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ABSTRACT 

Statisticians have proposed meta-analysis to combine the findings of multiple studies of health risks 
or treatment response. The standard practice is to compute a weighted-average of the estimates. Yet it 
is not clear how to interpret a weighted average of estimates reported in disparate studies. Meta-
analyses often answer this question through the lens of a random-effects model, which interprets a 
weighted average of estimates as an estimate of a mean parameter across a hypothetical population of 
studies. The relevance to medical decision making is obscure. Decision-centered research should aim 
to inform risk assessment and treatment for populations of patients, not populations of studies. This 
paper lays out principles for decision-centered meta- analysis. One first specifies a prediction of 
interest and next examines what each available study credibly reveals. Such analysis typically yields a 
set-valued prediction rather than a point prediction. Thus, one uses each study to conclude that a 
probability of disease, or mean treatment response, lies within a range of possibilities. Finally, one 
combines the available studies by computing the intersection of the set-valued predictions that they 
yield. To demonstrate decision- centered meta-analysis, the paper considers assessment of the effect 
of anti-hypertensive drugs on blood pressure.
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1. Introduction 

 

In principle, the quality of medical decision making should benefit from the proliferation of studies 

that analyze evidence on health risks and treatment response. In practice, difficulties arise when developers 

of clinical practice guidelines and individual clinicians attempt to combine findings from multiple studies. 

Medical decision makers must somehow interpret the mass of information provided by evidence-based 

research. The hard question is how to interpret this information sensibly. 

Combining findings is often performed by systematic review of a set of studies. This is a subjective 

process, akin to exercise of clinical judgment. For example, evidence from dozens of randomized trials of 

treatments for hypertension was reviewed by the Eighth Joint National Committee (JNC 8), which 

developed the 2014 guidelines for management of high blood pressure in the United States (James et al., 

2014). The JNC 8 team wrote (p. 509): 

“An external methodology team performed the literature review, summarized data from selected 

papers into evidence tables, and provided a summary of the evidence. From this evidence review, 

the panel crafted evidence statements and voted on agreement or disagreement with each statement.  

For approved evidence statements, the panel then voted on the quality of the evidence.” 

Statisticians have proposed meta-analysis in an attempt to provide a more objective methodology 

for combining the findings of multiple studies. Meta-analysis is easy to motivate when combining findings 

poses a purely statistical problem. Suppose that one wants to estimate as precisely as possible some 

parameter characterizing a study population. The parameter may, for example, be the probability that a 

member of a patient population will develop a disease or mean response to a specified treatment. 

Suppose that multiple studies have been performed, each analyzing an independent random sample 

from the population. If the raw outcome data were available, the most precise way to estimate the parameter 

would be to combine the samples and compute the estimate using all the data. Often, however, the raw data 

are unavailable, making it infeasible to combine the samples. Instead, multiple parameter estimates may be 

available, each computed with the data from a different random sample. Meta-analysis proposes methods 
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to combine the multiple estimates. The standard proposal is to compute a weighted-average of the estimates, 

the weights varying with sample size to minimize variance. 

 Meta-analysis as described above is uncontroversial, but its applicability is very limited. It is rare 

to have multiple random samples drawn from the same population. It is common for multiple studies to be 

performed with different sampling processes. The available studies may examine distinct patient 

populations whose members may have different probabilities of diseases or different distributions of 

treatment response. The protocols for administration of treatments and the measurement of outcomes may 

vary across studies. Meta-analyses are performed regularly in such settings, computing weighted averages 

of estimates for distinct study designs and study populations. Gene Glass, who introduced the term meta-

analysis, recognized the challenge of combining findings from disparate studies. He wrote (Glass, 1977, p. 

358): “The tough intellectual work in many applied fields is to make incommensurables commensurable, 

in short, to compare apples and oranges.” 

A severe deficiency of the prevailing practice of meta-analysis is that it is not clear how to interpret 

a weighted average of the estimates reported in disparate studies. Meta-analyses often answer this question 

through the lens of a random-effects model, as proposed by DerSimonian and Laird (1986). A random-

effects model assumes that the finding reported in each study estimates a distinct parameter value drawn at 

random from a population of potential parameter values. A weighted average of the estimates is interpreted 

to be an estimate of the mean parameter value across studies. 

The relevance to medical decision making of the mean parameter value across studies is obscure. 

DerSimonian and Laird consider each of the studies considered in a meta-analysis to be drawn at random 

(p. 181) “from a population of possible studies.” They thus interpret the weighted average of estimates 

computed in the meta-analysis as an estimate of the mean outcome across the postulated population of 

possible studies. However, they do not explain what is meant by a population of possible studies, nor why 

the published studies should be considered a random sample from this population. Even if these concepts 

are meaningful, they do not explain how a mean health outcome across a population of possible studies 
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relates to what should matter to a clinician or guideline developer, namely the mean outcome across a 

relevant population of patients. 

Researchers schooled in the paradigm of meta-analysis sometimes use meta-regressions to describe 

how study findings vary with observed attributes of the studies. Stanley and Jarrell (1989), Thompson and 

Higgins (2002), and Tipton, Pustejovksy, and Ahmadi (2018) provide some perspectives. Meta-regressions 

essentially perform meta-analysis within sub-populations of studies with specified attributes. 

