
2040 Sheridan Rd. w Evanston, IL 60208-4100 w Tel: 847-491-3395 Fax: 847-491-9916 
www.ipr.northwestern.edu w ipr@northwestern.edu 

Institute for Policy Research 
Northwestern University 
Working Paper Series 

WP-15-05 

Effects of Census Accuracy on Apportionment of Congress and 
Allocations of Federal Funds 

Zachary H. Seeskin 
Graduate Research Assistant, Institute for Policy Research 

Doctoral Candidate, Department of Statistics 
Northwestern University 

Bruce D. Spencer 
Faculty Fellow, Institute for Policy Research 

Professor of Statistics 
Northwestern University 

Version: May 18, 2015 

Address correspondence to Bruce D. Spencer, Department of Statistics, Northwestern 
University, 2006 Sheridan Rd., Evanston IL 60208-4070 
Email: bspencer@northwestern.edu.  
This research was supported by NSF grant SES-1129475, “NCRN-SN: Census Bureau 
Data Programs as Statistical Decision Problems”. 

DRAFT 
Please do not quote or distribute without permission.



Abstract 

How much accuracy is needed in the 2020 census depends on the cost of attaining 

accuracy and on the consequences of imperfect accuracy. The cost target for the 2020 

census of the United States has been specified, and the Census Bureau is developing 

projections of the accuracy attainable for that cost.  It is desirable to have information 

about the consequences of the accuracy that might be attainable for that cost or for 

alternative cost levels.  To assess the consequences of imperfect census accuracy, Seeskin 

and Spencer consider alternative profiles of accuracy for states and assess their 

implications for apportionment of the U.S. House of Representatives and for allocation of 

federal funds. An error in allocation is defined as the difference between the allocation 

computed under imperfect data and the allocation computed with perfect data. Estimates 

of expected sums of absolute values of errors are presented for House apportionment and 

for federal funds allocations.  



1. Introduction

The U.S. Constitution requires that the population be enumerated decennially, for purposes of allocating 

Representatives among the states.   

Representatives shall be apportioned among the several States according to their 

respective numbers, counting the whole number of persons in each State, excluding 

Indians not taxed.  The actual Enumeration shall be made within three Years after the first 

Meeting of the Congress of the United States, and within every subsequent Term of ten 

Years, in such Manner as they shall by Law direct.   

— The Constitution of the United States, Article I, Section 2, as amended 

by the 14th amendment 

Although the Constitution requires a census, it does not say how accurate the census should be.  

Accuracy and cost are closely related.  The Census Bureau can increase accuracy by spending more 

money, at least up to a point. As the great demographer Nathan Keyfitz (1979, 46) noted, “Asking why 

the census cannot [accurately] count 100 percent of the population in a free society is like asking why 

books contain typographical errors, why manufactured products often have defects, or why the police 

cannot catch all criminals.”  Accuracy can be increased through investment of more resources in the 

census, but the accuracy will never be perfect.   

The current strategy for choosing census accuracy is to specify a cost target and optimize the accuracy 

that can be attained for that cost.  The cost target, as we understand it, is consistent with 

recommendation of the National Research Council (2011, Recommendation 3) that the cost per housing 

unit for 2020 be kept at the same (inflation-adjusted) level as for 2010.  The 2010 census was estimated 

to be quite accurate for the total U.S. population, so that the national net undercount was estimated to 

be nearly zero (Census Bureau 2012). However, most uses of the census depend on population sizes for 

geographic areas or demographic subgroups, and the census was estimated to have a 0.8 percent 

national overcount of non-Hispanic whites, a 2.1 percent national undercount of blacks, a 1.5 percent 

undercount of Hispanics (Census Bureau 2012). There were net overcounts for some states and net 

undercounts for others.  

The question of what accuracy is attainable for the specified is cost is complex and is being studied by 

the Census Bureau.  In this paper, we address the related question of the consequences of a given 
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profile of census accuracy. We refer to profiles of accuracy rather than levels, because census accuracy, 

like census statistics, is multi-dimensional.  For example, census population numbers are produced for 

state and local governments and much smaller areas, and for demographic subgroups both nationally 

and by geography.   

To understand the consequences of imperfect accuracy, one needs to know how census data get used. 

The most visible uses of the census results include intergovernmental allocation of funds by formulas 

using population statistics, apportionment of the U.S. House of Representatives, and redrawing of 

Congressional district boundaries.  When the census population numbers contain errors, the fund 

allocations, Congressional apportionment, and district sizes are different than what they would be if the 

census numbers had no error.  We will refer to the differences as, respectively, errors in allocation 

(misallocations) of funds, errors in apportionment (malapportionment), and errors in district sizes. Not 

all uses of the census are or can be known, and it is important to acknowledge that some of the most 

important uses of the census may be the least visible, including research in social, economic, behavioral, 

medical, and policy areas and applications of that research.  The role of census data in policy 

development and decision-making by the Congress and the White House, by state and local 

governments, and by businesses and other organizations has not received sufficient study, but we 

conjecture that it is important. For example, surveys are widely used sources of information, and almost 

all national population surveys – whether government or private sector, whether by internet, mail, 

phone, or in-person – directly or indirectly use decennial census numbers for adjusting their results. 

In this paper we measure the distortions in allocations of representation and funding among states that 

are projected to occur at alternative profiles of accuracy.  The funding formulas and the apportionment 

algorithm are treated as fixed, and the allocations that would occur with error-free statistics are treated 

as true values for the allocations.  When actual statistics are used to compute the allocations, the 

resulting allocations are said to be empirical or estimated.  The difference between the estimated 

allocation and the true allocation is called the error in allocation or, more simply, the misallocation.  The 

term “error” is standard usage in statistics and does not imply that someone made a mistake.  The value 

of improving accuracy to reduce misallocations is a political question that relates to the question of how 

much it is worth spending on the census, but that we do not address here.   

We represent accuracy in terms of the multivariate distribution of errors in census estimates for states 

and the District of Columbia (DC). The focus on the states and DC level is consistent with the uses of 

census data for apportionment of House seats among states and for allocation of federal funds to states 
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and DC.  The error in an estimate or statistic is the difference between the statistic and its true value.  

The mean squared error (MSE) is the expected value of the squared error, and it is equal to the square 

of the bias plus the square of the standard deviation. The root mean squared error (RMSE) is the square 

root of the MSE, and the relative root mean squared error (relative RMSE) is the RMSE expressed as a 

percentage of the true value being estimated.  If the estimate is unbiased, the RMSE is equal to the 

standard deviation or standard error of the estimate, and the relative RMSE is equal to the coefficient of 

variation (c.v.). Initially, we will consider several alternative accuracy profiles for the census, as shown in 

Table 1. Alternative profiles are discussed in Section 4. 

