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ABSTRACT 

The researchers question how accurate the 2020 census needs to be, given that accuracy is 
expensive but inaccuracy distorts distributions of congressional seats and federal funds. 
Although the 2010 census had small measured errors for states, 0.6% on average (as 
measured by root-mean-square error, RMS), the researchers project that Texas loses and 
Minnesota gains a seat if the 2020 census has the same errors. Projections further show 
that if 2020 census error for state populations increases to 0.7% RMS, an additional seat 
is lost by Florida and gained by Ohio, and if error increases to 1.7% RMS, Texas loses a 
second seat, to the benefit of Rhode Island. The researchers find expected distortions in 
fund allocations increase about $9–$13 billion for each 0.5% increase in average error.
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The U.S. Constitution requires that the population be enumerated decennially, for purposes of 

allocating Representatives among the states.  

Representatives shall be apportioned among the several States according to their 

respective numbers, counting the whole number of persons in each State, excluding 

Indians not taxed. The actual Enumeration shall be made within three Years after the 

first Meeting of the Congress of the United States, and within every subsequent Term 

of ten Years, in such Manner as they shall by Law direct. (Art. I, Sec. 2, as amended) 

The Constitution requires a census but does not say how accurate the census should be. Accuracy 

and cost are closely related. Perfect accuracy is unattainable at any cost. As demographer Nathan 

Keyfitz noted, “Asking why the census cannot [accurately] count 100 percent of the population in 

a free society is like asking why books contain typographical errors, why manufactured products 

often have defects, or why the police cannot catch all criminals.” (1, 46) Accuracy can be increased 

through investment of more resources in the census.  

Understanding the cost-accuracy tradeoff is critically important for choosing and evaluating a 

census design. Associated with any design is a cost-accuracy curve (“cost curve”) that specifies 

the cost of attaining a given profile of accuracy. The cost curve is determined by census technology 

and social behavior, including the cooperation of the public with providing information requested. 

Figure 1 shows an illustrative example of the cost curve. Empirical determination of the curve is 

challenging, and indeed is a reason for testing and development activities at the Census Bureau.  

Our study analyzes the effects of alternative levels of 2020 census accuracy on apportionment 

of the House of Representatives and on allocation of billions of dollars of federal funds. We argue 

that paying attention to census cost alone, without concern for accuracy, leads to large and perhaps 

counter-intuitive shifts in allocations and apportionment. 
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Figure 1. The cost-accuracy curve shows the cost of attaining accuracy and the accuracy 

attainable at given cost. (A) Accuracy typically is attained at increasing marginal cost and (B) 

additional spending yields decreasing returns in accuracy.  

 

For at least the last five censuses, high accuracy was sought and spending was adjusted to try to 

attain it. This is evinced by the successful requests by the Census Bureau for additional funds in 

the years just prior to those censuses.  
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By contrast, for the 2020 census, Congress adopted a cost target instead of an accuracy target, 

and the Census Bureau is held responsible to achieve acceptable accuracy at that cost. The target 

was set so that the 2020 cost per housing unit remains at the same (inflation-adjusted) level as 

attained in 2010, or about $12.5 billion in 2020 dollars (2, Recommendation 3). This is almost 

30% below the projected cost of repeating the 2010 census methods, and is attainable only with 

successful innovations, notably use of internet as the main venue for census reporting, use of 

modern geospatial imaging to update mailing addresses, use of mobile devices by census takers to 

collect data from households not completing a census form, and use of administrative data to 

remove vacant housing units and compensate for lack of data from non-respondents. Such 

innovations are still under development and require testing under realistic conditions (3, 4).  

The underfunding of requested census testing and development in the years leading up to the 

2020 census demonstrates lack of concern for accuracy relative to cost (4, 5). Indeed, although the 

accuracy attainable for that cost is uncertain at this point, the concerns outside the Census Bureau 

have focused almost exclusively on cost (6-10). The present dominating focus on cost leaves open 

the possibility that the accuracy attained by the census may be unsatisfactory for society’s needs 

(just as a dominating focus on accuracy would run the risk of excessive spending to obtain 

inconsequential improvements in accuracy).  

Statistical decision theory is a framework that jointly considers both costs and benefits of census 

accuracy and quantifies the tradeoff. This prevents excessive emphasis on either cost or accuracy. 

The benefits of the census arise from how its products are used. Reductions in census cost 

necessitate reductions in census accuracy, and reductions in accuracy lead to distortions in census 

uses. In certain situations, the benefit of a good can be reflected by its value in the market. 

However, the market does not properly value data, as data are a public good and will not be 



Balancing 2020 Census Cost and Accuracy 

5 

 

adequately provisioned by the free market (11). The most visible uses of the census results include 

intergovernmental allocation of funds by formulas using population statistics, apportionment of 

the U.S. House of Representatives, and redrawing of Congressional district boundaries. When the 

census population numbers contain errors, the fund allocations, Congressional apportionment, and 

district sizes are different from what they would be if the census numbers had no error. 

Historically, census counts understated true size of population, and census error was quantified 

by net undercount rate, which equals the difference, true minus census, divided by true. Although 

the estimated net undercount rate for 1990 was 1.61%, the censuses in 2000 and 2010 were 

estimated to exceed true population size nationally, with net undercount rates estimated at –0.49% 

and –0.01%, respectively (12). For census uses that involve dividing a fixed total, including 

apportionment of the House of Representatives (“House”) and programs that use statistical 

formulas to allocate fixed amounts of fund total among states, what matters are the states’ 

differential undercount rates, defined as the net undercount rate for the state minus the rate for all 

states combined. Differential net undercount rates are defined analogously for demographic 

groups, with estimates shown in Table 1.  The differential rates are fairly consistent across the 

three censuses, with non-Hispanic Whites overcounted relative to the nation as a whole, and 

Hispanics and non-Hispanic Blacks undercounted.   

Inaccuracy in the census can distort the reapportionment of the House, where states can gain or 

lose a seat after only small changes in population (1). The distribution of House seats depends on 

the states’ shares of population and is calculated by the “equal proportions” method (13-16). 

Projections of House reapportionment following the 2020 census can be calculated from 

projections of 2020 state population shares (17). To illustrate effects of census inaccuracy on 

apportionment, we modify the projections of 2020 state population by allowing for census errors.  
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Table 1. Estimated differential net undercount rates for demographic groups in last 3 

censuses. Source: (12) 

 Estimated Differential Net Undercount (%) 

Group  1990 Census 2000 Census 2010 Census 

Non-Hispanic White –0.9 –0.6 –0.8 

Non-Hispanic Asian 0.8 –0.3 0.1 

Hispanic 3.4 1.2 1.6 

Non-Hispanic Black 3.0 2.3 2.1 

Non-Hispanic native Hawaiian or other Pacific 
Islander 

0.8 2.6 1.4 

American Indian on reservation 10.6 –0.4 4.9 

American Indian off reservation n.a. 1.1 –1.9 

 

Table 2 shows illustrative projections of winners and losers under three alternative levels of 

census error. The first column shows the effect on apportionment if errors in 2020 census state 

population shares equal errors measured for the 2010 census (18) – Texas loses a House seat to 

Minnesota. The last two columns show shifts in House seats if the patterns of error in the 2020 

census resemble those measured for states in the 2010 census, but the overall error in population 

shares is exaggerated in 2020 due to underfunding. If the sizes of errors in 2020 are 20% larger 

than for 2010 (RMS size 0.71 versus 0.59), Florida also loses a seat and Ohio gains one; if the 
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RMS sizes of the errors in 2020 is 1.67, Texas is projected to lose a second seat, to the benefit of 

Rhode Island. In relying on 2010 census error estimates, these projections may be conservative 

due to changing demographics. For example, Hispanics comprise a larger proportion of Florida’s 

population now than in 2010, and Hispanics tend to be undercounted relative to non-Hispanic 

Whites. 