Nonparametric meta-regressions compute weighted averages of estimates within sub-populations of 

studies, and parametric ones fit study findings to parametric regression models. Either way, the objective 

is to characterize how mean outcomes vary across sub-populations of studies. Meta-regressions do not 

characterize how mean outcomes vary across sub-populations of patients who vary in their attributes. 

From the perspective of medical decision making, the fundamental problem of meta-analysis (and 

by extension meta-regression) is that the research is study-centered rather than decision-centered. Decision-

centered research should aim to inform risk assessment and treatment choice for populations of patients, 

not populations of studies. Weighted averages of study estimates generally lack a clear interpretation from 

a decision perspective. Decision makers who misinterpret them as pertaining to their patient populations 

may be led astray. Section 2 adds to this critique of study-centered meta-analysis. 

A clinician or guideline developer who wants to use existing medical research appropriately must 

understand how both statistical imprecision and identification problems limit the information that studies 

provide. Statistical imprecision is the problem of drawing inferences about a study population by observing 

a finite sample of its members. The severity of the problem diminishes with sample size. 

Identification problems are the inferential difficulties that persist when sample size grows without 

bound. They encompass the spectrum of issues that decision makers have in mind when they express 

concern about the internal and external validity of studies. A prominent concern with internal validity is 

proper interpretation of observational studies of treatment response in the absence of knowledge of the 

process of treatment selection. A prominent concern with external validity is proper extrapolation of 

findings in randomized trials from study populations of trial subjects to relevant patient populations.  
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Manski (2018, 2019) provide extensive discussion of identification problems in evidence-based medical 

research. 

 Identification problems commonly are the dominant difficulties which arise in medical decision 

making. Yet the prevailing methodology of study-centered meta-analysis adequately addresses only 

statistical imprecision. Meta-analyses acknowledge identification problems only when they divide existing 

studies into those that will and will not be included in the analysis. Studies thought to have severely limited 

internal or external validity may be excluded from consideration. 

If meta-analysis were to be decision-centered rather than study-centered, it would address 

identification problems prominently and credibly. In general, one would not compute a weighted average 

of study estimates. The methodology developed in this paper instead computes the intersection of set-valued 

predictions derived from the available studies. 

Section 3 lays out principles for decision-centered meta-analysis. To begin, one specifies a 

prediction of interest---designating the relevant patient population and the health outcome to be predicted. 

One next determines what each available study credibly reveals about this outcome. Analysis of 

identification with credible assumptions typically yields a set-valued rather than point prediction. That is, 

one uses an existing study to credibly conclude that a probability of disease or mean treatment response lies 

within a range of possibilities. 

The final step of decision-centered meta-analysis as developed here is to combine the conclusions 

derived from the available studies by computing the intersection of the set-valued predictions that they 

yield. This intersection expresses what one can learn by combining multiple studies. The prediction of 

interest must simultaneously lie in the set-valued prediction obtained with each study separately. 

For example, consider combining findings from an observational study and a randomized trial.  

Jointly considering internal and external validity, an observational study and a trial may each suffice to 

bound but not point-identify a prediction of interest. The truth must lie in the intersection of the bounds 

obtained with each type of data. 
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 The use of set intersection rather than a weighted average to aggregate information across studies 

may appear radical from the perspective of study-centered meta-analysis. However, the idea has precedent 

in the econometrics literature on partial identification, from Manski (1990) onward. See Section 3.4 for 

discussion. 

Section 4 provides a simple demonstration of decision-centered meta-analysis. When developing 

the 2014 guidelines for management of high blood pressure in the United States (James et al., 2014), the 

JNC 8 group completely dismissed findings from observational studies. It considered only findings from 

randomized trials. When doing so, the committee gave much attention to trials whose study populations 

differ substantially from the relevant American population.  I sketch how a decision-centered meta-analysis 

might combine findings from these trials and from a publicly available American observational study, the 

National Health and Nutrition Examination Survey (NHANES). 

 

 

2. Critique of Study-Centered Meta-Analysis 

 

 The technical features of study-centered meta-analysis and meta-regression have been described in 

many sources; see, for example, Glass (1977), Hedges and Olkin (1985), Thompson and Higgins (2002), 

and Tipton et al. (2018). There is no need to repeat such description here. There is, however, reason to 

elaborate on my conceptual criticism of the central meta-analytic idea of using a weighted average of 

estimates to aggregate the information in a population of studies. The curious nature of this idea has been 

remarked on only occasionally in the literature on meta-analysis. 

 Section 2.1 adds to my earlier discussion of random-effects models. Section 2.2 criticizes 

occasional suggestions that averaging estimates is justified by the so-called “wisdom of crowds.” Section 

2.3 calls attention to the relatively rare cases in which medical researchers present a range of estimates 

rather than an average. Although motivated only heuristically, this is a positive departure from the norm in 

meta-analysis. 
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2.1. Random-Effects Models 

 

 Medical researchers have used random-effects models to perform numerous meta-analyses of 

studies evaluating treatments for many diseases. To illustrate, consider the highly cited article of Buchwald 

et al. (2004), who combined the findings of 134 studies of the outcomes of bariatric surgery. The 134 studies 

included 5 randomized trials enrolling 621 patients and 28 nonrandomized but somehow otherwise 

controlled trials enrolling 4,613 patients. The 101 other studies, described as “uncontrolled case series,” 

involved 16,860 patients. The studies were performed around the world, 58 with European patients, 56 with 

North American patients, and 20 with patients from elsewhere. The studies followed patients for different 

periods of time. They measured weight loss, a primary health outcome of interest, in multiple ways. 