Accuracy Profile Description 

base case errors for all states (and DC) are independently normally distributed, with zero 
bias, and equal relative RMSE 

correlated case same as base case, except estimates for all areas have constant correlation of 0.5 

accurate small 
states case 

errors for all states (and DC) are independently normally distributed, with zero 
bias; the smallest 25 states and DC have zero relative RMSE; the largest 25 states 
have constant relative RMSE, such that the weighted average of RMSEs for all 50 
states and DC, weighted by the 2010 state census populations, equals the 
corresponding relative RMSE for the base case 

differential bias 
case 

errors for all states (and DC) are independently normally distributed, with equal 
relative RMSE and with absolute value of the relative bias equal to the c.v.; the 
bias for the smallest 25 states and DC has one sign, and the bias for the largest 25 
states has the opposite sign 

Table 1. Alternative Accuracy Profiles for the Census 

The Constitution requires that seats in the U.S. House of Representatives be allocated to the states 

“according to their respective Numbers”, and the law since 1941 has required that the so-called Method 

of Equal Proportions be used to calculate the apportionment (Balinski and Young 1982); Section 3 

provides further explanation.  Define the true allocation of seats true
ja  as number of seats given to state 

j  when the Method of Equal Proportions is applied to the true population numbers (i.e., if the census 

were perfectly accurate).  The empirical or estimated allocations est
ja are the numbers of seats given 

when the apportionment method is applied to census population numbers.  The difference est true
j ja a is 

the error in allocation, or misallocation, to state .j   The number of misallocated seats is defined as the 

sum of absolute errors (i.e., sum of absolute values of errors in apportionments), 

| |.est true
j jj

a a (1) 
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We used computer simulations to analyze the distribution of the sum of absolute errors. Figure 1 shows 

the strong linear relationship between the relative RMSE of state population estimates and the expected 

number of seats going to the wrong states in House apportionment.   

Figure 1.  Expected sum of malapportioned seats in the U.S. House of Representatives under 

alternative profiles of census accuracy. 

It should be noted that Figure 1 shows the expected number of seats misallocated, and that for any 

particular census with a given accuracy profile the number of seats misallocated could be much greater 

than the expected number.  For example, in the base case with relative RMSE equal to 1%, the expected 

number of malapportioned seats is estimated to be 3.4, but there is a 1 in 6 chance that 6 or more seats 

are malapportioned; with relative RMSE equal to 4%, there is a 3 in 4 chance that 12 or more seats are 

malapportioned.    

Blumerman and Vidal (2009) identified 140 federal grant and direct assistance programs that apparently 

distributed funds at least partly on the basis of population and income data.  These programs distributed 

0

2

4

6

8

10

12

14

16

0% 1% 2% 3% 4%

Average Relative RMSE of State Population

Expected Number of Malapportioned Seats

Base Case

Correlated Case

Accurate Small States
Case

Differential Bias Case

4



approximately $446.4 billion in FY 2007.  For analysis, we selected the 8 largest programs (in terms of FY 

2007 obligated amount) with certainty, which accounted for approximately 4/5 of the total FY 2007 

obligations of the 140 programs, and we selected a disproportionate stratified sample of 10 of the 

remaining 132 programs, so that larger programs had a higher chance of selection.  We used sample-

weighting methods to get unbiased estimates of totals for all 140 programs.  For each sampled funds 

allocation program we estimated the expected sum of absolute errors in state allocations that would 

arise from alternative profiles of census accuracy.  We found that for 4 of the 18 selected programs, the 

allocations would not be affected by error in the most recent census, indicating that, although census 

numbers have been used to determine past allocations, 2020 census error will not affect subsequent 

allocations.  For a few programs, the role of census numbers was limited to affecting sampling weights 

for estimates of inflation and unemployment.  We multiplied the estimated sum of absolute errors by 10 

to approximate the effect for the ten-year period until the 2030 census, using the simple but perhaps 

unrealistic assumption that the legislated allocation programs now in existence will continue in their 

current form and current funding levels for 2021 – 2030, and no new allocation programs dependent on 

census results will be introduced.  The weighted estimates of the expected absolute errors in federal 

fund allocations to states for ten years are shown in Figure 2.    
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Figure 2.  Expected sum of absolute errors in federal fund allocations to states over 10 years, as 

related to census accuracy.   

2. Methods

2.1. Overview 

Similar but not identical methods are used to estimate the effects of census accuracy on apportionment 

and fund allocation. For the former, the true apportionment occurs when the 2020 census numbers for 

states have zero error.  Let  P  and  P̂  denote the vectors of true and estimated population sizes of 

states for the census year, 2020.  The future population sizes P of states are unknown, and our beliefs 

about them can be summarized by a prior distribution, developed on the basis of population forecasts.  

This is described in Appendix 4. From specifications of the accuracy profiles (Table 1), and conditional on 

the true population sizes ,P  we can derive the probability distribution census estimates,  ˆ.P  House

apportionment is determined purely by the population sizes, and the distribution of the errors in 

apportionment, i.e., apportionment based on P̂  minus apportionment based on ,P  can be derived.   
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Unlike apportionment, which depends only on state population sizes in 2020, formula-based allocations 

of funds depend on a wide variety of population statistics and other statistics.  It would be very complex 

to jointly forecast the values of all such statistics ahead to 2020, and the results would likely be 

uncertain. Therefore, we took the simpler approach of obtaining the latest values we could of the 

statistics used to calculate allocations for the 18 programs we studied, and treating those as if they were 

error-free. To allow for error in the census, we used the accuracy profiles (Table 1) to first develop a 

distribution of census error, and we developed a distribution of error in the population statistics used to 

compute the allocations. 

