally, it may be that given the density of NPVs of potential products in the current U.S. 

system of pharmaceutical pricing, the demand shock from Part D was not sufficiently large to 

meaningfully change the incentives for developing highly innovative products. As we note above, such 

were likely quite valuable for firms both before and after the passage of Part D. This is just another 

way of saying that there may be a long tail of highly positive NPV innovative products, while the 

density of zero NPV innovative products may be quite small. Under such a distribution of potential 

                                                 
38 Of course, understanding the effect of demand shocks on these firms would require also carefully considering the 
incentives of the venture capital firms (and the investors in those firms) that provide the funding for much of this early 
stage research. Future work should focus on the investment responses for these early stage investors. 



37 
 

NPVs, a larger change in potential market size could generate a meaningful change in supply of 

innovative products than a smaller change. This is particularly true if these more novel investments 

are motivated by firms attempting to capitalize on the potential option value of early stage investments 

— which would be more valuable in a setting with very large potential returns for positive outcomes.  

For this reason, we suggest great caution in extrapolating the estimates of our results to far 

larger changes in the size of the market. Our study, and all other studies that rely on small changes in 

revenue to identify the magnitude and nature of the innovative response, effectively provide local 

average treatment effects. In particular, these estimates are local to the density of potential innovative 

products at any given point in time. There is little reason to suggest we can extrapolate from this local 

estimate to far larger changes to the returns to innovation, as this will depend on the shape of the 

density of investment returns. It also may vary based on whether there is a positive or a negative shock. 

For example, if the overall distribution of net returns to innovative projects is unimodal, and firms 

currently pursue projects in the right tail, then the density is downward sloping at the zero NPV 

project. This implies that the density to the left of NPV equal zero project is larger than the density 

to the right, so that the loss of investment following a negative shock would be larger than our 

estimated gain in investment following the positive Medicaid Part D shock. 

Overall, our results demonstrate that the clinical trial activity caused by the passage of Part D 

occurred for less scientifically novel approaches. Furthermore, this measure of novelty is correlated 

with other indicators of novelty that are believed to affect welfare. That said, far more work is needed 

to understand the welfare implications of our novelty results and to determine whether similar results 

would be seen for larger financial shocks.  
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Table 2: Part D impacts across translational novelty categories.

Translational novelty category
T1 T2 T3 T4

MMS -1.332*** -0.318*** 0.201** 0.269***
(0.119) (0.090) (0.088) (0.096)

MMS*1[Year=2004-5] 0.342* 0.141 0.063 -0.039
(0.179) (0.159) (0.145) (0.167)

MMS*1[Year=2006-8] 0.578*** 0.171 0.034 0.035
(0.155) (0.132) (0.126) (0.135)

MMS*1[Year=2009-11] 1.018*** 0.482*** 0.109 0.195
(0.154) (0.134) (0.129) (0.145)

MMS*1[Year=2012-14] 1.716*** 0.596*** 0.205 0.098
(0.147) (0.127) (0.126) (0.139)

MMS*1[Year=2015-18] 2.047*** 0.925*** 0.557*** 0.468***
(0.134) (0.117) (0.116) (0.125)

Zero-inflated negative binomial estimates. The dependent variable is the number of initiated trials, aggregated at the level
of targeted condition (3-digit ICD-9 code), stage, year of trial initiation and novelty category (N=103,840). Displayed
coefficients correspond to interactions of the variables displayed in rows with indicators for those displayed in columns. The
estimated model includes year, therapeutic area, development stage, and novelty category fixed effects. Robust standard
errors are presented in parentheses. Legend: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.



Table 3: Translational novelty effects by molecule size.