To summarize the findings of the meta-analysis, the authors wrote (p. 1724): “The mean . . . . 

percentage of excess weight loss was 61.2% . . . . for all patients.” The mean value of 61.2% considers the 

134 studies to be a random sample drawn from a population of potential studies. It is not clear what 

implications should be drawn by a clinician who treats a population of patients, not a population of studies. 

Medical researchers who have performed meta-analyses using random-effects models have 

struggled to explain how clinicians should use the findings. Consider, for example, the meta-analysis 

performed by Chen and Parmigiani (2007) of ten disparate studies predicting risk of breast and ovarian 

cancer among women who carry BRCA mutations. The authors describe a weighted average of the risks 

reported by all studies as a (p. 1331) “consensus estimate.” However, there is no consensus across the 

studies, which reported heterogeneous estimates pertaining to heterogeneous study populations. Chen and 

Parmigiani concluded their article with this guidance to clinicians (p. 1333): 

“In current clinical practice, two scenarios are possible. In the first, the clinician is able to identify 

a single study that matches the relevant patient population for his or her practice. In the second, 

which is perhaps more common, there is no clear criterion for deciding which study is most 

appropriate for a particular patient. In this case, given current knowledge, a meta-analysis that 
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acknowledges heterogeneity is the most evidence-based and, arguably, ethically sound approach to 

risk counseling.” 

Although meta-analysis is “evidence-based,” this descriptor should not reassure clinicians. What matters is 

whether a methodology uses evidence reasonably. 

 One may ask how DerSimonian and Laird, whose 1986 article proposed use of the random-effects 

model in meta-analysis, motivate medical use of the model. In a recent retrospective article, they 

acknowledge but belittle criticism of the idea of a random sample of studies, writing (DerSimonian and 

Laird, 2015, p. 142): 

“An early criticism of the method is that the studies are not a random sample from a recognizable 

population. As discussed in Laird and Mosteller [28], absence of a sampling frame to draw a 

random sample is a ubiquitous problem in scientific research in most fields, and so should not be 

considered as a special problem unique to meta-analysis. For example, most investigators treat 

patients enrolled in a study as a random sample from some population of patients, or clinics in a 

study as a random sample from a population of clinics and they want to make inferences about the 

population and not the particular set of patients or clinics. This criticism does not detract from the 

utility of the random-effects method. If the results of different research programs all yield similar 

results, there would not be great interest in a meta-analysis. We view the primary purpose of meta-

analysis as providing an overall summary of what has been learned, as well as a quantitative 

measure of how results differ, above and beyond sampling error.” 

This statement expresses the essence of the motivation for study-centered meta-analysis. It does not 

persuasively justify the use of meta-analysis in medical decision making. 

 

2.2. Averaging and the “Wisdom of Crowds” 

 

 A proponent of meta-analysis might suggest that averaging the findings of multiple studies tends 

to work well empirically, even though the practice may be deficient logically. To support this suggestion, 

the proponent might refer to the “wisdom of crowds.” 

 The wisdom of crowds is the name given by Surowiecki (2004) to an often-reported empirical 

regularity. Empirical researchers who study prediction in various fields of science have long found that the 



8 
 

average of a set of predictions tends to be more accurate than the individual predictions used to form the 

average.  Formally, they report that the prediction error of the average prediction is smaller than the average 

error across the individual predictions. A review article by Clemen (1989) put it this way (p. 559): 

“The results have been virtually unanimous: combining multiple forecasts leads to increased 

forecast accuracy. This has been the result whether the forecasts are judgmental or statistical, 

econometric or extrapolation. Furthermore, in many cases one can make dramatic performance 

improvements by simply averaging the forecasts.” 

Citing this literature, one may be tempted to hope that, however deficient the logic of meta-analysis may 

be, the methodology may work in practice. I strongly caution against this. 

 McNees (1992) and Manski (2011, 2016) show that the wisdom of crowds is not an empirical 

regularity. It is rather an algebraic result that holds whenever the loss function used to measure prediction 

error is such that one suffers an increasing marginal loss as the magnitude of the error grows. In 

mathematical terms, such a loss function is convex. Prominent examples of convex loss functions, used 

routinely in studies of predictive accuracy, are square and absolute loss. 

With a convex loss function, the result known as the wisdom of crowds holds as a result of Jensen’s 

Inequality. It holds regardless of whether one combines predictions by their simple average or by a weighted 

average. Being an algebraic property rather than an empirical regularity, the result holds regardless of the 

quality of the individual predictions that are combined. Thus, although averaging predictions tends to 

perform well relative to the individual predictions used to form the average, it need not perform well in an 

absolute sense. It may provide a good prediction or a terrible one in absolute terms. 