2.2. Apportionment 

Since 1941, House apportionment has been determined from census populations using the Method of 

Equal Proportions (also known as Hill’s Method and Huntington’s Method). If fractions of seats could be 

allocated, then state j could simply receive its quota, ,jq  defined as the number of seats h in the House 

of Representatives (currently  435h ) times the fraction of all 50 states’ census population held by 

state .j  Letting jp  denote the population of state j and p denote the population of all 50 states, we have 

 ( / ) .j jq p p h  The allocations ja  of seats to state j  must be whole numbers, however – no fractional 

allocations are allowed.  The Method of Equal Proportions chooses positive integers ja  that minimize  

 2( / / )j j jj
a p a p h  when the quotas jq are given (Balinski and Young 1982, 1980, 1975; Spencer 

1985). The apportionments are computed by the Census Bureau and provided to the President, who 

transmits them to Congress. Computation of apportionment is described by Balinski and Young (1977) 

and by the Census Bureau at www.census.gov/population/apportionment/about/computing.html .  The 

Method of Equal Proportions is computed in practice by first awarding the first fifty seats one to each 

state. Seats 51 to 435 are awarded iteratively, each one to the state with the largest value of 

( 1)/i i ip n n , where ip  is the census population of state i  and in  is the number of seats already 

awarded.  

The sensitivity of the apportionment to census accuracy depends in part on the values of the underlying 

true populations of the states.  The requirement that the numbers of seats held by states must be 

integers implies that, for some configurations of states’ populations, a change of just a single person can 

cause the numbers to shift (Keyfitz 1979).  For such configurations, even the smallest errors in census 

numbers will shift the allocations of seats.  To analyze how sensitive apportionments are to changes in 
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census quality, we considered a joint distribution for the true state populations and the census numbers 

for states. To formulate the joint distribution, it is sufficient to consider the distribution for the true 

population sizes and the conditional distribution for census error given the true population. The error 

distribution was specified using an accuracy profile from Table 1, with alternative levels of average 

relative RMSE. The mean of the distribution of true population sizes was set equal to population 

projections prepared by the Weldon Cooper Center (2013a, 2013b). The true population sizes were 

taken to be independent, and the coefficient of variation for each state's population was chosen to be 

consistent with the past level of error in state population forecasts with similar time horizon. See 

Appendix 4 for details. 

We estimated the distribution of sums of absolute errors in states’ allocations of seats by drawing 

population numbers (true and census numbers) from the joint distribution, as described above.  Then 

the true apportionments true
ja  and estimated apportionments est

ja were calculated for each state ,j  and 

the sum of absolute misallocations (1) was calculated.  This process was repeated 5,000 times 

independently, and the average sum of absolute misallocations was used to estimate the expected 

number of malapportioned seats. 

2.3. Allocation of federal funds 

As we have mentioned, Blumerman and Vidal (2009) identified 140 federal grant and direct assistance 

programs that distributed approximately $446.4 billion in funds in FY 2007 at least partly on the basis of 

population and income data from the U.S. Census Bureau.  The largest of these is the Medical Assistance 

Program, also known as Medicaid. Grants to states are equal to state medical expenditures times the 

Federal Medical Assistance Percentage (FMAP). The FMAP depends on per capita income, which is 

calculated as the ratio of census population to Bureau of Economic Analysis (BEA) personal income. The 

formula can be written as  





    
    
     

2

FMAP min max 1 0.45 ,0.50 ,0.83 ,
/

/i

i

II

P P
  (2) 

where iI  is the BEA personal income, iP  is the census population of state ,i     ,jj
I I  and   .jj

P P  

For analysis of total misallocated funds across all 140 programs, we selected the 8 largest programs (in 

terms of FY 2007 obligated amount) with certainty, which accounted for about 80.1% of the total FY 
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2007 obligations. From the remaining 132 programs, we selected a disproportionate stratified sample of 

10 so that larger programs had a higher chance of selection. The programs we selected are shown in 

Table 2. We used sample-weighting methods to get unbiased estimates of totals for all 140 programs. 

For each program, results are weighted by the ratio of ,hN  the number of total programs in stratum ,h

to ,hn  the number of programs sampled in the stratum. We formed the weighted sum of estimates for 

sampled programs to estimate the total for all 140 programs. Thus, in total, the 18 programs represent 

$445.6 billion in funds distributed in 2007 on the basis of population and income data from the U.S. 

Census Bureau. Note that this number is slightly different from the $446.4 in funds actually distributed 

in FY 2007 due to the random sampling of programs. For each program studied, we estimated the 

expected annual amount of absolute errors in state allocations that would arise from alternative levels 

of census data quality. Sampling errors and approximate 95% confidence intervals were also estimated 

using theory for stratified samples.   Table 2 shows the sampled programs. 
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Strat 
h hN hn

CFDA 
No.   Program 

FY 2007  
Obligation    
($Billions) 

Weighted 
FY 2007  

Obligation    
($Billions) 

93.778 Medical Assistance Program (Medicaid) $203.5 $203.5 
17.225 Unemployment Insurance  $35.9 $35.9 

20.205 Highway Planning and Construction  $34.2 $34.2 

10.551 Suppl. Nutrition Assistance Program (SNAP) $30.3 $30.3 

93.558 Temporary Assist. for Needy Families (TANF) $16.5 $16.5 

84.063 Federal Pell Grant Program $13.7 $13.7 

84.010 Title I Grants to Local Educ. Agencies (LEAs) $12.8 $12.8 

1 8 8 84.027 Special Education Grants to States $10.8 $10.8 

93.600 Head Start $6.9 $10.3 

2 3 2 93.767 State Children’s Insurance Program (CHIP) $5.9 $8.9 

10.557 Special Supplemental Nutrition Program for 
Women, Infants, and Children (WIC) 

$5.5 $16.6 

3 6 2 93.596 Child Care Mandatory and Matching Funds $2.9 $8.7 

93.575 Child Care and Development Block Grant $2.1 $12.3 

4 12 2 93.667 Social Services Block Grant $1.7 $10.2 

84.365 English Language Acquisition Grants $0.6 $4.9 

5 16 2 84.181 Special Ed. – Grants for Infants and Families $0.4 $3.5 

66.460 Nonpoint Source Implementation Grants $0.2 $9.5 

6 95 2 16.458 Title V Delinquency Prevention Program $0.1 $3.0 

Total 140 18 $445.6 

Table 2.  Sampled programs allocating federal funds.   

Table 3 presents the variety of the kinds of statistics used to allocate funds across the 18 sampled 

programs. Annual mid-year population estimates from the Population Estimate Program are used in 9 of 

the 18 programs. Two programs use model-based estimates for small-area populations that include 

Census Bureau population data in the models. Title I Grants to Local Education Agencies uses Small Area 

Income and Population Estimates for school district school-age children in poverty. The Supplemental 

Nutrition and Assistance Program for Women, Infants and Children uses a model-based estimate of the 

number of children age 1 to 4 below 185% of the poverty line. Two programs use American Community 

Survey (ACS) estimates. Special Education Grants to State uses information on state Free Appropriate 

Public Education age children in poverty from ACS Public Use Microdata.  English Language Acquisition 

Grants uses ACS data on Limited English Proficiency children and foreign-born children. Current 

Population Survey (CPS) unemployment rates help determine whether states are eligible for additional 

Unemployment Insurance assistance. The CPS uses decennial census information for its sampling frame. 