Translational novelty category
T1 T2 T3 T4

A. Trials for small molecules
MMS -1.230*** -0.400*** -0.041 -0.322**

(0.128) (0.099) (0.101) (0.126)
MMS*1[Year=2004-5] 0.276 0.016 -0.008 -0.022

(0.183) (0.171) (0.167) (0.188)
MMS*1[Year=2006-8] 0.562*** 0.149 -0.003 -0.033

(0.156) (0.142) (0.146) (0.162)
MMS*1[Year=2009-11] 0.835*** 0.332** -0.204 0.193

(0.165) (0.157) (0.159) (0.198)
MMS*1[Year=2012-14] 1.622*** 0.510*** 0.134 0.250

(0.153) (0.146) (0.150) (0.171)
MMS*1[Year=2015-18] 1.804*** 0.823*** 0.356** 0.599***

(0.140) (0.134) (0.139) (0.156)
B. Trials for biologicals (large mols.)

MMS -3.372*** -1.251*** -0.055 0.430***
(0.244) (0.141) (0.126) (0.128)

MMS*1[Year=2004-5] 1.142*** 0.537** 0.222 -0.197
(0.326) (0.235) (0.205) (0.234)

MMS*1[Year=2006-8] 1.333*** 0.464** 0.148 -0.055
(0.298) (0.199) (0.171) (0.184)

MMS*1[Year=2009-11] 2.151*** 1.114*** 0.483*** 0.012
(0.278) (0.185) (0.164) (0.179)

MMS*1[Year=2012-14] 2.923*** 1.356*** 0.353** -0.264
(0.270) (0.187) (0.172) (0.192)

MMS*1[Year=2015-18] 3.634*** 1.860*** 0.919*** 0.172
(0.253) (0.168) (0.154) (0.174)

Zero-inflated negative binomial estimates. The dependent variable is the number of initiated trials, aggregated at the level
of targeted condition (3-digit ICD-9 code), stage, year of trial initiation and novelty category (N=95,832 in Panel A and
N=82,544 in Panel B). Displayed coefficients correspond to interactions of the variables displayed in rows with indicators for
those displayed in columns. The estimated model includes year, therapeutic area, development stage, and novelty category
fixed effects. Robust standard errors are presented in parentheses. Legend: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.



Table 4: Translational novelty effects by development stage.

Translational novelty category
T1 T2 T3 T4

A. Early stage development (preclinical)
MMS -0.500*** 0.620*** 0.464*** 0.248*

(0.157) (0.140) (0.141) (0.146)
MMS*1[Year=2004-5] 0.325 -0.015 0.248 0.178

(0.273) (0.265) (0.259) (0.278)
MMS*1[Year=2006-8] 0.350 -0.173 0.052 0.263

(0.229) (0.225) (0.219) (0.225)
MMS*1[Year=2009-11] 0.714*** 0.116 0.305 0.941***

(0.236) (0.227) (0.224) (0.275)
MMS*1[Year=2012-14] 1.353*** 0.347* 0.521** 0.577**

(0.222) (0.210) (0.218) (0.228)
MMS*1[Year=2015-18] 1.929*** 0.690*** 0.725*** 0.555***

(0.206) (0.197) (0.198) (0.208)
B. Late stage development (Phases 1-3)

MMS -3.168*** -0.734*** 0.068 0.268**
(0.202) (0.116) (0.103) (0.120)

MMS*1[Year=2004-5] 1.367*** 0.289 0.042 -0.060
(0.274) (0.183) (0.166) (0.192)

MMS*1[Year=2006-8] 1.916*** 0.443*** 0.086 0.065
(0.239) (0.153) (0.146) (0.160)

MMS*1[Year=2009-11] 2.348*** 0.749*** 0.146 -0.024
(0.237) (0.155) (0.148) (0.162)

MMS*1[Year=2012-14] 3.166*** 0.828*** 0.235 0.015
(0.227) (0.153) (0.151) (0.168)

MMS*1[Year=2015-18] 3.332*** 1.073*** 0.532*** 0.487***
(0.212) (0.142) (0.139) (0.154)

Zero-inflated negative binomial estimates. The dependent variable is the number of initiated trials, aggregated at the level
of targeted condition (3-digit ICD-9 code), stage, year of trial initiation and novelty category (N=23,760 in Panel A and
N=68,574 in Panel B). Displayed coefficients correspond to interactions of the variables displayed in rows with indicators for
those displayed in columns. The estimated model includes year, therapeutic area, development stage, and novelty category
fixed effects. Robust standard errors are presented in parentheses. Legend: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.