 

2.3. Suggestions to Report Ranges rather than Averages of Estimates 

 

 Although averaging predictions across studies has been the norm in medical meta-analysis, 

investigators occasionally present a range of predictions and describe the range as measuring uncertainty. I 

use breast-cancer risk assessment to illustrate. 
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 The Gail Model, developed in Gail et al. (1989), is perhaps the most prominent model that predicts 

future development of breast cancer in women with specified attributes. However, it is not the only such 

model. A review article of Amir et al. (2010) considers five other models as well: the Claus Model, the 

BRCAPRO Model, the Jonker Model, the IBIS Model, and the BOADICEA Model. These five studies 

differ from one another in various respects, including the patient attributes used to condition predictions, 

the mathematical forms of the models, and the data used to estimate model parameters. As a result, they 

yield different probabilistic predictions when applied to women with specified attributes. 

 Domchek et al. (2003) compare the Gail and Claus Models and find that (p. 597): “Concordance 

of the two models is only fair.” Domchek et al. reject the notion that a clinician should use any weighted 

average of the predictions of the two models. Instead, they suggest that these models (p. 600) “may provide 

helpful ranges” of probabilistic predictions. 

Going further, Mandelblatt et al. (2009) report on an ambitious project that uses multiple models 

to generate a range of hypothetical predictions of breast cancer development and mortality under alternative 

strategies for mammography screening. The authors write (p. 740): 

“Each model has a different structure and assumptions and some varying input variables, so no 

single method can be used to validate results against an external gold standard. . . . Overall, using 

6 models to project a range of plausible screening outcomes provides implicit cross-validation, with 

the range of results from the models as a measure of uncertainty.” 

Domchek et al. (2003) and Mandelblatt et al. (2009) appropriately recognize that, when multiple 

plausible models generate a range of predictions, the correct prediction is uncertain. They suggest using the 

range of results to quantify the uncertainty. The reasoning that these authors give is heuristic rather than 

grounded in formal analysis. Nevertheless, presentation of a range of predictions is at least a step in a 

positive direction away from averaging. 
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3. Decision-Centered Meta-Analysis for Personalized Patient Care 

 

 I now develop principles for decision-centered meta-analysis. I first describe a clinician’s 

prediction objectives. I then consider use of study findings to partially achieve the objectives. 

 

3.1. Clinical Prediction Objectives 

 

 Consider a clinician who wants to personalize patient care. One might ideally think of personalized 

care as literally specific to the individual patient, but knowledge to support complete personalization is 

generally not available. Personalized care in practice means care that varies with clinically observed patient 

attributes. 

 Suppose that a clinician wants to probabilistically assess health risks or predict treatment response 

conditional on observed patient attributes. Existing evidence-based studies may provide some relevant 

information, but they may not yield fully accurate probabilistic predictions. The question is how a clinician 

may reasonably use the available study findings. 

 To formalize, let there exist a population of patients and let the particular patient under 

consideration be denoted as patient “0.” Let x0 denote the observed patient attributes. Let y denote a patient 

health outcome of clinical concern. 

 Probabilistic risk assessment means that the clinician wants to know the conditional probability 

distribution P(y|x0). When predicting treatment response, let T denote a set of alternative possible 

treatments. For each t ∊ T, let y(t) denote the health outcome that the patient would experience with 

treatment t. Probabilistic prediction of treatment response means that the clinician wants to know the 

conditional distributions P[y(t)|x0], t ∊ T. It is essential to recognize that the probability distributions under 

discussion here are distributions of outcomes among patients with attributes x0. They are not distributions 

across some conjectured population of studies. 
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 Clinicians often concentrate attention on mean health outcomes rather than complete distributions. 

Then the quantity of interest may be E(y|x0) or E[y(t)|x0], t ∊ T. I focus on these quantities henceforth. 

 

3.2. The Information Provided by Studies 

 

 Existing studies may not fully reveal the mean outcomes that the clinician wants to know. Suppose 

that the findings of a set K of studies have been reported. Each was conducted in some study population, 

measuring study-specific outcomes and patient attributes. In studies of treatment response, the treatments 

administered may have been study-specific as well. Thus, study k may report an estimate of a conditional 

mean risk-assessment E(yk|xk) or of mean treatment-responses Ek[yk(t)|xk], t ∊ Tk. 

 The findings reported in study k may differ from the one of clinical interest for several reasons. 

Outcome yk differs from y if the study measured a surrogate outcome, whereas y is an outcome of real 

health interest. Patient attributes xk differ from x0 if the study had subject inclusion criteria that excluded 

patients with attributes x0 from participation. If study k was a trial, the treatments in Tk differ from the 

clinically relevant treatments T if subjects in the trial received blinded treatments or if they received 

heightened attention relative to what patients receive in clinical practice. 

 While the reported study findings do not pin down the mean outcomes of clinical interest, they may 

be informative. To focus on identification, suppose that the study sample was large enough to make 

statistical imprecision a negligible concern. Thus, consider the estimates of E(yk|xk) or Ek[yk(t)|xk], t ∊ Tk to 

be accurate. 

 Knowledge of these quantities, together with other information provided by the study investigators 

and with credible assumptions, may enable the clinician to conclude that the mean outcomes of interest lie 

within certain sets of possibilities. Formally, one may be able to conclude that E(y|x0) lies within some set 

Ek0 on the real line or that E[y(t)|x0], t ∊ T lies within some set Hk0 of dimension |T|. 