Three programs, Supplemental Nutrition and Assistance Program, Pell Grants and Head Start, all make 
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awards based on poverty thresholds. The poverty thresholds are estimated using the Consumer Price 

Index for all Urban Workers (CPI-U), which is estimated in part with a sampling frame that uses the 

decennial census. 

Program (Dept.) 
Midyear 
Pop. Est. 

Model-
based 

Pop. Est. 
ACS  

Pop. Est. 

CPS 
Unempl. 

Rate 
CPI-

Urban 

Non-
Census 
Stats 
Used 

Latest 
Census 

Not 
Used 

Medicaid ● ● 
CHIP  ● ● 

Child Care Mandatory & Matching ● 

Child Care and Development ● ● 

Social Services Block Grant ● 

Special Ed. –Infants & Families ● 

Title V Delinquency Prevention ● 

Title I Grants to LEAs ● ● ● 

Special Ed. – States ● ● 

WIC  ● 

English Language Acquisition ● 

Unemployment Insurance ● 

SNAP ● 

Pell Grants ● ● 

Head Start ● 

Highways  ● 

TANF ● 

Nonpoint Source Implementation ● 

Table 3.  Statistics used in formulas for allocating federal funds. 

Many of the programs that we study use multiple census-based statistics. Further, five programs also 

use non-census statistics in formula-based allocation. For example, Medicaid awards use both census 

population numbers and BEA personal income. Surprisingly, we found that for 3 of the 18 selected 

programs, the allocations would not be affected by error in the most recent census: Highway Planning 

and Construction, Temporary Assistance for Needy Families, and Nonpoint Source Implementation 

Grants. These three programs have used census data for past allocations, but future allocations are fixed 

to previous shares.   
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Several analytic simplifications were necessary for analyzing the effect of census error on the 

allocations. Except as noted, the simplifications were chosen to have the effect of overstating the effect 

of census error on error in allocation. 

(i) Unlike apportionment, which depends only on census population, the fund allocation programs 

involve other statistics in addition to census population.  To fully model the diverse sources of 

error is too vast an undertaking for this project. Spencer (1980a, 67-150) demonstrates the kind 

of investigations that would be needed. For example, BEA personal income is used in multiple 

allocation formulas, but its accuracy is unknown. We use an approximation that conditions on 

the observed values of the non-census statistics. If we represent the allocation to a state by 

( , ),f x y  where y  denotes the census estimates and x  denotes other statistics, then the 

expected absolute misallocation may be expressed as | ( , ) ( , )|,true trueE f x y f x y  where truex  and 

truey  denote the true values of x  and .y  We approximate this by | ( , ) ( , )|,trueE f x y f x y

conditioning on the observed values of .x  Work in progress suggests that the approximation 

overstates the effect of census error in some general scenarios and that the potential 

understatement is smaller than the potential overstatement.  

(ii) For cases where population enters the allocation formula as a mid-year population estimate, 

which adjusts the census estimate for births, deaths and net migration since the census, we 

approximated the relative error in the postcensal estimate by the relative error in the 

underlying base census number. This approximation overstates the effect of census error on the 

postcensal estimate, since the errors in estimates of change due to births, deaths, and net 

migration are only somewhat dependent on the census base (Spencer 1980b). Specifically, the 

relative effect of census error on the census base overstates the relative effect of census error 

on the sum of the census base and other components only somewhat affected by census error. 

(iii) Model-based and ACS population estimates are used to calculate the proportion of the 

population in a group or area. The proportion is multiplied by a census or postcensal estimate of 

total population to estimate the number in the group or area.  Here too, we approximated the 

relative error in the model-based or ACS estimate of population of the subgroup by the relative 

error in the underlying base census number.  Since the errors in model-based and ACS estimates 

of fractions are largely independent of the census base, the effect of census error on the census 

base approximates the effect of census error on the product of the census base and the model-

based or ACS estimate of the population proportion.  
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(iv) To model the effect of census error on CPS unemployment rates, we used differential net 

undercount estimates by age, sex and race in 2010 and applied these to unemployment 

estimates for these three groups to study the relationship between census error and 

unemployment rate error. We made the simplifying assumption that the effect of undercount 

by age, race and sex on unemployment rate estimates is proportional to the effect of state 

census errors on unemployment rate estimates. For CPI-U, we proceeded similarly using 

differential price indices for renters and owners together with information on renter and owner 

net census undercount. More details about the procedures are described in Appendix 5.  

(v) Title I Grants to LEAs provide grants to sub-state areas, namely school districts. We take the 

simplifying approach of studying errors in allocation at the state-level alone. Our models apply 

the state relative errors to each LEA population estimate within the state, which we conjecture 

slightly to some extent understates the effect of census error on the LEA-level Title I allocations 

(vi) For programs that depend upon multiple census-based statistics, we assume the same relative 

errors apply to all statistics, which overstates the effect of census error. 

We estimated the expected sum of absolute errors in allocations for the year for which the most recent 

data was available. In order to obtain estimates corresponding to FY 2007, we ratio-adjusted the 

estimates of sum of absolute errors by the ratio of the FY 2007 program obligations to the allocations for 

the year for which allocations were analyzed.  Typically, this was a downward adjustment. We 

conducted 5,000 independent simulations of census numbers and found absolute errors for each federal 

program analyzed. As previously described, we used sampling theory to estimate the total expected 

misallocated funds for FY 2007 for all 140 programs. 

3. Results

3.1. Apportionment 

Table 4 presents estimates of the expected number of malapportioned House seats, or House seats 

going to the wrong state, under the alternative accuracy profiles. Figure 1 is based on Table 4. Table 5 

shows that the probability distribution of number of malapportioned seats for the base case accuracy 

profile with relative RMSE equal to 1%. The number of malapportioned seats can substantially exceed 

the expected number. 
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Estimated Expected Number of Malapportioned Seats 

Average Relative RMSE of State Population Numbers 

Accuracy Profile 0.0% 0.5% 1.0% 2.0% 3.0% 4.0% 

Base Case 0.00 1.79 3.38 6.66 10.00 13.32 

Correlated Case 0.00 1.32 2.46 4.74 7.11 9.33 

Accurate Small States Case 0.00 1.88 3.59 7.03 10.56 14.01 

Differential Bias Case 0.00 1.59 2.96 5.70 8.51 11.44 

Table 4.  Estimated expected number of malapportioned seats in the U.S. House, with various census 

accuracy profiles. (Estimated standard errors for all numbers do not exceed 0.05.) 