Table 2. Projected gains and losses of House seats at different levels of 2020 census error.       

 RMS1 relative error in state 2020 population shares 

State 0.592 0.71 1.67 

Florida – lose 1 lose 1 

Minnesota gain 1 gain 1 gain 1 

Ohio – gain 1 gain 1 

Rhode Island – – gain 1 

Texas lose 1 lose 1 lose 2 

Every other state – – – 

Seats shifted 2 4 6 

– indicates no change. 1 RMS relative error is root-mean-square relative error.  2 The measured 

errors for states the 2010 census had RMS size 0.59.  

As indicated in Figure 2, the expected number of changes in House seats due to error in the 

2020 census tends to increase by about 2.5 – 3.5 when the root-mean-square (RMS) size of state 

errors increases by 1%. The RMS size of state errors is the square root of the mean of the states’ 

squared undercount rates; columns 1, 2, and 3 in Table 2 correspond to 2020 census error RMS 
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sizes of 0.59%, 0.71%, and 1.67% respectively. We considered a variety of parametric error 

models, including state undercount rates multivariate normally distributed with zero mean, equal 

variance, and constant correlation, as well as other models (20). The right-hand axis of Figure 2 

shows the expected number of shifts in House seats for the models with correlation 0 and 0.5 as 

well as the error distributions used in Table 1, which were patterned on the measured errors for 

the 2010 census. When the errors are random, the actual number of malapportioned seats can be 

less than or appreciably greater than the expected number; e.g., in the model with uncorrelated 

errors, the actual number of malapportioned seats has about a 1 in 7 chance of being at least 20 

with RMSE at 4%, at least 16 at 3%, and at least 10 at 2% (20). 
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Figure 2. Expected funds misallocations and malapportioned House seats. (FY2015 dollars) 

Census data affect the distribution of many billions of dollars of funds – more than $675 billion 

in allocations from 132 programs in FY 2015 according to a recent Census Bureau study (21). In 

fact, the cost-benefit analyses that have been carried out to date have focused on uses of census 

data for allocation of funds (22-27). With so many programs, it is not feasible to study the effects 

of census error on each program, and we selected a disproportionate stratified sample of 18 

programs that accounted for 80% of the total obligations in FY 2007 (28). Sample weighting 

estimates were used to obtain unbiased estimates reflecting all allocation programs listed in both 

(21) and (28), and sampling variances were relatively small (c.v. < 4%). The expected amount of 
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misallocated funds due to census error (if the same programs are in place at the same funding level 

for the decade following the 2020 census) is estimated at $80 billion for the decade if the RMS 

size of the census errors is as large as 4%. As seen in Figure 2 (left hand axis), the expected amount 

misallocated increases linearly with the RMS size. Actual misallocations can be higher or lower 

than expected amounts.  

Apportionment and allocations of funds, along with redistricting following each census, are 

highly visible uses of census data, but they are not the only important uses. It is noteworthy that 

some of the most important uses of the census may be the least visible, including research in 

social, economic, behavioral, medical, and policy areas and applications of that research. The 

role of census data in policy development and decision-making by the Congress and the White 

House, by state and local governments, and by businesses and other organizations has not 

received sufficient study. For example, surveys are widely used sources of information, and 

almost all national population surveys – whether government or private sector, whether by 

internet, mail, phone, or in-person – directly or indirectly use decennial census numbers for 

adjusting their results. Public health impacts of census error are discussed in (29). 

In conclusion, inaccuracy in the 2020 census can cause quite large – and counterintuitive – 

distortions in distributions of federal funds to states and local governments. If the average root- 

mean-square error of state populations is 2%, the expected shifts in fund allocations is on the order 

of $40 – $50 billion over ten years and the expected shifts in House apportionment is around 6 

seats; if the average RMS error is as large as 4%, the expected shifts double in size. The actual 

shifts could be smaller or even greater than the expected values. We hope the average error is much 

smaller than 2% or 4%, as appears to be the case for previous censuses (30), but the reality will 

strongly depend on the level of census funding. 
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Supporting Information 

S1. Introduction 

This material provides additional details about estimates of the distributions of distortions in 

allocations of representation and funding among states that arise at alternative profiles of 

accuracy in the 2020 census. The apportionment algorithm as well as funding formulas and total 

funding amounts as of FY 2007 are treated as fixed. Allocations (of funds or representation) that 

would occur with error-free statistics are treated as true values for the allocations, in contrast to 

empirical or estimated allocations based on inaccurate statistics. The difference, estimated minus 

true allocation, is the error in allocation or, more simply, the misallocation; the absolute value of 

the difference is called the absolute misallocation. Discussion and results for measures of 

discrepancy other than sum (across states) of absolute values, including sum of square errors, 

mean absolute percentage error, maximum absolute error, and maximum absolute percentage 

error are in (19). The term “error” is standard usage in statistics and does not imply that someone 

made a mistake. Relative error is defined as the error divided by the quantity being estimated. 

The calculations of errors in apportionment and in fund allocation involve joint specification 

of the true population and the census population numbers for states, or equivalently the true 

population numbers and the census errors. (For fund allocations, we include Washington D.C. as 

a state.) Different specifications were used for errors in 2020 apportionment in Table 2 and in 

Figure 2, and for errors in fund allocation in Figure 2. (Note: Tables and figures are identified as 

Table 1, Figure 1, etc. when they appear in the main text and as Table S1, Figure S2, etc. when 

they appear in this Supplementary Information.) The following material discusses the methods 



Supplementary Information for Balancing 2020 Census Cost and Accuracy 

17 

 

and data for the results in the main text, and provides supplementary results. For additional data 

and software code, see (31).  

The organization of the Supplementary Information is as follows. Methods, data, and results 

are discussed in Sections S2–S4 for apportionment and in Section S5–S6 for fund allocations.   

i. Section S2 discusses the data and models used to project individual states’ errors in 

apportionment, as shown in Table 2.  The true 2020 population numbers were projected 

by short-term linear extrapolation of postcensal estimates from 2017, and 2020 census 

errors were modeled by scaling the measured errors in the 2010 census (18).   

ii. Section S3 discusses an alternate specification for true 2020 population numbers and 

census errors, which was used for errors in apportionment reported in Figure 2. The 

vector of 2020 true state population sizes was considered to be random, with mean vector 

equal to state population projections based on the 2010 census and constant relative 

variances based on empirical differences between 2010 census numbers and projections 

for April 1, 2010 (19). A variety of alternative parametric models were developed for 

2020 census errors conditional on the true 2020 population.  

iii. Section S4 provides supplementary results. 

iv. For errors in fund allocation as displayed in Figure 2, we used a different approach, 

which is discussed in Section S5. Unlike apportionment, which depends only on state 

population sizes in 2020, formula-based allocations of funds depend on a wide variety of 

population statistics and other statistics. Rather than jointly forecast the values of all such 

statistics ahead to 2020, which would involve complexity and uncertainty of forecasts, we 

obtained the latest values available of the statistics used to calculate allocations for the 18 
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programs studied, and we treated those as error-free. Thus, the true state population 

numbers used in our analysis of allocation of funds are based directly or indirectly on the 

2010 census, but not on projections or forecasts of the 2020 population sizes. 