 In many applied settings, the set Ek0 takes the form of an interval. Thus, one may be able to conclude 

that E(y|x0) ∊ [ek0L, ek0U], where eK0L and eK0U are the lower and upper bounds of the interval. Similarly, one 
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may be able to conclude that, for each t ∊ T, E[y(t)|x0] lies in an interval [e(t)k0L, e(t)k0U]. Section 3.4 will 

give specific forms that these intervals may take in practice. 

 In each case, the width of the interval measures the informativeness of study k to the clinician. The 

study is fully informative when the lower and upper bounds of the interval coincide. It is uninformative 

when the lower and upper bounds are the smallest and largest logically possible value of outcome y0. 

 

3.3. Aggregating Information across Studies 

 

 Section 3.2 considered one study in isolation. Meta-analysis aggregates information across multiple 

studies. Consider risk assessment. When the existing studies partially identify E(y|x0), the appropriate way 

to aggregate information across studies is to form the set intersection ∩ k ∊ K Ek0. A potential value of E(y|x0) 

is consistent with all the information in the studies if and only if the value lies within the set intersection. 

Similarly, a potential value of the mean treatment-response vector E[y(t)|x0], t ∊ T is consistent with the 

information in all studies if and only if it lies within the set intersection ∩ k ∊ K Hk0. 

 Intersection of sets takes a simple form when the sets are intervals. Then the intersection is itself 

an interval, whose lower bound is the greatest lower bound of the study-specific intervals and whose upper 

bound is the least upper bound of these intervals. For risk assessment, the set intersection is the interval 

[max k ∊ K ek0L, min k ∊ K ek0U]. For mean treatment response, it is [max k ∊ K e(t)k0L, min k ∊ K e(t)k0U]. 

 The operation of set intersection differs markedly from the traditional meta-analytic practice of 

computing a weighted average of estimates. Depending on the applied context, a meta-analytic weighted 

average risk assessment may or may not lie within the set intersection ∩ k ∊ K Ek0. The same remark holds 

for mean treatment response. When the evidence and assumptions used to compute the set intersection are 

accurate, failure of a weighted-average estimate to lie within this set implies that the weighted average 

cannot correctly predict the quantity of clinical interest. Thus, the hypothesis that a traditional meta-analytic 

weighted average provides a correct prediction may be refutable. 
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 The above discussion supposes that the evidence and assumptions used to compute the set 

intersection are accurate. It may be that some study investigators misinterpreted their evidence or that the 

clinician performing decision-centered meta-analysis imposed inaccurate assumptions when interpreting 

the study findings. In some applied settings, the operation of set-intersection may then yield an empty set. 

If this occurs, one should conclude that some study findings or clinician assumptions are incorrect. Thus, 

the hypothesis that a decision-centered meta-analysis provides a correct set prediction may be refutable. 

 

3.4. Analysis of Set Intersection in Research on Partial Identification 

 

 The use of set intersection to aggregate information across studies has precedent in econometric 

research on partial identification. I summarize here. 

 Manski (1990) derived nonparametric bounds on mean treatment response obtained from 

observational studies, where one may have no knowledge of the process of treatment selection. Let outcome 

y(t) have known bounded range, say [yL, yU]. Consider a set K of observational studies of populations that 

are credibly thought to have the same distribution of treatment response as the patient population of interest. 

Let each study population contain some persons who have attributes x0. Let each study measure outcome 

y(t) for those members of the study population who receive treatment t. Let zk denote the treatment received 

by a member of study population k. 

 Let P(zk = t|x0) be the fraction of persons in study population k who receive treatment t, among 

those with attributes x0. Let E[y(t)|x0, z = t] be mean treatment response within the group who have attributes 

x0 and who receive treatment t. The quantities P(zk = t|x0) and E[y(t)|x0, zk = t] are in principle observable 

to an investigator performing observational study k. On the other hand, the quantity E[y(t)|x0, zk ≠ t] is 

counterfactual, hence unobservable. 

 The Law of Iterated Expectations relates the above quantities to E[y(t)|x0] as follows: 

 

(1)    E[y(t)|x0]  =  E[y(t)|x0, zk = t]·P(zk = t|x0) + E[y(t)|x0, zk ≠ t]·P(zk ≠ t|x0). 
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With E[y(t)|x0, zk ≠ t] unobservable, we can conclude that E[y(t)|x0] lies in the interval 

 

(2)     E[y(t)|x0, zk = t]·P(zk = t|x0) + yL·P(zk ≠ t|x0)  ≤  E[y(t)|x0] 

                                                                                  ≤  E[y(t)|x0, zk = t]·P(zk = t|x0) + yU·P(zk ≠ t|x0). 

 

The lower and upper bounds are obtained by inserting the polar possibilities for E[y(t)|x0, z ≠ t], which are 

that it equals yL or yU respectively. 

 Now consider the set K of studies. E[y(t)|x0] lies in interval (2) for every k ∊ K. Hence, it lies within 

the intersection of the |K| study-specific intervals. The result is the intersection interval 

 

(3)    max E[y(t)|x0, zk = t]·P(zk = t|x0) + yL·P(zk ≠ t|x0)  ≤  E[y(t)|x0]   
         k ∊ K 
 
                                                                                        ≤  min E[y(t)|x0, zk = t]·P(zk = t|x0) + yU·P(zk ≠ t|x0). 
                                                                                            k ∊ K 
 

 Inequality (3) is a special case of the class of instrumental-variable bounds introduced in Manski 

(1990) and subsequently developed further in Manski (2003, 2007) and Manski and Pepper (2000, 2009). 