Table 5.  Probability distribution of number of House seats misallocated, base case census accuracy 

profile.  -- signifies number < 0.05%.  Number in parentheses is estimated standard error of probability. 

Relative RMSE 

of census 

numbers 

Probability that number of misallocated seats equals or exceeds k 

k = 2 k = 4 k = 6 k = 8 k = 10  k = 12  

  0.5% .714 (.006) .166 (.005) .014 (.002) .001 (.000) .001 (.000) .001 (.000) 

  1.0% .934 (.004) .561 (.007) .168 (.005) .024 (.002) .002 (.001) --  (--) 

  2.0% .998 (.001) .956 (.003) .760 (.006) .427 (.007) .147 (.005) .034 (.003) 

  3.0% 1.000 (--) .998 (.001) .975 (.002) .867 (.005) .640 (.007) .339 (.007) 

  4.0% 1.000 (--)  1.000 (--) .998 (.001) .983 (.002) .914 (.004) .751 (.006) 
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3.2. Formula-based allocations of federal funds 

Estimates of the expected sum of absolute errors in total FY 2007 federal funds allocations are shown in 

Table 6. We used the latest available values of x  and y  in estimating the expected sum of absolute 

errors in allocations.  Then, we ratio-adjusted the estimates of | ( , ) ( , )|trueE f x y f x y  by the ratio of the 

FY 2007 program obligations to the allocations for the year whose allocations based on x  and y  were 

analyzed.  Typically, this was a downward adjustment.   

Estimated Expected Misallocated Funds in One Year 

($ Billions) 

Average Relative RMSE of State Population Numbers 

Accuracy Profile 0.5% 1.0% 2.0% 3.0% 4.0% 

Base Case 1.02 2.05 4.10 6.09 8.08 

(standard error) (0.04) (0.07) (0.13) (0.19) (0.25) 

Correlated Case 0.75 1.50 3.01 4.51 5.99 

(standard error) (0.03) (0.05) (0.09) (0.14) (0.18) 

Accurate Small 

States Case 1.02 2.05 4.05 6.11 8.09 

(standard error) (0.04) (0.07) (0.14) (0.20) (0.27) 

Differential Bias 

Case 0.92 1.83 3.66 5.45 7.25 

(standard error) (0.04) (0.06) (0.11) (0.16) (0.22) 

Table 6.  Estimated expected absolute misallocations of federal funds in one year, with various census 

accuracy profiles.  

4. Sensitivity Analysis

The base case accuracy profile specifies that census numbers are independent, normally distributed, 

unbiased and have equal coefficients of variation across all states. Work in progress will estimate a 

response surface and will provide estimates of expected amounts of misallocated funds and 

malapportionment as a function of parameters describing the distributions of census numbers. The 
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response function will account for means and variances of state census numbers, the correlation 

between state estimates, and whether or not distributions have heavy tails ( t  distribution as compared 

to normal distribution). This will allow the assessment of the sensitivity of distortions in allocations to a 

variety of distributional aspects of census error.  

Here, we examine various assumptions in the base case one at a time and study how results change for 

alternative distributions of census error. For each analysis, we study the impact on one example of 

formula-based allocation, Medicaid for FY 2012, and on apportionment.  Attention is restricted to small 

relative RMSE levels. 

4.1. Correlated errors 

To study the sensitivity of findings to the assumption of independently distributed census numbers 

across states, we considered scenarios where state relative errors were multivariate normally 

distributed with a constant correlation coefficient. We examined constant correlations of -0.02, 0.00 

(corresponding to independence), 0.25, 0.50, 0.75 and 0.90. Note that the smallest possible constant 

correlation for an n n  non-negative definite correlation matrix is  1 /( 1).n  When n  is 51 (for 50 

states and D.C.), then the minimum possible constant correlation is -0.02. All scenarios are constructed 

so that the average relative RMSE is 1.0%. 

Figure 3 presents results for Medicaid, and Figure  4.2 presents results for apportionment. Both figures 

demonstrate that sums of absolute errors in allocation and in apportionment decrease sharply with 

increased correlation of state relative errors. For Medicaid, $1.6 billion in funds is misallocated on 

average with independent errors, but when relative errors have a constant correlation of 0.9, only $0.5 

billion is misallocated on average. Similarly, 3.4 seats are expected to be malapportioned with 

independent errors, but only 1.2 seats are expected to be malapportioned when relative errors have a 

constant correlation of 0.9. 
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Figure 3. Expected sum of absolute errors in Medicaid allocations FY 2012, as related to the correlation 

between state relative errors.   
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Figure 4. Expected sum of malapportioned seats in the U.S. House of Representatives, as related to the 

correlation between state relative errors.   
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4.2. Heavy-tailed distributions 

Our main analyses only consider normally distributed state census numbers. For the 1.0% relative RMSE 

scenario, if a state has population ,p  then the state errors are normally distributed with mean 0 and 

standard deviation 0.01 .p  We considered how results would change for distributions with heavier tails. 

In particular, we examined the t  distribution with 4 degrees of freedom. In order to compare 

distributions with the same variances, the state errors are distributed 4(.01 / 2),t p as  the 4t   

distribution has a standard deviation of 2.  

Results are presented in Table 7. For Medicaid, expected misallocated funds change from $1.56 billion in 

the scenario with normally distributed census numbers to $1.40 billion in the scenario using the scaled 

4t distribution. Similarly, expected malapportionment changes from 3.41 seats in the scenario with 

normally distributed census numbers to 3.09 seats in the scenario using the scaled 4t distribution. From 

this, we conclude that using normally distributed census numbers when the distributions have heavy 

tails leads to overstating the effects of census error on uses. 