S2. Projected Gains and Losses of House Seats for Individual States Shown in Table 2 

First, we created a projection of the state population sizes for apportionment after the 2020 

census. Second, we adjusted the projections accounting for three alternative levels of 2020 

census error. Third, we compared the apportionments based on the populations regarding the 

projections as true with the apportionments based on populations incorporating alternative error 

specifications for 2020 census error.  

S2.1. Projection of true 2020 apportionment population sizes 

The projection of 2020 apportionment populations is developed in two steps. The first step 

took the Census Bureau’s postcensal estimates x for 7/1/2016 and y for 7/1/2017 and linearly 

extrapolated (projected) forward 33 months (2.75 years) to 4/1/2020 as ( )2.75 – .= +z y y x  The 

Census Bureau develops postcensal estimates by accounting for change since the previous census 

due to births, deaths, and net movement in and out of the state. The Census Bureau’s estimates 

are available in (32) and the underlying methodology is described in (33). Although undercount 

in the prior census does affect postcensal estimates (34), for the purposes of this analysis we are 

not modifying the projections to account for undercount, as such modification would be both 

complex and uncertain. 

The second step involved modifying the projection, ,z  for differences between the census 

population and the apportionment population. The modification for state i  involves 

multiplication of the projected population iz  by the ratio ir  of the 2010 apportionment 



Supplementary Information for Balancing 2020 Census Cost and Accuracy 

19 

 

population (35) to the 2010 census population (36). The projected 2020 true apportionment 

population size for state i  is 
2020 .i i iv r z=  Denote the sum of 

2020

iv  across the 50 states by 
2020 .v+  

S2.2. State-level differential undercount in 2010 apportionment populations 

Three steps were followed to use the estimated net undercount rates for the 50 states in the 

2010 census to calculate differential net undercount rates for the states. First, we calculate 

undercount-adjusted population sizes. Second, we use those to calculate the undercount rate for 

all 50 states combined. Finally, we calculate the differential net undercount rate.  

i. For state ,i  denote the undercount rate in the 2010 census by ,iu  the 2010 census 

apportionment population size by 
2010

iv  and the true 2010 apportionment population size 

by 
2010 .it  We assume state apportionment populations have the same undercount rates as 

the state census populations. This implies ( )2010 2010 2010– / ,=i i i iu t v t  or ( )2010 2010 / 1 .= −i i it v u   

ii. Denote the sum of  
2010

iv  and 
2010

it  across the 50 states by 
2010v+  and 

2010 ,+t  respectively, 

and define ( )2010 2010 2010– / .+ + + +=u t v t  We may rewrite this as 
2010 2010/ .+ = i i ii i

u t u t  

iii. The differential undercount rate for state i  is defined as – .+=i id u u  The differential 

undercount is a linear approximation to the relative error of the state i  share of the 

apportionment population. Substituting the estimated undercount rate ˆ
iu  and ˆ

+u  (18) for 

iu  and ,+u  we estimate the 2010 differential undercount rate for state i  by ˆ ˆ ˆ– .i id u u+=   
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S2.3. Modeling state-level undercount in the 2020 census from measured 2010 

undercount 

The projected 2020 apportionment population size 
2020

iv of state i  is adjusted for illustrative 

profiles of net undercount in the 2020 census. To do this, we introduce a multiplier   to apply to 

the differential undercount as in the 2010 census. This leads to projected apportionment 

enumerations 
2020

ia for 2020. The formula for this is ( )2010 2020 ˆˆ1– .+= −i i ia v u d  One can 

interpret 1   as less accuracy (larger state differential undercounts) than 2010, 1 =  as the 

same accuracy as 2010, and 0 1   as more accuracy. If 0 =  then there is no error in the 

state i  share of apportionment population, 
2020 2020 2020 2020/ / .+ +=i ia a v v  It may be noted that ˆ

+u  

was so close to zero, at -0.017%, that similar results are found if   is applied to undercount 

rather than differential undercount. 

v. Notice that the RMS sizes of the differential undercount also scale by . Choices of  

equal to 1, 1.2, and 2.385 correspond to RMS sizes of 0.59, 0.71, and 1.67 as shown in 

Table 2. Finally, the apportionments are then calculated using the Equal Proportions 

apportionment method with the 
2020

ia values as the population sizes of the states. For 1 <  

< 1.2 there were 2 House seats misallocated, for 1.2 <  < 2.385 there were 4 seats 

misallocated, and for  = 2.385 there were 6 seats misallocated; see Table 2.  
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S3. Joint Distribution of 2020 Population True Values and Estimates as Applied to 

Apportionment in Figure 2  

S3.1. Probability distribution for 2020 population true values 

For analysis of apportionment as reported in Figure 2, true population sizes of states were 

taken to be multivariate normal with means equal to projections for 2020. We used projections 

made by the University of Virginia’s Weldon Cooper Center for Public Service based on the 

2010 census results (37) because the Census Bureau stopped producing state projections. We 

chose a diagonal covariance matrix with variances consistent with empirical errors in past ten-

year projections for 2010, as discussed below. Apportionments are integers, and it is theoretically 

possible that a change in population of 1 person can cause a state to gain or lose a seat (1). 

Specifying a variance for the true values prevents our estimates from being sensitive to true 

population sizes being necessarily near or far from values that would change apportionments. 

Simulations showed the variance around the means to have little if any effect on the estimates of 

malapportionment arising from census inaccuracy. No adjustment was made for differences 

between state population and state apportionment population. The numerical values are shown in 

Table S1. 
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Table S1. Specification of moments of state populations in 2020. 

State Mean 

Coeff. of 
Variation 

(%) State Mean 

Coeff. of 
Variation 

(%) 

.Alabama 5,066,866 2.6 .Montana 1,055,292  4.1 

.Alaska 811,718 4.4 .Nebraska 1,908,775 3.6 

.Arizona 7,604,382 2.5 .Nevada 3,328,548 3.1 

.Arkansas 3,120,724 3.1 .New Hampshire 1,446,097 3.9 

.California 41,715,522 2.0 .New Jersey 9,252,696 2.3 

.Colorado 5,733,049 2.5 .New Mexico 2,307,561 3.5 

.Connecticut 3,723,612 2.8 .New York 19,952,674 1.8 

.Delaware 997,528 4.2 .N. Carolina 10,736,114 2.3 

.Florida 21,784,582 1.8 .North Dakota 678,125 4.5 

.Georgia 11,078,010 2.3 .Ohio 11,763,865 2.2 

.Hawaii 1,489,774 3.8 .Oklahoma 3,986,956 2.7 

.Idaho 1,772,613 3.7 .Oregon 4,223,601 2.7 

.Illinois 13,277,307 2.1 .Pennsylvania 12,961,019 2.1 

.Indiana 6,804,046 2.5 .Rhode Island 1,085,957 4.1 

.Iowa 3,085,572 3.0 .S. Carolina 5,118,310 2.7 

.Kansas 3,011,419 3.1 .South Dakota 853,943 4.3 

.Kentucky 4,558,229 2.7 .Tennessee 6,919,966 2.5 

.Louisiana 4,635,071 2.7 .Texas 28,738,112 1.8 

.Maine 1,394,018 3.9 .Utah 3,193,030 3.1 

.Maryland 6,282,303 2.5 .Vermont 662,770 4.7 

.Massachusetts 6,806,874 2.3 .Virginia 8,871,484 2.3 

.Michigan 10,074,617 2.2 .Washington 7,576,478 2.3 

.Minnesota 5,704,065 2.5 .W. Virginia 1,817,852 3.5 

.Mississippi 3,111,177 3.2 .Wisconsin 6,004,398 2.5 

.Missouri 6,336,145 2.5 .Wyoming 594,027 4.8 
 

The variances of the 2020 population sizes were specified to be consistent with the observed 

levels of error in state population projections prepared a decade earlier by the Census Bureau. 