The terminology in these sources is distant from that used in the literature on study-centered meta-analysis. 

Hence, it is understandable if a researcher who performs meta-analysis but is not familiar with research on 

partial identification might not immediately recognize the applicability of the findings. 

 Two analyses of partial identification that overtly relate to meta-analysis are Manski (2003, 2004a). 

Manski (2003, Section 1.4) characterizes abstract set intersection when multiple studies use different 

sampling processes to examine different sub-populations of a population of interest. The findings reported 

there apply directly to risk assessment. Manski (2004a) combines findings on treatment response obtained 

from observational studies of multiple successive cohorts of persons. The findings reported there extend to 

dynamic settings (3) and more abstract findings on set intersection for distributions of treatment response. 
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Observation of an increasing number of cohorts enables one to intersect an increasing number of sets over 

time, thereby increasing knowledge of the distribution of treatment response as time passes. 

 

3.5. Aggregating Findings of Statistically Imprecise Studies 

 

 To focus on the identification problems that often dominate use of evidence-based research in 

medical decision making, I have supposed that the available studies analyze data samples that are large 

enough to make statistical imprecision negligible. In practice, some samples may be small enough that 

imprecision is a serious concern. 

 A standard approach to characterization of imprecision has been to compute confidence sets for 

quantities that are estimated imprecisely. The literature on inference on partially identified quantities has 

developed several approaches to computation of confidence sets for set intersections. Some are based on 

simple heuristics (Kreider and Pepper, 2007) and others are grounded in formal asymptotic statistical theory 

(Chernozhukov, Lee, and Rosen, 2013). These approaches may be applied to decision-centered meta-

analysis.   

 Ideally, decision-centered meta-analysis should bring to bear statistical decision theory, which aims 

to provide reasonable prescriptions for decision making with sample data (Wald, 1950). This is a topic for 

future research. 

 Early applications of statistical decision theory investigated best point prediction under square loss 

rather than treatment choice. See, for example, Hodges and Lehman (1950). The early literature on best 

point prediction appears not to have addressed combination of findings across studies. However, Dominitz 

and Manski (2017) recently do so. They consider minimization of maximum mean square error subject to 

a budget constraint, when multiple available studies use sampling processes that differ in cost and the data 

quality they yield.  

 Treatment choice has long been a topic of study in the Bayesian branch of statistical decision 

theory. See, for example, Canner (1970), Spiegelhalter, Freedman, and Parmar (1994), Cheng, Su, and 
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Berry (2003), and Spiegelhalter (2004). To combine findings across studies, some Bayesian statisticians 

have proposed Bayesian averaging (e.g., Hoeting et al., 1999). This approach computes a weighted average 

of estimates, the weights expressing both statistical imprecision and subjective considerations. 

Bayesian averaging is essentially a Bayesian version of study-centered meta-analysis. The 

approach assumes that the quantity estimated in at least one of the available studies appropriately estimates 

the quantity of clinical interest. It places a prior subjective probability on each study being appropriate in 

this sense. Bayesian averaging does not recognize that the quantity of clinical interest may differ from those 

estimated in all the available studies. 

Appropriate recognition of this basic problem is possible in principle with application of the branch 

of statistical decision theory that aims to achieve uniformly satisfactory treatment choice, as measured by 

maximum regret across states of nature. However, the small extant literature of this type has thus far mainly 

sought to cope with statistical imprecision alone, in the absence of identification problems. See Manski 

(2004b), Stoye (2009), Manski and Tetenov (2016), and Kitagawa and Tetenov (2018). Only Stoye (2012) 

has considered decision making when one faces both statistical imprecision and an identification problem. 

Stoye examines a setting in which only one study is available. Thus, application of statistical decision theory 

to decision-centered meta-analysis is presently an open subject. 

 

 

4.  Illustration: Combining Findings on Drug Treatment of Hypertension 

 

 This section demonstrates decision-centered meta-analysis using set intersection to combine 

findings from randomized trials and observational studies. I keep the illustration simple to make the basic 

ideas plain. In practice, I anticipate that decision-centered meta-analysis would combine findings from a 

larger set of studies. Such analysis should bring to bear the expertise of medical researchers and clinicians 

with experience in risk assessment and treatment. 
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 The matter to be considered is determination of the effect of drug treatment on the blood pressure 

of persons who have been diagnosed with hypertension. Systematic reviews and study-centered meta-

analyses have examined this and related questions. I take as my starting point the evidence review 

performed to support the 2014 guidelines for management of high blood pressure in the United States, 

mentioned in the Introduction. I then use data from the NHANES Survey. 

 

4.1. Evidence Review by the JNC 8 Group 

 

 The JNC 8 guideline development group completely dismissed findings from observational studies. 

It considered only findings from randomized trials. The group wrote (James et al., 2014, p. 508): “The panel 

limited its evidence review to RCTs because they are less subject to bias than other study designs.” 

The JNC 8 performed a systematic review of the available trial evidence rather than a meta-analysis. 

This review highlighted three trials, described in Beckett et al. (2008), SHEP Cooperative Research Group 

(1991), and Staessen et al. (1997). It is instructive to juxtapose the study populations of these trials. 