Distribution Medicaid ($ Bill.) Apportionment 

Normal 1.56 3.41 

Scaled 4t 1.40 3.09 

Percentage Difference -10.7% -9.6% 

Table 7.  Estimated expected sum of absolute errors in allocation and apportionment with different 

distributions of census error 

4.3. Bias in state estimates 

We investigated evidence for bias in census population numbers by examining estimates of net 

undercount rates for the 2000 and 2010 censuses.1 If bias exists, then we expect to see that the 2000 

net undercount estimates for each state predict their 2010 net undercount estimates well. Figure 5 

presents the net undercount estimates in a scatterplot with the diameter of each circle proportional to 

the state's population. The seven largest states are labeled. The relationship is stronger for large states 

1 Data from www.census.gov/dmd/www/pdf/pp-60r.pdf  and 
www.census.gov/coverage_measurement/pdfs/g01.pdf , accessed February 12, 2015 
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than for small states. While the correlation between the 2000 and 2010 net undercount rates is 0.19, 

the correlation weighted by the population is 0.54. This suggests more evidence for bias in census 

population numbers for large states than for small states. 

Figure 5. Comparison of estimated 2000 and 2010 census net undercount rates by state.  Diameter of 

each circle proportional to state population. 

To study the sensitivity of our findings to bias in state census numbers, we considered models where the 

largest 25 states could have biases, but the smallest 25 states did not. For all scenarios, mean squared 

error is the same and equivalent to the mean squared error for the 1.0% c.v. scenario. As mean squared 

error can be decomposed into bias squared and variance, we varied the weight on bias squared across 

the scenarios. We examined weights on bias squared for the 25 largest states of 0%, 10%, 25%, 50%, 

75%, 90% and 100%. The 0% weight on bias squared scenario corresponds to the 1.0% c.v. scenario used 

in our main analysis. We chose the signs of the state biases to have the same signs as the biases 

estimated for the 2010 census. 

Results are presented for Medicaid in Figure 6 and for apportionment in Figure 7. We do not find much 

sensitivity of either Medicaid misallocation or malapportionment to bias in large states when the weight 
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on bias squared varies between 0% and 50%. In this range, we expect between $1.5 and $1.6 billion 

misallocated and between 3.4 and 3.5 seats malapportioned. However, error in uses increases with 

larger amounts of bias relative to variance. When the errors are only due to bias and not variance, we 

expect $1.8 billion in funds to be misallocated and 3.9 House seats to be malapportioned. These 

analyses show that modeling census error with only variance and not bias could lead to understating the 

effects of census error, but the understatement will only be large if bias is large relative to variance. 

Figure 6. Expected sum of absolute errors in Medicaid allocations FY 2012, as related to the fraction of 

mean square error for 25 largest states due to bias squared.   
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Figure 7. Expected sum of malapportioned seats in the U.S. House of Representatives, as related to the 

fraction of mean square error for 25 largest states due to bias squared.   
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c.v., the 11th through 20th largest states have the high c.v., the 21st through 30th largest states have

the high c.v., the 31st through 40th largest states have the high c.v. and where the ten smallest states 

have the high c.v. 

Results are presented in Figures 4.6 and 4.7. Findings should be compared to results from the constant 

1.0% c.v. scenario, where we expect $1.6 billion in funds to be misallocated for Medicaid in FY 2012 and 

3.4 House seats to be malapportioned. When the ten largest states have the high c.v., sums of absolute 

errors are very large. We expect $4.9 billion in funds to be distributed to the wrong state and 10.5 seats 

to be apportioned to the wrong state. On the other hand, when the ten smallest states have the high 

c.v., we expect only $0.3 billion to be misallocated for Medicaid and 1.1 House seats to be

malapportioned. This investigation shows that results are highly sensitive to whether large or small 

states have high c.v.'s. 
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Figure 8. Expected sum of absolute errors in Medicaid allocations FY 2012, for scenarios where 40 states 

have no error and 10 states designated have 5% relative RMSE.   
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Figure 9. Expected sum of malapportioned seats in the U.S. House of Representatives, for scenarios 

where 40 states have no error and 10 states designated have 5% relative RMSE.   
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the expected number of House seats going to the wrong state (relative to having perfect data) is in the 

range of 10 to 14, and between $60 billion and $80 billion dollars in federal grants in aid will go to or 

from the wrong states.   

It is important to understand the limitations of the scope of the current analysis. In this paper we study 

only direct and specific “instrumental” uses census statistics for allocating funds and House seats.  We 

have not studied the effect of census quality on “conceptual” uses of census data for scientific research 

or for policy-making, uses which are vastly more difficult to identify and describe (Beyer 1977).  Part of 

the reason conceptual uses resist study is that they are hidden in chains of analysis.  For example, policy 

X is adopted or theory Y is accepted on the basis of cited research that depended in part on supporting 

research that depended on past census data, but the role of the census is not apparent. For another 

example, former OMB Director OMB Director Peter Orszag (2009, 40) noted that the educational policy 

goal of  increasing the number of postsecondary education was developed to reduce social inequality, 

based on empirical research of Goldin and Katz (2008, 2007) that relied in key ways on decennial census 

data from 1940-1980 and on Iowa State Census data from 1915. Not only is it difficult to identify such 

uses of census data after they have occurred, but it is even more difficult to anticipate them ahead of 

time.  As noted by J. G. March (1994, 246), 

Having knowledge when it is needed often requires an investment in knowledge that is 

not known to be needed at the time it is acquired.  The returns from knowledge may 

occur in a part of the system quite different from the part where the costs are paid.   

Another kind of use statistics is for window dressing, or “using research results to legitimate and sustain 

predetermined positions.” (Beyer 1977, 17) Symbolic uses of data can be sensitive to data quality, as 

explained by Boruch (1984) among others.  Suppose that a decision maker simply wants to use data as 

window dressing to defend a decision already made.  If the data are high quality, then they will more 

accurately describe the true state.  If the decision maker needs false information to justify the decision, 

which by itself raises questions about the validity of the decision, then that will be more difficult with 

high quality data. 

Uniquely, the constitutionally mandated census is also important as a national ceremony (Kruskal 1984, 

49-50).   

The decennial census is a national ceremony and a symbol of the relationship between 

citizen and government. Whatever one’s view of the census, whatever one’s philosophical 
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position about the Federal Government, it may be argued that the census is one of our 

relatively few national, secular ceremonies. It provides a sense of social cohesion, and a 

kind of nonreligious communion: we enter the census apparatus as individual identities 

with a handful of characteristics; then later we receive from the census a group snapshot 

of ourselves at the ceremony date. Like many family pictures, the snapshot is a little blurry 

in spots, but recognizable and fascinating to compare across the decades. . .  

Kruskal’s comment provides background for understanding the observation made 4 decades ago by 

Representative William Lehman (Congress 1973, p.2812): 

. . . confidence of the people in the census data is transferred to the confidence of the 

people in their political process.  