Specifically, in 2005 the Census Bureau used 2000 census results to project state populations for 

July 1, 2010. The error in those projections was estimated by the difference between the 

projection, ,Y  and the Census Bureau’s population estimates for July 1, 2010, ,X  which are 

equal to the 2010 census enumeration adjusted for births, deaths, and net migration over the 3 
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month interval from April 1 to July 1. The relative error was computed as the error Y X−  

divided by ,X  or equivalently / 1.Y X −  The relative errors were observed to be approximately 

normally distributed about zero, and the relative errors tended to be closer to zero for the larger 

states than the smaller states. To model the squared relative error as a function of the true 

population size, a lowess fit of ( )
2

/ 1Y X − against X  was conducted in Stata® 11 using a 

bandwidth of 0.8 and preserving the mean. The lowess fitted values were used as estimates of 

both the relative variances of the population projections for 2020 and the relative variances of the 

future 2020 state population sizes.  

The assumption of independence for the distribution of true population sizes of states was 

motivated by the following considerations. State population projections typically are controlled 

to sum to national forecasts, which account for births, deaths, and net immigration since the last 

census. The latter likely induce a source of positive covariance among state population 

projections (if the projections are treated as random variables). However, the dominant source of 

error in forecasts of 10 years or shorter will be uncertainty about interstate migration. Since the 

interstate migration flows must sum to zero, the covariances cannot all be positive, but will have 

a more complex pattern. For simplicity, the 2020 population sizes are taken to be independent, 

knowing that only the population shares matter for apportionment, and that the shares implicitly 

include some negative covariances because the sum of shares is always 1. 

S3.2. Conditional distribution of 2020 census errors given true population sizes 

S3.2.1. Uncorrelated errors model and correlated errors model 

Various parametric error models were examined to explore the sensitivity of findings to 

alternative error distributions. Two such models were used to construct Figure 2. Both models 
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assume relative errors had a multivariate normal distribution with zero mean, common standard 

deviation, and constant correlation. In the uncorrelated errors model the correlation was zero, 

and in the correlated errors model, the common correlation was 0.5.  

S3.2.2. Differential bias model and accurate small states model 

Two additional error models are the differential bias model and the accurate small states 

model. The differential bias model is like the uncorrelated errors model except that biases are 

present, with one sign for the 25 most populous states (“large states”), and opposite sign for all 

others including Washington, D.C. (“small states”), and equal magnitudes of relative biases for 

all states; relative standard deviations of errors for all states were equal to each other and to the 

absolute value of the relative biases. The accurate small states model is like the uncorrelated 

errors model except that errors for small states were identically zero (zero means and standard 

deviations). For each of these models, specification of the average root-mean-square-error 

(RMSE) was sufficient to completely specify the model.  

S3.2.3. More general error models 

We also considered more general models. In these models, each state’s relative error was 

assumed to be distributed as a linear function of a Student’s t random variable with the same 

degrees of freedom. The error distributions were characterized by six parameters:   the 

common correlation of the errors for each pair of states,  L  the common standard deviation of 

the relative error for large states,  S  the common standard deviation of the relative error for 

small states, L  the common mean of the relative error for large states, and S  the common 

mean of the relative error for small states, and degrees of freedom,  . The square of the RMSE 
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of any state’s relative error equals 2 2 , +  and so the average RMSE can be derived directly. 

Similar to the previously discussed error models, specification of the average root-mean-square-

error (RMSE) was sufficient to completely specify the model.  

S3.3. Simulating from the joint distribution  

To conduct simulations, we first selected a vector of population sizes from the distribution 

described in Section S3.1 and then selected a vector of relative errors from the distribution 

described in Section S3.2. This joint selection specifies a pair consisting of the true population 

vector and the vector of errors. For each pair, House apportionment by the Equal Proportions 

method was computed twice, once for the true populations and once for the population numbers 

incorporating the errors, and the differences in apportionment for each state were recorded.  The 

process was repeated, independently, 5,000 times. 

S4. Number of Malapportioned Seats in the House of Representatives under Alternative of 

2020 Census Error Models 

S4.1. Expected number of malapportioned seats 

Figure S1 and Table S2 show the expected number of malapportioned House seats under the 

alternative joint distributions of population and census error presented in Sections S3.1–S3.2.2.  

The numbers are derived from the simulations described in Section S3.3. Standard errors for all 

estimates of malapportionment in Figure S1 and Table S2 are less than 0.05 House seats (19, 37). 
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Figure S1. Estimated expected number of malapportioned seats under alternative 2020 

census error distributions. 
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Table S2. Estimated expected number of malapportioned seats in the U.S. House, with 

alternative error models. 

Expected Number of Malapportioned House Seats 

 Average Relative RMSE of State Population Numbers 

Error model 0.5% 1.0% 2.0% 3.0% 4.0% 

Uncorrelated Errors 1.79 3.38 6.66 10.00 13.32 

Correlated Errors  =( 0.5)   1.32 2.46 4.74 7.11 9.33 

Accurate Small States  1.88 3.59 7.03 10.56 14.01 

Differential Bias  1.59 2.96 5.70 8.51 11.44 

  Estimated standard errors for all numbers do not exceed 0.05. 

Estimates of the expected number of malapportioned House seats under the more general 

census error models of Section S3.2.3 can be readily computed using linear regression models 

that we fitted.  The coefficients of the equations are shown in the first row of Table S3. To obtain 

the coefficients, we fitted the regression models to simulation-based estimates of sums of 

expected absolute deviations for 973 different possible combinations of the six parameters 

defined in Section S3.2.3:  ranging between 4 and 60,  between 0.0 and 0.8,  L  and  S  

between 0.2% and 5.0%, and L  and S between -3.0% and +3.0%. For each combination of 

parameters, the sum of expected absolute deviations was estimated by the average of the sum of 

absolute errors over 2,500 simulations. To avoid extrapolation outside the range of the parameter 

values used to fit the regression, the regression models should only be used to approximate 

expected absolute loss within the above ranges of parameters. If one wishes to study normally 

distributed census statistics, using 60 = is recommended. For the regression fit, 
2 0.986.R =  
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The nominal p-values (assuming normality) for all regression coefficients were below 0.001. 

Further details are in (19). 

Table S3. Coefficients for linear regression predictions of expected numbers of 

malapportioned House seats and sums of misallocated funds ($ bill.). 

 const.      2  L   
S   

L  2

L  S  2

S  L   L S    

Seats 3.457 .071 -18.767 -4.302 2.688 .295 -7.413 10.587 7.083 10.293 -1.942 -.169 

Funds 2.858 .059 -13.145 -3.239 1.940 .309 2.209 11.643 -2.240 10.026 -1.287 -.135 

Note: ( 60) /10;  = − 100 1;  = − 100 .  =  Regressor values should be used only in the 

following ranges: .0 .8;  .2 5;   3 3;−    4 60,   with 60 used for normal 

distribution. 

The following results are implied by the regression model.  

(a) A census error distribution with greater kurtosis than normal ( 4 60  ) leads to smaller 

absolute errors for constant variance.  With each increase of 10 degrees of freedom, 

malapportioned House seats increase on average by 0.07.  

(b) The predicted sums of absolute errors are sensitive to the constant correlation  between 

state census number relative errors, decreasing by about by 1.60 House seats as  increases 

from 0 to 0.8.  