Table 5: Part D impacts across recombinant NOVELTY novelty categories (multi-TBA
trials only).

Recombinant NOVELTY category
R1 R2 R3

MMS -1.357*** -0.726*** -0.177
(0.144) (0.127) (0.122)

MMS*1[Year=2004-5] -0.412* 0.110 0.195
(0.241) (0.205) (0.201)

MMS*1[Year=2006-8] -0.195 0.090 0.164
(0.196) (0.171) (0.165)

MMS*1[Year=2009-11] 0.306 0.496*** 0.212
(0.193) (0.173) (0.172)

MMS*1[Year=2012-14] 1.365*** 0.904*** 0.272
(0.182) (0.169) (0.171)

MMS*1[Year=2015-18] 1.724*** 1.150*** 0.328**
(0.167) (0.158) (0.167)

Zero-inflated negative binomial estimates. The dependent variable is the number of initiated trials, aggregated at the level
of targeted condition (3-digit ICD-9 code), stage, and year of initiation (N=65,384). Displayed coefficients correspond to
interactions of variables displayed in rows with indicators for those displayed in columns. All models include year, therapeutic
area, development stage, and novelty category fixed effects. Robust standard errors are presented in parentheses. Legend:
∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.



Table 6: Recombinant novelty effects by molecule size.

Recombinant Novelty category
R1 R2 R3

A. Trials for small molecules
MMS -1.523*** -1.033*** -0.649***

(0.16) (0.14) (0.14)
MMS*1[Year=2004-5] -0.303 0.191 0.349

(0.26) (0.23) (0.22)
MMS*1[Year=2006-8] -0.0275 0.203 0.231

(0.21) (0.19) (0.19)
MMS*1[Year=2009-11] 0.334 0.432** 0.345*

(0.21) (0.20) (0.20)
MMS*1[Year=2012-14] 1.395*** 1.035*** 0.456**

(0.20) (0.19) (0.20)
MMS*1[Year=2015-18] 1.587*** 1.162*** 0.487**

(0.18) (0.18) (0.20)
B. Trials for biologicals

MMS -0.863** -1.097*** 0.0287
(0.42) (0.22) (0.19)

MMS*1[Year=2004-5] -0.633 0.363 -0.0426
(0.42) (0.33) (0.31)

MMS*1[Year=2006-8] -0.566 0.434 0.213
(0.36) (0.29) (0.25)

MMS*1[Year=2009-11] -0.201 1.179*** 0.0105
(0.34) (0.26) (0.24)

MMS*1[Year=2012-14] 0.795** 1.302*** 0.0966
(0.33) (0.26) (0.24)

MMS*1[Year=2015-18] 1.135*** 1.823*** 0.144
(0.33) (0.23) (0.23)

Zero-inflated negative binomial estimates. The dependent variable is the number of initiated trials, aggregated at the level
of targeted condition (3-digit ICD-9 code), stage, and year of initiation (N=58,168 in Panel A and N=47,168 in Panel
B). Displayed coefficients correspond to interactions of variables displayed in rows with indicators for those displayed in
columns. The estimated model includes year, therapeutic area, development stage, and novelty category fixed effects.
Robust standard errors are presented in parentheses. Legend: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.



Table 7: Recombinant novelty effects by development stage.