The participants differed in age, in countries of residence, and in the rules governing exclusions for 

comorbidities. Moreover, they differed in their blood pressure levels measured at two stages before being 

randomized into treatment. The SHEP and Staessen trials, but not the Beckett trial, restricted eligibility to 

persons diagnosed as having isolated systolic hypertension, a condition in which systolic blood pressure 

(SBP) is higher than desirable but diastolic blood pressure is in the normal range. I provide some details of 

the study populations below, drawing on descriptions in the published articles. 

 

Beckett trial: Participants were 80 years of age or older, residing in Europe, China, Australasia, and Tunisia.  

Persons with various comorbidities were excluded. To be eligible, a person initially had to have SBP of 160 

mm Hg or more. This group included persons who were and were not receiving antihypertensive treatment 

at the time. Persons with blood pressure in the eligible initial range consented to stop treatment for several 
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months, after which they were required to have SBP in the range 160-199 and diastolic blood pressure 

below 110. Persons in this subgroup were randomized to a drug treatment or to placebo. 

 

SHEP trial: Participants were 60 years of age or older, residing in the United States. Persons with various 

comorbidities were excluded. To be eligible, a person initially had to have SBP in a certain range, the 

specifics depending on whether they were or were not receiving antihypertensive treatment at the time. 

Persons with blood pressure in the eligible initial range consented to stop treatment for several months, 

after which they were required to have SBP in the range 160-219 and diastolic blood pressure below 90. 

Persons in this subgroup were randomized to a drug treatment or to placebo. 

 

Staessen trial: Participants were 60 years of age or older, residing in Europe. Persons with various 

comorbidities were excluded. The published article does not state whether a person initially had to have 

SBP in some range. Potential subjects consented to stop treatment for several months, after which they were 

required to have SBP in the range 160-219 and diastolic blood pressure below 95. Persons in this subgroup 

were randomized to a drug treatment or to placebo. 

 

 The designated primary outcome studied in each trial was the occurrence of stroke in subjects. The 

investigators also reported blood pressure outcomes. For example, they gave findings on mean SBP two 

years after initiation of the trial. At that time, means for treated and placebo subjects were 145 and 160 in 

the Beckett trial (Beckett et al., 2008, Figure 2), 142 and 154 in the SHEP trial (SHEP Cooperative Research 

Group, 1991, Table 3), and 151 and 161 in the Staessen trial (Staessen et al. 1997, Figure 3). 

 

4.2. NHANES Evidence on Drug Treatment and Blood Pressure 

 

 The NHANES Survey (National Center for Health Statistics, 2019) assesses the health status of the 

American population through a continuous cross-sectional survey whose findings are released to the public 
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biannually.  I consider the biannual reports for the periods 2007-8, 2009-10, 2011-2012, 2013-2014, and 

2015-16. Each report provides data on about 4000 respondents. The questions posed regarding hypertension 

and the procedure used to measure blood pressure have remained the same through these years. The sample 

design has remained close to the same over time. For simplicity, I examine the raw findings, ignoring the 

fact that NHANES oversamples some demographic subgroups. 

 I focus on the subsample of persons of age at least 60 (henceforth, older persons) who have at some 

past time been diagnosed with hypertension. Let the outcome of interest be SBP. NHANES expresses 

diagnosis by response to survey question BPQ020, which asks “Have you ever been told by a doctor or 

other health professional that you had hypertension, also called high blood pressure?” It expresses drug 

treatment for hypertension by response to question BPQ050A, which asks “Are you now taking prescribed 

medicine for high blood pressure?” In a medical examination, NHANES staff measure each respondent’s 

SBP at least three times, with the results reported in variables (BPXSY1, BPXSY2, BPXSY3). I use the 

average of these measurements. 

  

Table 1: Average Systolic Blood Pressure of Older NHANES Respondents 
Diagnosed with Hypertension 

 

period treated 
Average 

SBP
number 

responses
fraction 

responses 
2007-16 no 142.2 305 0.06 
 yes 135.3 4532 0.94 

2007-8 no 145.6 58 0.06 

 yes 135.9 922 0.94 
2009-10 no 141.4 58 0.05 

 yes 133.9 1004 0.95 
2011-12 no 144.0 54 0.06 

 yes 135.9 845 0.94 
2013-14 no 141.6 64 0.07 

 yes 134.4 858 0.93 
2015-16 no 139.1 71 0.07 

 yes 136.6 903 0.93 
 



20 
 

 Table 1 gives the findings on average SBP for the 4837 subsample respondents across the 2007-

2016 period. The table also gives the findings in each of the five biannual NHANES reporting periods. 

Across the ten-year period, about 94 percent of the subsample were treated and 6 percent untreated. Average 

SBP was 135.3 for treated persons and 142.2 for untreated ones. 

 If one were to assume that treatment selection is random and ignore statistical imprecision, one 

would conclude that mean SBP would be 135.3 if all older persons diagnosed with hypertension were 

treated with prescribed medicines and would be 142.2 if none were treated. The NHANES being an 

observational study, one may not find it credible to assume that treatment is random. The bound stated in 

(2) makes no assumption about the process of treatment selection. Computation of the bound only requires 

credible values for yL or yU, lower and upper bounds on the value of counterfactual mean SBP. For this 

purpose, I shall use the observed 2.5 and 97.5 percentile values of SBP among the 4837 NHANES 

subsample members, namely 100.7 and 182.0. Using these values as yL and yU, computation of bound (2) 

yields these bounds on mean SBP with and without treatment: [133.4, 138.2] and [103.2, 179.6]. 