(c) The sum of expected absolute errors I apportionment is sensitive to the coefficient of 

variation of the state population numbers, increasing by about 2.7 with each 1.0% increase in the 

c.v. for large states and by 0.3 with each 1.0% increase in the c.v. for small states.  
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(d) The effect of the coefficient of variation for state census numbers on expected sums of 

absolute errors decreases as the constant correlation between the state census relative errors 

increases. For each 0.1 increase in the correlation, the effect of a 1.0% change in the coefficient 

of variation for large states decreases by 0.19 for House seats. Although negative correlations are 

possible, which would increase the effect of coefficient of variation, the negative correlations 

cannot be too large in magnitude because the correlation matrix is non-negative definite. For 

example, the minimum possible constant correlation for the census numbers of the 50 states and 

D.C. is -0.02.  

(e) The sum of expected absolute errors in apportionment is sensitive to the relative biases of 

state census numbers, although less than to the coefficient of variation. As L  and S  vary 

between -3.0% and +3.0%, expected House malapportionment varies by about 1.5 House seats 

up or down. The relationship is convex, reflecting increased malapportionment with the 

magnitude of census bias. 

S4.2. Probability distributions of number of malapportioned seats 

The number of malapportioned seats is random and can be much greater than the expected 

number. Table S4–Table S7 display the estimated probability distributions for the number of 

malapportioned seats under the alternative error models and alternative levels of relative RMSE 

of census numbers for states.  
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Table S4. Estimated probability distribution of number of House seats misallocated, 
uncorrelated errors accuracy profile. 

 

 -- signifies number < 0.02%. Number in parentheses is estimated standard error of probability. 

Table S5. Probability distribution of number of House seats misallocated, correlated errors 
accuracy profile. 

 

-- signifies number < 0.02%. Number in parentheses is estimated standard error of probability. 

Relative RMSE 
of census 
numbers 

Probability that number of misallocated seats equals or exceeds k 

k = 2 k = 4 k = 6 k = 8 k = 10 k = 12 

 0.5%   .714 (.006) .166 (.005) .013 (.002) .000 (.000)      -- (--)       -- (--) 
 1.0%   .934 (.004) .561 (.007) .168 (.005) .025 (.002) .002 (.001)       -- (--) 
 2.0%   .998 (.001) .956 (.003) .761 (.006) .428 (.007) .147 (.005) .035 (.003) 
 3.0% 1.000 (--)  .998 (.001) .975 (.002) .867 (.005) .640 (.007) .340 (.007) 
 4.0% 1.000 (--) 1.000      (--)  .998 (.001) .983 (.002) .914 (.004) .752 (.006) 

Relative RMSE 
of census 
numbers 

Probability that number of misallocated seats equals or exceeds k 
k = 14 k = 16 k = 18 k = 20 k = 22 k = 24 

 0.5% -- (--)              -- (--) -- (--) -- (--) -- (--) -- (--) 
 1.0% -- (--)               -- (--) -- (--) -- (--) -- (--) -- (--) 
 2.0% .004 (.001) .001 (.000) -- (--) -- (--) -- (--) -- (--) 
 3.0% .132 (.005) .037 (.003) .009 (.001) .001 (.001) -- (--) -- (--) 
 4.0% .520 (.007) .296 (.006) .133 (.005) .048 (.003) .012 (.002) .002 (.001) 

Relative RMSE 
of census 
numbers 

Probability that number of misallocated seats equals or exceeds k 

k = 2 k = 4 k = 6 k = 8 k = 10   k = 12   

 0.5% .578 (.007) .077 (.004) .004 (.001) -- (--) -- (--) -- (--) 
 1.0% .846 (.005) .330 (.007) .052 (.003) .003 (.001) .000 (.000) -- (--) 
 2.0% .984 (.002) .812 (.006) .427 (.007) .124 (.005) .019 (.002) .001 (.001) 
 3.0%   .999 (.000) .968 (.002) .816 (.005) .500 (.007) .206 (.006) .055 (.003) 
 4.0% 1.000 (.000)              .996 (.001) .958 (.003) .807 (.006) .539 (.007) .257 (.006) 

Relative RMSE 
of census 
numbers 

Probability that number of misallocated seats equals or exceeds k 

k = 14 k = 16 k = 18 k = 20 k = 22   k = 24   

 0.5% -- (--)            -- (--)      -- (--) -- (--) -- (--) -- (--) 
 1.0% -- (--)            -- (--)      -- (--) -- (--) -- (--) -- (--) 
 2.0% -- (--)             -- (--)      -- (--) -- (--) -- (--) -- (--) 
 3.0%  .008 (.001) .001 (.000)      -- (--) -- (--) -- (--) -- (--) 
 4.0%  .084 (.004)              .020 (.002) .003 (.001) .001 (.000) -- (--) -- (--) 
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Table S6. Estimated probability distribution of number of House seats misallocated, accurate 
small states case accuracy profile. 

 

-- signifies number < 0.02%. Number in parentheses is estimated standard error of probability. 

 

Table S7. Estimated probability distribution of number of House seats misallocated, 
differential bias accuracy profile. 

 

-- signifies number < 0.02%. Number in parentheses is estimated standard error of probability. 
 
 
 

Relative RMSE 
of census 
numbers 

Probability that number of misallocated seats equals or exceeds k 

k = 2 k = 4 k = 6 k = 8 k = 10   k = 12   

 0.5% .744 (.006) .179 (.005) .015 (.002) .000 (.000) -- (--) -- (--) 
 1.0% .955 (.003) .611 (.007) .196 (.006) .031 (.002) .003 (.001) .000 (.000) 
 2.0% .999 (.000) .970 (.002) .813 (.006) .490 (.007) .190 (.006) .045 (.003) 
 3.0% 1.000 (--) .998 (.001) .982 (.002) .900 (.004) .699 (.006) .424 (.007) 
 4.0% 1.000 (--)           1.000    (--) .998 (.001) .988 (.002) .934 (.004) .804 (.006) 

Relative RMSE 
of census 
numbers 

Probability that number of misallocated seats equals or exceeds k 

k = 14 k = 16 k = 18 k = 20 k = 22   k = 24   

 0.5% -- (--)             -- (--)      -- (--) -- (--) -- (--) -- (--) 
 1.0% -- (--)             -- (--)      -- (--) -- (--) -- (--) -- (--) 
 2.0% .007 (.001) .001 (.000)      -- (--) -- (--) -- (--) -- (--) 
 3.0%  .196 (.006) .062 (.003) .014 (.002) .003 (.001) .002 (.001) .000 (.000) 
 4.0%  .607 (.007)              .377 (.007) .185 (.005) .074 (.004) .029 (.002) .008 (.001) 

Relative RMSE 
of census 
numbers 

Probability that number of misallocated seats equals or exceeds k 

k = 2 k = 4 k = 6 k = 8 k = 10   k = 12   

 0.5% .662 (.005) .123 (.003) .008 (.001) .001 (.000) -- (--) -- (--) 
 1.0% .902 (.003) .462 (.005) .106 (.003) .011 (.001) .001 (.000) -- (--) 
 2.0% .995 (.001) .911 (.003) .610 (.005) .256 (.004) .066 (.002) .011 (.001) 
 3.0% 1.000 (.000) .990 (.001) .919 (.003) .707 (.005) .409 (.005) .169 (.004) 
 4.0% 1.000 (--)             .999 (.000) .988 (.001) .936 (.002) .788 (.004) .544 (.005) 