In addition, the census is used to adjust or calibrate the results of virtually all national sample surveys of 

the U.S. population in the public and private sectors.  

In conclusion, the effects of inaccuracy in the 2020 census on apportionment and allocation of federal 

funds are appreciable, but there are also important effects of census accuracy. 
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Appendix 1: Approximation of Expected Absolute Errors in Allocation  

in the Presence of Errors in Non-Census Statistics 

We are interested in the difference in expected sums of absolute values of misallocations when the 

census is conducted under one design versus another.  A difficulty in studying the effect of census 

accuracy on allocations of federal funds is the dependence of allocations on non-census statistics as well 

as census population statistics.  Sometimes there are too many different non-census statistics to want to 

model the accuracy for all of them, and other times, as in the case of BEA personal income, there is not 

even systematic information available about accuracy (aside from the extent of revisions).  It is 

convenient, then, to analyze the effects of census inaccuracy conditional on the observed values of the 

non-census statistics.  In this appendix we consider the implications of relying on this conditional 

analysis. 

Let f  denote an allocation formula, and let the allocation to a state be denoted by ( , ),f X Y where Y  is a 

census statistic measuring true value *Y   and X   is a non-census statistic measuring true value *.X  

The difference in expected absolute value of the error in allocation is  

1 2( , )- ( *, *) ( , )- ( *, *)E f X Y f X Y E f X Y f X Y (1.1) 

where iE  denotes expectation when census design i  is used. The expectation iE  in (1.1) also takes 

account of the distribution of .X  To avoid working with the distribution of ,X  we condition on the 

observed value x  of the non-census statistic.  Thus, we study 

1| 2|( , )- ( , *) ( , )- ( , *) ,X x X xE f x Y f x Y E f x Y f x y  . (1.2) 

where |i X xE   denotes the conditional expectation under census design i  given the observed value x  of 

the non-census statistic.  

We conjecture that (1.2) tends to overstate (1.1), and that when it does not overstate then the 

magnitude of understatement is not severe.  To support this conjecture, consider a linear approximation 

to the allocation, namely ( , ) .f X Y a bX cY    Assume that the true values are fixed at *x  and *y  and 

that given the true values the non-census statistic is normally distributed, unbiased, and with variance 

2 ,  irrespective of which census design is used.  Under census design ,i  the census statistic is 
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stochastically independent of the non-census statistic and it is normally distributed, unbiased, with 

variance 2.i   Under these conditions, expression (1.2) evaluates to 

1 2

2
( - ).c  


 (1.3) 

Expression (1.1) is equivalent to 

 2 2 2 2 2 2 2 2
1 2

2
.b c b c   


     (1.4) 

It is readily seen that 2 2 2 2 2 2 2 2
1 2 1 2( - ) ,c b c b c          with equality when 0b    or 0. 

Thus, expression  (1.3) overstates expression (1.4). The overstatement increases with | |b  and with .   

Thus, in this model, conditioning on the value of the non-census statistic leads to overstatement of the 

true difference in expected absolute loss.  Work is underway to compare (1.1) and (1.2) under more 

general models.  
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Appendix 2:  Details on Sampling of Allocation Programs 

The N  140 allocation programs identified by Blumerman and Vidal (2009) were partitioned into H  6 

strata based on size of FY 2007 obligation, as shown in Table A2.1. 

Stratum 

h

FY 2007 Obligation ($Billions) 
Number 

hN

Sample Size 

hn

Total FY 2007 
Obligations 
($Billions) At least Not 

exceeding 

1 $10.780     8   8 $357.6 

2   $5.940 $7.837     3   2   $20.6 

3   $2.592 $5.478     6   2   $24.2 

4   $1.190 $2.494   12   2   $22.8 

5   $0.436 $1.163   16   2   $11.3 

6 $0.432   95   2   $10.0 

All 140 18 $446.4 

Table A2.1.  Stratification of fund allocation programs and allocation of sample. 

The sampling strata are denoted by h  1, , ,h H with hN  programs in stratum ,h   from 

which hn  are selected with SRS without replacement.  The total number of allocation programs in the 

sampling frame is  140 .h
h

N N  Simple random sampling within strata was performed to choose hn

out of hN  programs without replacement.  The sampling weight for each selected program in stratum h

is the reciprocal of the sampling fraction, / .h h hw N n  The sample may be represented by the collection 

of indicator variables hiI taking the value 1 if program i  in stratum h was selected and 0 if not selected. 

Alternative levels of census data quality are denoted by .j  The expected error sum of absolute errors in 

in allocations from program i  in stratum  attributable to census data quality level j  is denoted by 

.hijy  

The purpose of the sample is to support inferences about the effect of census data quality level j  on 

allocations to all N  programs, 

..
1

.
hN

j hij
h i

y y


  

If we were we able to observe hijy directly for sampled programs, we would estimate .. jy  by the 

conventional unbiased estimator in stratified sampling, ..
1

.
hN

j hi hi hij
h i

y w I y


  We do not observe 

directly for sampled programs, however, but instead we estimate it by simulation.  Census data with 

quality level  are independently replicated R  times, leading to simulated values ,hijry  1, , .r R  The 
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estimate of .. jy  based on replicate r  is denoted by ..
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  We use the average of the 

replicated estimates, 1
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   to estimate .. .jy  

There are two components of variance in ..
ˆ .jy  One arises because allocation programs are sampled, and 

we will refer to this as random component 1.  The second arises from the replications in the simulations, 

conditional on the set of programs that were sampled, and we refer to this as random component 2.  

The simulations are conditionally independent of the set of programs that were selected, and If the 

modeling of the effect of census data quality is perfect, then each .. jry  is a conditionally unbiased 

estimate of .. jy given the selection of programs. 

It follows from standard results that 
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Appendix 3:  Use of Census Statistics in 18 Sampled Programs Using Population Statistics 

for Allocating Federal Funds 

In this section, for statistic iX  in state i , let /i i j

j

X X X   denote state i ’s national share for the

statistic.  The number in parentheses following the name of the allocation program is the Catalog of 

Federal Domestic Assistance (CFDA) number. 

Medical Assistance Program (93.778) 

The Medical Assistance Program pays a fraction of state medical expenditure as determined by the 

state’s Federal Medical Assistance Percentage (FMAP), which is based on a state’s relative per capita 

income. The FMAP has a minimum of 0.50 and a maximum of 0.83. The grant amount iG  for state i is 

defined as 2[max(0.50,min(0.83,1 0.45( / ) ))]i i i iG E I P   . Here, iE  is medical expenditures, iI  is BEA 

personal income, and iP  is population. Note that this formula does not apply to DC, which has a fixed 

FMAP of 0.70. 