Recombinant novelty category
R1 R2 R3

A. Early stage development (preclinical)
MMS -0.976*** -0.361* -0.0424

(0.28) (0.20) (0.22)
MMS*1[Year=2004-5] -0.521 -0.0231 0.0194

(0.35) (0.30) (0.31)
MMS*1[Year=2006-8] -0.525* -0.427* -0.140

(0.30) (0.26) (0.26)
MMS*1[Year=2009-11] -0.0318 0.251 0.245

(0.31) (0.26) (0.28)
MMS*1[Year=2012-14] 1.065*** 0.789*** 0.242

(0.29) (0.26) (0.26)
MMS*1[Year=2015-18] 1.573*** 0.798*** -0.101

(0.28) (0.23) (0.26)
B. Late stage development (Phases 1-3)

MMS -1.772*** -0.966*** -0.0786
(0.20) (0.19) (0.16)

MMS*1[Year=2004-5] -0.383 0.261 0.187
(0.32) (0.27) (0.25)

MMS*1[Year=2006-8] 0.0770 0.503** 0.244
(0.25) (0.23) (0.21)

MMS*1[Year=2009-11] 0.467* 0.681*** 0.0845
(0.25) (0.23) (0.22)

MMS*1[Year=2012-14] 1.552*** 1.055*** 0.240
(0.25) (0.24) (0.23)

MMS*1[Year=2015-18] 1.665*** 1.309*** 0.292
(0.22) (0.22) (0.22)

Zero-inflated negative binomial estimates. The dependent variable is the number of initiated trials, aggregated at the level
of targeted condition (3-digit ICD-9 code), stage, and year of initiation (N=14,740 in Panel A and N=41,118 in Panel
B). Displayed coefficients correspond to interactions of variables displayed in rows with indicators for those displayed in
columns. The estimated model includes year, therapeutic area, development stage, and novelty category fixed effects.
Robust standard errors are presented in parentheses. Legend: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.



Table 8: Scientific novelty and Top-Seller status.

Translational novelty F.E. 0.736**
(0.331)

Recombinant novelty F.E. 0.334
(0.298)

1[Multi-TBA product] 0.384***
(0.116)

Probit estimates. The dependent variable is an indicator for whether each drug product appears in the 2017 MedAd News
top-sellers ranking (N=1,025 in the first and third columns, and N=387 in the second column). In addition to the displayed
variables, all models include fixed effects for the year in which each product was launched to the market, and a dummy
variable for whether the product is a biologic. The (product-level) novelty fixed effects entering the specifications are
obtained from a regression of (trial-level) novelty scores on product, month, area, and stage fixed effects. Robust standard
errors are presented in parentheses. Legend: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Table 10: Product novelty and patent forward citations.

Forward citations horizon
3-year 5-year 3-year 5-year

Translational novelty F.E. 0.266*** 0.202**
(0.090) (0.101)

Recombinant novelty F.E. 0.122 0.054
(0.140) 0.158)

OLS estimates. The dependent variable is the logger number of forward citations for a product key patent. Regressions
for 3-year citations use data of products whose patents were granted no later than 2014; those for 5-year citations, those
granted no later than 2012 (N=5,521, 4,709, 1,645, 1,401, 5,521, and 4,709 respectively for columns one through six).
The (product-level) novelty fixed effects entering the specifications are obtained from a regression of (trial-level) novelty
scores on product, month, area, and stage fixed effects. Robust standard errors are presented in parentheses. Legend:
∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.



Figure 1: Number of trials by therapeutic area.
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Figure 2: Number of trials by development stage.



Figure 3: Medicare Market Share (MMS) variation across targeted conditions.



Figure 4: Distributions of novelty scores.



Figure 5: Number of initiated trials, by Medicare orientation and translational NOVELTY
category.



Figure 6: Part D impacts on translational novelty (number of initiated trials in categories
1 and 4).



Figure 7: Percentage of trials deploying TBAs with regulatory validation.



Figure 8: Share of multi-TBA trials, by Medicare orientation.



Figure 9: Number of initiated trials, by Medicare orientation and recombinant NOVELTY
category (multi-TBA trials only).
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A. Is the availability of TBA information correlated
with Part D exposure?