Relative RMSE 
of census 
numbers 

Probability that number of misallocated seats equals or exceeds k 

k = 14 k = 16 k = 18 k = 20 k = 22   k = 24   

 0.5% -- (--)             -- (--)     -- (--) -- (--) -- (--) -- (--) 
 1.0% -- (--)             -- (--)     -- (--) -- (--) -- (--) -- (--) 
 2.0% .001 (.000) .000 (.000)     -- (--) -- (--) -- (--) -- (--) 
 3.0%  .050 (.002) .009 (.001) .001 (.000) .000 (.000) -- (--) -- (--) 
 4.0%  .294 (.005)              .124 (.003) .039 (.002) .009 (.001) .001 (.000) .000 (.000) 
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S5. Expected Sums of Errors in Fund Allocations Due to Census Error  

A recent study (21) found census data affect the distribution of hundreds of billions of dollars 

in allocations from more than 100 different programs (132 programs allocated more than $675 

billion in FY 2015). This updated an earlier study’s finding (28) that 140 federal grant and direct 

assistance programs distributed approximately $450 billion in FY 2007 at least partly on the 

basis of population and income data. Analyzing the effect of census error on fund allocations is 

more complicated than for apportionment. There are many allocation programs and they 

typically are complex, involving statistics other than just state population numbers and using 

census numbers in different ways. To model the accuracy of the other statistics in even a single 

program can itself be a major undertaking even for a retrospective analysis (23).  The various 

statistics in the allocation formulas change over time, and if we were to use 2020 population 

numbers for simulating fund allocations, we should also use future values of the other statistics 

in computing the allocations. We had no confidence that we could forecast the future values of 

the other statistics accurately even if we had the resources to carry out the forecasting, and so we 

used the latest available numerical values of all of the statistics the government used to compute 

the allocations as if they were true numbers. To analyze the effect of census error, we used the 

models described in Section S3.2. This approach of conditioning on observed statistics as if they 

were true and adding error to the census population numbers may, depending on the extent of 

biases in the other statistics, lead to overstatement of the effect of census error (19).   

A stratified simple random sample of 18 formula-based fund allocation programs was 

selected from the 140 listed in (28) as using Census Bureau population or income data to 

determine the allocations. We selected with certainty the 8 largest programs, which accounted 

for 4/5 of the total FY 2007 obligations, and we selected a disproportionate stratified sample of 
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10 of the remaining 132 programs. The sample design and selected programs are shown in Table 

S8. The sampling inclusion probability for a program in stratum h  is equal to / ,h hn N  with hn

the sample size and hN the population size in the stratum. Sampling weights were set equal to 

/ ,h hN n  the reciprocal of the inclusion probability.  

For each selected program, we analyzed the effect of census error on allocations, as described 

in Section (19, 31-37). For any given parametric model of census error, the sum of 

misallocations for the selected program was simulated, just as described for apportionment in 

Section S3.3 except that the true value for the population was held fixed. The average across 

simulations was calculated for each program. The average was then multiplied by the ratio of the 

FY2015 obligation from (21) to the total amount allocated for the year for which the data were 

available and analyzed.  The ratio-adjusted amount provides an estimate of the sum of FY 2015 

misallocations due to census error for the selected program. Finally, results were multiplied by 

ten to reflect estimates of the effect of the decennial census on the sum of misallocations over a 

decade in 2015 dollars. 

The weighted sum of the latter (ratio-adjusted amounts) was calculated, using sampling 

weights equal to / ,h hN n  with h  denoting the stratum to which the program belonged. The 

weighted sum estimates the sum of the expected values of misallocations for all 140 allocation 

programs in (28) if their allocated amounts were equal to the FY2015 obligations in (21). 

However, the population sampled (a) excludes 7 programs that came into being between FY2007 

and FY2015, and whose FY2015 obligations totaled $93.9 billion, and (b) includes 15 FY2007 

programs that did not exist in FY2015, totaling $2.3 billion in 2015 dollars (19). (FY2007 dollars 

were converted to FY2015 dollars according to the Consumer Price Index for Urban Wage 

Earners and Clerical Workers (38), yielding an adjustment factor of 231.810/202.767 = 1.143.) 
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Sampling errors (reflecting finite number of simulations as well as sampling of the allocation 

programs) for FY2009 amounts were moderate, with margins of error (two standard errors) of 

about 15% of the total being estimated (19, 27). The sampling errors were not calculated for the 

FY2015 amounts, but the use of ratio-adjustment suggests that they will be similar in percentage 

terms.  

The resulting weighted estimates are shown in Figure 1 for the uncorrelated errors model and 

the correlated errors model.  

Estimates of the expected sum of misallocations for other error models may be obtained from 

the regression model indicated in the second row of Table S2, according to the directions 

provided in Section S4.1. The regression model for predicting expected sums of absolute 

misallocations was fit analogously to that for apportionment errors, with an achieved 2R  of 

0.984. The nominal p-values (assuming normality) for all regression coefficients were below 

0.001. Further details are in (19). The empirical findings about sensitivity of malapportionment 

to the error parameters are qualitatively similar for fund allocations; see (19) for details 
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Table S8. Sampled programs allocating federal funds. Source: columns 2 – 4 from (28) and 
columns 5 – 6 from (21). 

 
 

Stratum 

h  

h

h

n

N
  CFDA 

No. Program  

  FY 2015        
Obligation    
($Billions) 

  Weighted  
  FY 2015     

Obligation    
($Billions) 

1 
8

8
 

93.778 Medical Assistance Program (Medicaid) $311.8  $311.8  
17.225 Unemployment Insurance  $3.0  $3.0  

20.205 Highway Planning and Construction  $38.5  $38.5  

10.551 Suppl. Nutrition Assistance Program (SNAP) $71.0  $71.0  

93.558 Temporary Assist. for Needy Families (TANF) $17.2  $17.2  

84.063 Federal Pell Grant Program $29.9  $29.9  
84.010 Title I Grants to Local Educ. Agencies (LEAs) $14.3  $14.3  

84.027 Special Education Grants to States $11.4  $11.4  

2 
2

3
 

93.600 Head Start  $8.5  $12.8  

93.767 State Children’s Insurance Program (CHIP) $4.2  $6.3  

 2

6
 

10.557 Special Supplemental Nutrition Program for 
Women, Infants, and Children (WIC) $6.1  $18.2  

3 93.596 Child Care Mandatory and Matching Funds  $5.3  $15.9  

4 
2

12
 

93.575 Child Care and Development Block Grant  $0.0  $0.1  
93.667 Social Services Block Grant  $1.6  $9.5  

5 
2

16
 

84.365 English Language Acquisition Grants $0.7  $5.8  

84.181 Special Ed. – Grants for Infants and Families  $0.4  $3.4  

6 
2

95
 

66.460 Nonpoint Source Implementation Grants  $0.1  $5.7  

16.458 Title V Delinquency Prevention Program $0.0  $0.0  

Total 
18

140
    $574.9 

 
 

S6. Analyzing Effects of Census Error on Sampled Allocation Programs 

S6.1. Roles of census population numbers in 18 sampled allocation programs 

To analyze the effects of census error on allocations by the 18 sampled grant and assistance 

programs requires understanding how census numbers are used in each of the programs. Here we 

provide an overview. Details about each program are provided in the Appendix.  
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Table S9 shows the kinds of statistics used to allocate funds across the 18 sampled programs. 

• Postcensal estimates from the Census Bureau’s Population Estimate Program are used in 

9 of the 18 programs. 

• Two programs use model-based estimates for small-area populations, and census 

population data are directly or indirectly used to fit the models. Title I Grants to Local 

Education Agencies uses Small Area Income and Population Estimates (SAIPE) for 

school district school-age children in poverty. The Supplemental Nutrition and 

Assistance Program for Women, Infants and Children uses a model-based estimate of the 

number of children age 1 to 4 below 185% of the poverty line.  