 These bounds show that the NHANES observational study is very informative about the mean SBP 

that would occur if all persons with hypertension were to be treated, placing it in the narrow bound [133.4, 

138.2] without making assumptions about treatment selection. On the other hand, the survey reveals little 

about the mean SBP that would occur if no one were to receive treatment, placing it in the wide bound 

[103.2, 179.6]. This asymmetry arises from the asymmetry between the fraction of the subsample who are 

treated (0.94) and who are not (0.06). Among NHANES respondents, the fraction who have counterfactual 

outcomes with treatment is correspondingly small (0.06) and without treatment is large (0.94). 

 The bounds given here can in principle be narrowed further. For example, rather than pool all 

respondents across the ten-year period, one could compute separate bounds for each of the five biannual 

reporting periods and then compute intersection interval (3). The intersection bounds do not substantially 

narrow the bounds with pooled data because empirical findings are similar across reporting periods. 

Sampling imprecision becomes a non-trivial matter when computing bounds on mean SBP without 

treatment, because the biannual sample sizes without treatment are relatively small (54 to 71). 
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4.3. Combining the Trial and NHANES Findings 

 

 The Beckett, SHEP, and Staessen trials may have strong internal validity, but they have limited 

external validity when considering treatment of the American population. These trials mainly obtained data 

on study populations composed of non-Americans who were diagnosed with isolated systolic hypertension, 

who lacked various comorbidities, and who volunteered to participate. As usual in drug trials, treatment 

administration differed from what would occur in practice because treatment was double-blinded. Double-

blinding prevents clinicians from following the common practice of sequentially prescribing alternative 

drugs for hypertension, trying each for a period with the objective of finding one that performs satisfactorily. 

 The NHANES data suffer from none of these problems of external validity. NHANES examines a 

broadly representative sample of the American population and it provides findings on the outcome of 

treatment administration as it occurs in clinical practice. On the other hand, NHANES has limited internal 

validity in the absence of knowledge of the process of treatment selection in practice. 

 The fact that the preponderance of persons diagnosed with hypertension receive treatment makes 

the NHANES problem of internal validity highly asymmetric. The NHANES data are almost uninformative 

about mean SBP in the total absence of treatment. However, they yield the narrow bound [133.4, 138.2] on 

mean SBP with treatment of all older Americans diagnosed with hypertension. The upper bound is 

noticeably smaller than all three trial estimates of mean SBP after two years, which are (145, 142, 151). 

 Set intersection provides a sensible way to combine the trial and NHANES findings. The JNC 8 or 

another guideline development group could quantify the seriousness of the trial problems of external 

validity by bounding the maximum difference they think credible between the mean trial outcomes and 

mean SBP in the American sub-population of interest. They could then intersect these bounds with those 

obtained from the NHANES data. 

 I caution that it may be challenging for a guideline development group to credibly quantify the 

external validity of the Beckett, SHEP, and Staessen trials. The study populations and treatment regimes in 
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these trials differ from those germane to developers of American clinical practice guidelines in many ways. 

Yet I believe it essential to meet this challenge. The prevailing practice in medical research has been to just 

mention problems of external validity of trials in verbal caveats. This cannot suffice. 

 To illustrate set intersection, suppose one finds it credible to assume that the absolute differences 

between SBP outcomes in the thee trials and the mean outcomes for the relevant American subpopulation 

are no greater than 15 mg Hg. Combining the bounds obtained from the trials and the NHANES data yields 

intersection bounds on mean SBP of older Americans with and without treatment, shown in Table 2. 

 

Table 2: Bounds on Mean Systolic Blood Pressure of Older Americans  
Diagnosed with Hypertension 

 

Treated Beckett SHEP Staessen NHANES Intersection
no [145, 175] [139, 169] [146, 176] [103, 180] [146, 169]

yes [130, 160] [127, 157] [136, 166] [133, 138] [136, 138]
 

 Observe the asymmetry between the intersection bounds for treated and non-treated persons, which 

are [136, 138] and [146, 169]. The NHANES and Staessen findings yield the upper and lower intersection 

bounds for treated persons. The Beckett and SHEP trials yield bounds that are supersets of the intersection 

and so do not add information. The SHEP and Staessen findings yield the upper and lower intersection 

bounds for untreated persons. The Beckett and NHANES findings yield bounds that are supersets of the 

intersection and so do not add information. 

 

 

5. Conclusion 

 

 The standard practice in meta-analysis has been to compute a weighted-average of estimates 

reported in disparate studies. Random-effects models have interpreted this weighted average as an estimate 

of a mean parameter across a hypothetical population of studies. The relevance to medical decision making 
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is obscure. Decision-centered research should aim to inform risk assessment and treatment for populations 

of patients, not populations of studies. 

 This paper has laid out principles for decision-centered meta-analysis and has illustrated with 

assessment of the effect on blood pressure of anti-hypertensive drugs. To cope with the identification 

problems that regularly afflict medical research, I recommend that computation of the intersection of set-

valued predictions should replace computation of weighted-averages of point estimates. 
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