As we note in Section 3.1, TBA information is available for about 60% of the drug products
listed in the Cortellis dataset. In this appendix we investigate whether the distribution
of missing TBA information may be correlated with a product’s exposure to the Part
D shock. In particular, we test whether the Part D passage is associated to a higher
likelihood that TBA information is available for a product.

To implement our test we consider the 57,902 products tested during the sample
period (1997-2018) and which can also be linked to the MMS proxy. As shown by Table
1 of the paper, TBA information is available for about 36,000 of these. Since many
of these products have multiple indications and are associated to more than one trial,
aggregation is required to format a dataset at the product level. We do so by considering
a product’s largest MMS score (among all targeted indications) and the earliest date in
which development is observed (among all observed trials). With this dataset, we estimate
the following specification:

yi = Logit
(
α0 + α1 ·MMSi +

∑

p

βp ·MMSi · 1[t(i) ∈ p] + ηa(i) + λt(i)

)
,

where yi is an indicator that is activated if TBA information is available for product i. As
for specification (2) in the paper, p corresponds to a series of time periods and t(i) corre-
sponds to the earliest year that the earliest trial for product i is observed. Parameters η
and λ correspond to area and year fixed effects, respectively. From this specification, we
would conclude that exposure to the Part D shock is correlated with the availability of
TBA information if estimates for parameters {β}p were different from zero. Figure A.1
presents these estimates, along with 95% confidence intervals (from robust standard er-
rors). None of the estimates is statistically significant from zero. These results therefore
suggest that a product’s exposure to the Part D program is unrelated to whether TBA
information is available for it.



Figure A.1: Logit coefficient estimates for a model testing whether Part D exposure
influenced the availability of TBA information at the product level.

We plot 95% CI intervals computed from robust standard errors.



B. Replicating main results with a “time-independent”
novelty metric

In Section 4.3 we noted that the formulation of our baseline novelty metric could bias
our estimates towards finding responses among less novel drugs. This occurs because (i)
Part D effects unfold in the latter part of our sample period, and (ii) due to the organic
accumulation of TBA deployments, our baseline novelty metric regards trials initiated
later in the sample as less novel. Here we introduce an alternative novelty formulation
which is “time-independent” in the sense that TBAs’ organic accumulation of deployments
as time passes does not mechanically determine measured novelty. We label this metric
as “percentile novelty” (PNOVELTY).

To formally introduce PNOVELTY, consider again a single-TBA trial i for TBA k
with Dk previous deployments. PNOVELTY is defined as:

PNOVELTYi =
{k′ ∈ Ki : Dk′ > Dk(i)}

|Ki|
∈ [0, 1],

where Ki represents the set of known TBAs for trial i. This set includes all previously
deployed TBAs at the same or more advanced stages than that associated to trial i.
PERCNOV is thus defined as the fraction of known TBAs with a strictly larger number of
previous deployments than k. As with our baseline novelty metrics, PNOVELTY=1 when
a trial i deploys a TBA for the first time and decreases with the k’s number of previous
deployments. In contrast to our baseline metric, PNOVELTY can equal 0, which will
occur if k has the largest number of deployments compared to all known TBAs. Given
this formulation, near-zero PNOVELTY scores identify the trials that can be deemed as
least novel in relation to the current distribution of per-TBA deployments. As with our
baseline formulation, for multi-TBA trials PNOVELTY is computed by averaging the
right-hand-side of the above expression among all included TBAs.