• Two programs use American Community Survey (ACS) estimates. Special Education 

Grants to State uses information on state Free Appropriate Public Education age children 

in poverty from ACS Public Use Microdata. English Language Acquisition Grants uses 

ACS data on Limited English Proficiency children and foreign-born children.  

• Current Population Survey (CPS) unemployment rates help determine whether states are 

eligible for additional Unemployment Insurance (UI) assistance. The CPS uses postcensal 

estimates as ratio controls for totals. 

• Three programs, Supplemental Nutrition and Assistance Program, Pell Grants and Head 

Start, all make awards based on poverty thresholds. The poverty thresholds are developed 

using the Consumer Price Index for all Urban Workers (CPI-U) as a measure of inflation. 

CPI-U is estimated in part with a sampling frame that uses the decennial census (BLS 

2007). 

• Five programs also use non-census statistics in formula-based allocation. For example, 

Medicaid awards use both census population numbers and BEA personal income.  
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• For 3 of the 18 selected programs, the allocations would not be affected by error in the

most recent census: Highway Planning and Construction, Temporary Assistance for

Needy Families and Nonpoint Source Implementation Grants. These three programs have

used census data for past allocations, but future allocations are fixed to previous state

shares.

Table S9. Statistics used in formulas for allocating federal funds. Source: (39)–(41). 

Allocation Program 

Statistic Depending on Census Population 

Midyear 
Postcensal 
Pop. Est. 

Model-
based 
Pop. 
Est. 

ACS  
Pop. 
Est. 

CPS 
Unempl. 

Rate 
CPI-

Urban 

Non-
Census 
Stats 
Used 

Latest 
Census 

Not 
Used 

Medicaid ● ● 

CHIP ● ● 

Child Care Mandatory+Matching ● 

Child Care and Development ● ● 

Social Services Block Grant ● 

Special Ed. – Infants & Families ● 

Title V Delinquency Prevention ● 

Title I Grants to LEAs ● ● ● 

Special Ed. – States ● ● 

WIC ● 

English Language Acquisition ● 

Unemployment Insurance ● 

SNAP ● 

Pell Grants ● ● 

Head Start ● 

Highways ● 

TANF ● 

Nonpoint Source Implementation ●
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S6.2. Approximations and analytic simplifications  

Several analytic simplifications were used for analyzing the effect of census error on the 

allocations. Except as noted, the simplifications tend to overstate the effect of census error on 

allocations. 

Unlike apportionment, which depends only on census population, the fund allocation 

programs involve other statistics in addition to census population. To avoid analyzing the 

accuracy of all of the statistics, we conditioned on the observed values of the non-census 

statistics. If the allocation to a state is represented by ( , ),f x y  where y  denotes the census 

number and x  denotes other statistics, then the expected absolute misallocation may be 

expressed as | ( , ) ( *, *) |,E f x y f x y−  where *x  and *y  denote the true values of x  and .y  We 

approximated this by | ( , ) ( , *) |,E f x y f x y− conditioning on the observed values of .x  Analysis 

suggests that the approximation overstates the effect of census error in some general scenarios 

and that the potential understatement tends to be smaller than the potential overstatement (19).  

Mid-year postcensal population estimates adjust the census estimate for births, deaths and net 

migration since the census. We approximated the relative error in the postcensal estimate by the 

relative error in the underlying base census number. This approximation overstates the effect of 

census error on the postcensal estimate, since the errors in estimates of change due to births, 

deaths, and net migration are only somewhat dependent on the census base (34). Specifically, the 

relative effect of census error on the census base overstates the relative effect of census error on 

the sum of the census base and other components only somewhat affected by census error. 

Model-based and ACS population estimates are used to calculate the proportion of the 

population in a group or area. The proportion is multiplied by a census or postcensal estimate of 

total population to estimate the number in the group or area. Here too, the relative error in the 
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model-based or ACS estimate of population of the subgroup is approximated by the relative error 

in the underlying base census number. Since the errors in model-based and ACS estimates of 

fractions are mostly independent of the census base, the effect of census error on the census base 

approximates the effect of census error on the product of the census base and the model-based or 

ACS estimate of the population proportion.  

Census error affects CPS estimates of unemployment rates. To analyze the effect, we first 

estimated the relationship between census error and unemployment rate error by applying using 

differential 2010 net undercount estimates to unemployment estimates by age, sex and race. 

Next, we made the simplifying assumption that the effect of undercount by age, race and sex on 

unemployment rate estimates is proportional to the effect of state-level census errors on 

unemployment rate estimates (19, 182-183). 

Census error affects the consumer price index CPI-U. To analyze the effect, we used a 

similar approach to that for the CPS unemployment rate estimates, using information about 

differential undercount for renters and owners (19, 183-184). 

Title I Grants to LEAs (local education agencies) provide grants to sub-state areas, namely 

the LEAs, which are often school districts. We simplify the analysis by studying errors in 

allocation at the state-level alone. The models apply the state relative errors to each LEA 

population estimate within the state. We conjecture that this approach slightly understates the 

effect of census error on the LEA-level Title I allocations.  

For programs that depend upon multiple census-based statistics, we assume that same 

relative errors apply to all statistics, which may overstate the effect of census error. 
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Appendix: 

Use of Census Statistics in 18 Sampled Programs for Allocating Federal Funds 

This appendix describes how census numbers are used for the 18 sampled grant and 

assistance programs, with each program’s Catalog of Federal Domestic Assistance (CFDA) 

number denoted in parentheses. Sources of information about programs include (28), (39) – (41), 

program websites and correspondence with employees at government agencies. Further details 

are available in (19). Throughout this appendix, for statistic 0iX  in state i , denote state i ’s 

national share for the statistic by / .i i jj
X X X= 

A1.  Medical Assistance Program (93.778) 

The Medical Assistance Program pays a fraction of state medical expenditure as determined 

by the state’s Federal Medical Assistance Percentage (FMAP), which is based on a state’s 

relative per capita income. The FMAP has a minimum of 0.50 and a maximum of 0.83. 

Specifically, the grant amount iG  for state i  is   2max 0.50,min 0.83,1 0.45( / )i i i iG E I P=  −  . 

Here, iE is medical expenditures, iI is BEA personal income and iP is population. This formula

does not apply to D.C., which has a fixed FMAP of 0.70. 

A2. Unemployment Insurance (17.225) 

When state unemployment rates are above certain thresholds, unemployment insurance 

recipients are eligible for extra weeks of compensation through Extended Benefits and, during 

the last recession, Emergency Unemployment Compensation. The U.S. government provides part 

of the funding for these two programs. State unemployment rates are estimated by the Current 

Population Survey.  
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A3. Highway Planning and Construction (20.205) 

The Moving Ahead for Progress in the 21st Century Act passed in 2012 changed the funding 

formulas for programs administered through Highway Planning and Construction. Allocations 

for the various programs are fixed at proportions states received in previous years and do not 

depend on new population statistics.  

A4. Supplemental Nutrition Assistance Program (10.551) 

A recipient’s eligibility for SNAP benefits and amount received are based on poverty 

threshold which are revised annually based on CPI-U. CPI-U is estimated in part using 

postcensal population estimates as ratio controls.  

A5. Temporary Assistance for Needy Families (93.558) 

The grant amounts to states are fixed to the proportions of the grants in 2002. New census 

statistics are not used in the determination of grant amounts. 