Figure A.2 further illustrates the computation of PNOVELTY by means of an example.
We consider Phase 1 and Phase 3 trials for products that deploy a single TBA, beta
lactamase inhibitor (BLI). This TBA was first deployed in Phase 1 by a trial for SB-223328
(SmithKline Beecham) and in Phase 3 by a trial for DA-7101 (Dong-A ST Co). Prior to
these trials, BLI had not been previously deployed in relevant stages. Hence, deployment
distributions (solid curves) are irrelevant and both trials are scored with PNOVELTY=1.
Subsequent trials continued to deploy BLI. One of these was the Phase 1 trial for BLI-489
(Wyeth), which began in January 2009. At the time this trial was initiated, BLI had
been deployed by 7 other products in Phases 1 through 3. The deployment distribution
measured at this time (black dotted curve) shows that 13 percent of then-known TBAs
had more than 7 deployments. Thus, this trial is scored with PNOVELTY=0.13. In the
same way, when the Phase 3 trial for Vaborbactan (Rempex) started later in September
of 2014, BLI had been deployed by 7 products in Phase 3. In this case, about 10 percent
of TBAs previously deployed in Phase 3 had accumulated more than 7 deployments (blue
dotted curve). Hence, this trial is scored with PNOVELTY=0.1.

Recall that PNOVELTY and our baseline metric coincide when a TBA is being de-
ployed for the first time (both equal 1). This means that for our analysis of the impacts on
translational novelty we should expect the classification from the two metrics to differ in
categories T1-T3. Table A.1 shows the distribution of trials under both categorizations.
However, given the high correlation between the two metrics (0.97), disagreements are
infrequent (i.e., less than 2% of trials). In contrast, since for our analysis of recombinant
novelty we aggregate non-novel TBA bundles into a single category (R1), the resulting



Figure A.2: Sample computation of translational PNOVELTY—scoring trials that deploy
the TBA “beta lactamase inhibitor.”

categorizations are identical. Consequently, in what follows we replicate key results for
the analysis of translational novelty only.

Table A.1: Distribution of trials across translational novelty categories.

Categorization using Categorization using PNOVELTY
the baseline novelty metric T1 T2 T3 T4

T1 0.250 0.034 0.008
T2 0.041 0.235 0.033
T3 0.000 0.023 0.250
T4 0.1258



Figure A.3: Number of initiated trials, by Medicare orientation and ABSNOV novelty
(PNOVELTY) category. (Correlate to Figure 5.)



Table A.2: Part D impacts across translational novelty (PNOVELTY) categories. (Cor-
relate to Table 2.)

Translational novelty category
T1 T2 T3 T4

MMS -0.663*** -0.260*** -0.035 0.314***
(0.101) (0.089) (0.087) (0.094)

MMS*1[Year=2004-5] 0.082 -0.007 0.187 -0.095
(0.167) (0.153) (0.142) (0.162)

MMS*1[Year=2006-8] 0.160 0.065 0.187 -0.039
(0.143) (0.128) (0.123) (0.132)

MMS*1[Year=2009-11] 0.370*** 0.311** 0.411*** 0.091
(0.143) (0.131) (0.126) (0.143)

MMS*1[Year=2012-14] 0.880*** 0.582*** 0.505*** -0.022
(0.138) (0.125) (0.122) (0.136)

MMS*1[Year=2015-18] 1.152*** 0.949*** 0.870*** 0.344***
(0.124) (0.111) (0.111) (0.121)

Zero-inflated negative binomial estimates. The dependent variable is the number of trials initiated each, aggregated at the
level of targeted condition (3-digit ICD9 code), stage, year of trial initiation and novelty category (N=103,840). Displayed
coefficients correspond to interactions of the variables displayed in rows with indicators for those displayed in columns. The
estimated model includes year, therapeutic area, development stage, and novelty category fixed effects. Robust std. errors
are presented in parentheses. Legend: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.1.



Figure A.4: Part D impacts on translational (PNOVELTY) novelty (number of initiated
trials in categories 1 and 4). (Correlate to Figure 6.)



C. Falsification and robustness for main results

While the graphical relationships and regression estimates suggest a change in the com-
position of clinical trial activity following Part D’s implementation, there could be a
concern that this is a continuation of a secular trend towards drugs targeting conditions
of the elderly—perhaps in response to a broader demographic shift caused by the aging
baby boomer population. To the extent that such a trend is correlated with MMS, our
estimates might be picking up this pre-existing activity. To address this issue, we first
revisit Figure 5, which shows the number of clinical trials per year based on whether the
indication targets a disease that has an MMS above or below the median level. If secular
trends drove the estimates in Table 2, then this should be observable in the data prior
to 2003. This not the case. Prior to the passage of Medicare Part D (demarcated by the
first dashed vertical line), there was very little difference in level or trend based on MMS.
To further address this concern, we estimate a placebo specification of equation (2) using
1997-2003 data, which includes an interaction of MMS with an indicator for the 2000-3
period. Panel A Table A.3 contains the results from this specification. The coefficient
on the interaction term measures the change in research activity between 2000 and 2003
compared to earlier time periods. Given that there was little clear evidence that Congress
would develop and pass a prescription drug benefit, we do not expect any pre-passage
anticipatory behavior. However, if our main estimates are simply the result of a gradual
shift in the market, we should find generally similar results from this specification. Across
all novelty categories, the estimates on the interaction term are small in magnitude and
statistically insignificant. This supports a causal interpretation of our estimates of Table
2 and Figure 5.

A second potential concern is that the prominence of clinical trials for cancer treat-
ments means that our estimates primarily reflect changes in the science of developing
oncology products that was coincident with the passage of Part D. A related concern is
that a large fraction of cancer drugs are covered under Medicare Part B and therefore the
creation of Part D may not represent a substantial profit shock. This concern is mitigated
to some degree by the increasing prevalence of oral chemotherapy products that would
be affected by Part D. To allay these concerns about the role of oncology products in our
results, we re-estimate our main regressions excluding clinical trials for cancer treatments.
Estimates are presented in Panel B of Table A.3. These display the same general patterns
of our main estimates, except for they are somewhat smaller in magnitude. This smaller
magnitude may reflect the fact that oncology products were “protected classes” under
Medicare Part D, which increases the expected profitability of these products after the
passage of Part D. Overall, these results suggest that the pattern of our main findings
with respect to novelty are not driven by cancer-targeted innovation.

Lastly, recall that our approach to measuring the translational novelty of multi-TBA
trials is to average the individual novelty scores of each TBAs included in the bundle. This
approach could obscure some aspects of novelty, particularly for bundles that combine
very novel and very common TBAs into a single product. Such products may entail a
high degree of technological uncertainty due to the presence of a novel TBA, but our
averaging strategy excludes them from the most-novel category. To investigate the extent
to which this drives our results, we re-estimate our models on the full sample of trials,
but excluding those with multi-TBAs. Resulting estimates are presented in Panel A of
Table A.4. In Panel B, we present the results obtained when we aggregated novelty
considering the minimum novelty score across all included TBAs, and in Panel C, when
we considered the maximum one. The latter aggregation shifts a number of trials into
the most-novel category, which is why we observe that the intensity of Part D effects



is somewhat (although quite mildly) shifted towards more novel categories. Results are
otherwise very similar to our main estimates of Table 2, which suggests that aggregation
issues have little influence on our conclusions.

Table A.3: Falsification and robustness of main translational novelty effects.

Translational novelty category
T1 T2 T3 T4
A. Falsification (1997-2003 data)

MMS -1.111** -0.350 0.093 0.388
(0.497) (0.442) (0.418) (0.362)

MMS*1[Year=2000-3] 0.540 0.039 -0.021 -0.208
(0.376) (0.179) (0.179) (0.168)

B. Cancer trials dopped
MMS -1.095*** -0.119 0.218** 0.321***

(0.122) (0.092) (0.091) (0.103)
MMS*1[Year=2004-5] 0.285 0.103 -0.042 -0.043

(0.181) (0.162) (0.149) (0.175)
MMS*1[Year=2006-8] 0.510*** 0.077 -0.072 0.025

(0.156) (0.136) (0.131) (0.143)
MMS*1[Year=2009-11] 0.872*** 0.264* -0.041 0.113

(0.158) (0.140) (0.135) (0.152)
MMS*1[Year=2012-14] 1.559*** 0.369*** 0.016 0.042