A6. Federal Pell Grant Program (84.063) 

A student’s Pell Grant amount is determined by the cost of attendance and the Expected 

Family Contribution. The formula to determine the Expected Family Contribution is revised each 

year based on measures of inflation. The inflation measures are estimated in part using 

postcensal population estimates as ratio controls.  

A7. Title I Grants to Local Educational Agencies (84.010) 

Title I funding consists of four sets of grants to Local Educational Agencies (LEAs): Basic 

Grants, Concentration Grants, Targeted Grants and Education Finance Incentive Grants (EFIG). 
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All four grant programs depend on Small Area Income and Poverty Estimates (SAIPE) data for 

the age 5 to 17 population in poverty for each LEA.  

The Basic Grant amount 
Basic

iG for LEA i is specified by 

( )( )Basic

{ 10} { / 0.02}min 0.48 ,max 0.32 ,0.4 .  
 =   i i ii i US US i N N TG N E E E  (1) 

Here, iN is a measure of the number of children at-need in the LEA, specifically the SAIPE age 

5—17 population in poverty; iT  is the total number of school-aged children; iE is the per-pupil

expenditures in the state that includes the LEA; USE is the national per-pupil expenditure; 
{ } A

is the indicator function taking the value 1 if A  is true and 0 otherwise. 

The Concentration Grant amount 
Concentration

iG  for LEA i  is specified by 

( )( ) { 6500 OR / 0.15}min 0.48 ,max 0.32 ,0.4 ,  
 
  i i ii US US i N N TN E E E (2) 

with all variables having the same definitions as they do for Basic Grants. 

The Targeted Grant amount 
Targeted

iG  for LEA i  is specified by 

( )( ) { 10} { / 0.05}min 0.48 ,max 0.32 ,0.4 ,  
 
  i i ii i US US i N N TW N E E E (3) 

with all variables having the same definitions as they do for Basic Grants, and including ,iW  a 

weight between 1.0 and 4.0 that increases with iN  and /i iN T and depends on county or school 

district administration of the LEA. 

The EFIG amount 
EFIG

iG  for LEA i  is specified by 

( )( ) ( ) { 10} { / 0.05}min 0.46 ,max 0.34 ,0.4 Effort 1.3 Equity ,  
    −  i i ii US US i i i N N TN E E E (4)
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where all variables have the same definitions as they do for basic grants, and including Effort ,i  

the effort factor, and Equity ,i the equity factor for the LEA’s state. The effort factor depends 

upon per capita personal income (BEA) and thus indirectly on census population statistics. 

Specifically, ( )( )Effort / / ,=i i US i iE E P I  where iE  and USE  are as defined above and 

/State StateP I  is algebraically equal to the ratio of US per capita income to state per capita income. 

The equity factor for the state, Equity ,i  depends on a weighted coefficient of variation of LEA 

per-pupil expenditure within the state to which LEA i  belongs, with the weighting depending on 

iN  and .iT   

All four grants are ratably reduced to sum to the total amount allocated for each grant 

program. Adjustments are made so each state receives a minimum amount for each of the four 

grants.  

A8. Special Education Grants to States (84.027) 

Grants to states use measures of states’ Free Appropriate Public Education (FAPE) age 

population (usually age 3-21 population) and states’ FAPE age population in poverty. The FAPE 

age population is taken from postcensal population estimates by single year of age. The Office of 

Planning, Evaluation and Policy Development at the Department of Education stated via 

personal correspondence the FAPE age population in poverty is determined by combining the 

postcensal single year of age data with American Community Survey (ACS) Public Use 

Microdata Sample estimates of the fraction of each age group in poverty. State i  receives grant 

amount ,iG  where 
( )99

0.85 0.15 , = + + i i i iG G R P N
( )99

iG  is the grant amount in 1999, R  is the 
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total amount available for the program in excess of 1999 total amount, iP is the FAPE age

population, and iN is the FAPE age population in poverty.

A9. Head Start (93.600) 

Head Start agencies must have a certain percentage of children they serve be from families 

who are below poverty thresholds. The poverty thresholds are revised based upon CPI-U, which 

is estimated in part using the decennial census for a sampling frame. Because some Head Start 

agencies are not fully enrolled, and agencies can respond to changes in poverty threshold 

eligibility by either increasing or decreasing their effort to recruit students, we take the view that 

2020 census error will have negligible effect on Head Start funding. 

A10. State Children’s Insurance Program (93.767) 

The State Children’s Insurance Program (CHIP) pays a fraction of state CHIP expenditure as 

determined by the state’s Enhanced Federal Medical Assistance Percentage (eFMAP), which is 

based on a state’s relative per capita income. The eFMAP has a minimum of 0.65 and a 

maximum of 0.85. The formula for the grant amount iG  for state i  is 

( )  2

max 0.65,min 0.85,1 0.315 / ,=  −i i i iG E I P  where iE is medical expenditures, iI is

BEA personal income and iP is population. This formula does not apply to D.C., which has a 

fixed eFMAP of 0.79.  

A11. Special Supplemental Nutrition Program for Women, Infants and Children (10.557) 

WIC uses two grant programs, one for food costs and another for nutrition services and 

administrative (NSA) costs. Food grant amounts are proportional to a state’s model-based 

estimate of the number of children age 1 to 4 below 185% of the poverty line. NSA grants use 
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BEA measures of food cost inflation. We treat the NSA grants as unaffected by census 

inaccuracy.  

A12. Child Care Mandatory and Matching Funds of the Child Care and Development Fund 

(93.596) 

Mandatory funds are allocated based on a state’s share of expenditures for the now-

repealed AFDC child care programs during the years 1992-1995, and thus not based on 

government statistics. Matching funds are allocated to be proportional to a state’s population 

under age 13, which is determined from postcensal estimates by single year of age. 

A13. Child Care and Development Block Grant (93.575) 

Grants to states depend on a variety of statistics. Census statistics include state population 

and state population under age 5 (from postcensal single year of age estimates). Non-census 

statistics include BEA personal income and the number of children receiving free or reduced 

school lunch from the Department of Agriculture. Specifically, state i  receives grant  

( )0. / .5 /= + i i j j i i j jj jiG A Y H Y H L H L H

Here, A  is the total amount allocated for the program, iY is population under age 5, iL is free or 

reduced lunch population, and   min 1.2,max 0.8, / ,=i i iPH I  where iP is population and iI is

state personal income. So iH is the ratio of U.S. per capita income to state per capita income, 

constrained to be no less than 0.8 and no more 1.2. 

A14. Social Services Block Grant (93.667) 

Grants to states are proportional to state population, based on postcensal estimates. 
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A15. English Language Acquisition Grants (84.365) 

Grants to states use measures for the number of Limited English Proficiency (LEP) 

children and the number of immigrant children and youth, both estimated from the American 

Community Survey. Specifically, state grants are proportional to the sum of 80% of the state’s 

national share of LEP children plus 20% of the state’s national share of immigrant children and 

youth. 

A16. Special Education-Grants for Infants and Families (84.181) 

Grants to states are proportional to state population age 0 to 2, which is obtained from 

postcensal estimates by single year of age. Each state receives a minimum of 0.5% of all funding 

allocated for the grant program. 

A17. Nonpoint Source Implementation Grants (66.460) 

Grants to states are determined using a formula based on a variety of government statistics, 

including 1990 census state population and 1987 postcensal state population estimates. New 

census statistics are not used in the determination of grant amounts. 

A18. Title V Delinquency Prevention Program (16.548) 

Grants to states are proportional to a state’s youth population under the maximum age of 

original juvenile court delinquency jurisdiction, which varies by state and is obtained from 

postcensal population estimates by single year of age. 
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