(0.150) (0.133) (0.133) (0.145)
MMS*1[Year=2015-18] 1.723*** 0.553*** 0.302** 0.365***

(0.140) (0.125) (0.125) (0.137)

Zero-inflated negative binomial estimates. The dependent variable is the number of trials initiated each, aggregated at the
level of targeted condition (3-digit ICD9 code), stage, year of trial initiation and novelty category (N=33,040 in Panel A and
N=95,304 in Panel B). Displayed coefficients correspond to interactions of the variables displayed in rows with indicators for
those displayed in columns. The estimated model includes year, therapeutic area, development stage, and novelty category
fixed effects. Robust std. errors are presented in parentheses. Legend: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.1.



Table A.4: Robustness of main translational novelty effects (continued).

Translational novelty category
T1 T2 T3 T4

A. Multi-TBA trials dropped
MMS -1.397*** -0.416*** -0.010 0.060

(0.127) (0.094) (0.094) (0.102)
MMS*1[Year=2004-5] 0.244 0.061 0.038 0.001

(0.187) (0.168) (0.157) (0.167)
MMS*1[Year=2006-8] 0.572*** 0.123 -0.027 0.096

(0.162) (0.140) (0.138) (0.142)
MMS*1[Year=2009-11] 0.891*** 0.347** 0.102 0.243*

(0.158) (0.137) (0.138) (0.147)
MMS*1[Year=2012-14] 1.444*** 0.474*** 0.342** 0.180

(0.151) (0.134) (0.137) (0.145)
MMS*1[Year=2015-18] 1.828*** 0.902*** 0.803*** 0.611***

(0.140) (0.122) (0.122) (0.129)
B. Aggregation via minimum individual novelty

MMS -1.413*** -0.255*** 0.265*** 0.270***
(0.122) (0.091) (0.087) (0.096)

MMS*1[Year=2004-5] 0.353* 0.266* -0.035 -0.028
(0.182) (0.157) (0.147) (0.167)

MMS*1[Year=2006-8] 0.660*** 0.190 -0.022 0.047
(0.153) (0.132) (0.128) (0.136)

MMS*1[Year=2009-11] 1.110*** 0.464*** 0.073 0.208
(0.154) (0.134) (0.130) (0.146)

MMS*1[Year=2012-14] 1.804*** 0.557*** 0.229* 0.124
(0.148) (0.129) (0.127) (0.139)

MMS*1[Year=2015-18] 2.143*** 0.918*** 0.533*** 0.499***
(0.136) (0.117) (0.116) (0.126)

C. Aggregation via maximum individual novelty
MMS -1.230*** -0.267*** 0.003 0.321***

(0.117) (0.089) (0.088) (0.088)
MMS*1[Year=2004-5] 0.300* -0.029 0.029 0.159

(0.175) (0.156) (0.146) (0.149)
MMS*1[Year=2006-8] 0.452*** 0.049 -0.049 0.182

(0.152) (0.130) (0.126) (0.124)
MMS*1[Year=2009-11] 0.821*** 0.286** 0.203 0.267**

(0.150) (0.131) (0.130) (0.130)
MMS*1[Year=2012-14] 1.499*** 0.528*** 0.402*** 0.206

(0.145) (0.126) (0.125) (0.127)
MMS*1[Year=2015-18] 1.881*** 0.858*** 0.799*** 0.502***

(0.132) (0.113) (0.114) (0.118)

Zero-inflated negative binomial estimates. The dependent variable is the number of trials initiated each, aggregated at the
level of targeted condition (3-digit ICD9 code), stage, year of trial initiation and novelty category (N=99,792 in Panel A
and N=103,840 in Panels B and C). Displayed coefficients correspond to interactions of the variables displayed in rows with
indicators for those displayed in columns. The estimated model includes year, therapeutic area, development stage, and
novelty category fixed effects. Robust std. errors are presented in parentheses. Legend: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.1.
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