Unemployment Insurance (17.225) 

When state unemployment rates are elevated, unemployment insurance recipients are eligible for extra 

weeks of compensation through Extended Benefits and, during the recent recession, Emergency 

Unemployment Compensation. The federal government provides part of the funding for these two 

programs. State unemployment rates are estimated by the Current Population Survey, which uses the 

decennial census for its sampling frame.  

Highway Planning and Construction (20.205) 

The Moving Ahead for Progress in the 21st Century Act passed in 2012 changed the funding formulas for 

programs administered through Highway Planning and Construction. Apportionment for the various 

programs is fixed to proportions states received in previous years and does not depend on new 

population statistics.  
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Supplemental Nutrition Assistance Program (10.551) 

A recipient’s eligibility for SNAP benefits and amount received are based on poverty threshold which are 

revised annually based on CPI-U. CPI-U is estimated in part using the decennial census for a sampling 

frame. 

Temporary Assistance for Needy Families (93.558) 

The grant amounts to states are fixed to the proportions of the grants in 2002. New census statistics are 

not used in the determination of grant amounts. 

Federal Pell Grant Program (84.063) 

A student’s Pell Grant amount is the cost of attendance minus the Expected Family Contribution subject 

to a maximum. The formula to determine the Expected Family Contribution is revised each year based 

on measures of inflation. The inflation measures are estimated in part using the decennial census for a 

sampling frame. 

Title I Grants to Local Educational Agencies (84.010) 

Title I funding consists of four sets of grants to Local Educational Agencies (LEAs): Basic Grants, 

Concentration Grants, Targeted Grants and Education Finance Incentive Grants (EFIG). All four grant 

programs depend on Small Area Income and Poverty Estimates (SAIPE) data for the age 5 to 17 

population in poverty for each LEA. In our modeling, we treat SAIPE LEA errors the same way that we 

treat the corresponding state-level errors in census counts.  

The Basic Grant amount Basic
iG for LEA i is specified by 

 Basic
{ 10} { / 0.02}min 0.48 ,max(0.32 ,0.4 ) .

i i ii i US US i N N TG N E E E        

Here, iN is a measure of the number of children at-need in the LEA, including the SAIPE age 5—17 

population in poverty; iT  is the total number of school-aged children; iE  is the per-pupil expenditures in 

the state that includes the LEA; USE  is the national per-pupil expenditure; { }A  is the indicator function 

taking the value 1 if A   is true and 0 otherwise. 

The Concentration Grant amount Concentration
iG  for LEA i  is specified by 

Concentration
iG    { 6500 OR / 0.15}min 0.48 ,max(0.32 ,0.4 ) ,

i i ii US US i N N TN E E E       

with all variables having the same definitions as they do for Basic Grants. 
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Title I Grants to Local Educational Agencies (84.010) (continued) 

The Targeted Grant amount Targeted
iG  for LEA i  is specified by 

Targeted
iG    { 10} { / 0.05}min 0.48 ,max(0.32 ,0.4 ) ,

i i ii i US US i N N TWN E E E       

with all variables having the same definitions as they do for Basic Grants, except that iW  is a weight 

between 1.0 and 4.0 that increases with iN  and /i iN T  and depends on county or school district 

administration. 

The EFIG amount EFIG
iG   for LEA i  is specified by 

EFIG
iG   min 0.46 ,max(0.34 ,0.4 ) Efforti US US i iN E E E    { 10} { / 0.05}(1.3 Equity ) ,

i i ii N N T    

where all variables have the same definitions as they do for basic grants, except that Efforti  is the effort 

factor and Equityi is the equity factor for the state to which LEA i  belongs.  The effort factor depends 

upon per capita personal income (BEA) and thus indirectly on census population statistics. Specifically, 

Effort ( / )( / ),i i US i iE E P I  where iE  and USE  are as defined above and /State StateP I  is algebraically equal to 

the ratio of US per capita income to state per capita income. The equity factor for the state Equityi

depends on a weighted coefficient of variation of LEA per-pupil expenditure within the state to which 

LEA i  belongs, with the weighting depending on iN  and .iT  

All four grants are ratably reduced to sum to the total amount allocated for each grant program. 

Adjustments are made so each state receives a minimum amount for each of the four grants. 

Special Education Grants to States (84.027) 

Grants to states use measures of states’ Free Appropriate Public Education (FAPE) age population 

(usually age 3-21 population) and states’ FAPE age population in poverty. The FAPE age population is 

taken from postcensal population estimates by single year of age. The FAPE age population in poverty is 

determined by combining the postcensal single year of age data with ACS Public Use Microdata Sample 

poverty data. Specifically, state i  receives grant amount ,iG  where 99 [0.85 0.15 ],i i i iG G R P N   99
iG  is 

the grant amount in 1999, R  is the total amount available for the program in excess of 1999 total 

amount, iP  is the FAPE age population,  and iN  is the FAPE age population in poverty. 
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Head Start (93.600) 

Head Start agencies must have a certain percentage of children they serve be from families who meet 

poverty thresholds. The poverty thresholds are revised based upon CPI-U, which is estimated in part 

using the decennial census for a sampling frame. Because some Head Start agencies are not fully 

enrolled, and agencies can respond to changes in poverty threshold eligibility by either increasing or 

decreasing their effort to recruit students, we estimate that 2020 census error will have no effect on 

Head Start funding. 

State Children’s Insurance Program (93.767) 

The State Children’s Insurance Program (CHIP) pays a fraction of state CHIP expenditure as determined 

by the state’s Enhanced Federal Medical Assistance Percentage (eFMAP), which is based on a state’s 

relative per capita income. The eFMAP has a minimum of 0.65 and a maximum of 0.85.  The formula for 

the grant amount iG  for state i  is  2max 0.65,min[0.85,1 0.315( / ) ] ,i i i iG E I P  
 

 where iE  is medical 

expenditures, iI  is BEA personal income, and iP  is population. This formula does not apply to D.C., which 

has a fixed FMAP of 0.79. 

Special Supplemental Nutrition Program for Women, Infants and Children (10.557) 

WIC uses two grant programs, one for food costs and another for nutrition services and administrative 

(NSA) costs. Food grant amounts are proportional to a state’s model-based estimate of the number of 

children age 1 to 4 below 185% of the poverty line. In our modeling, we treat the errors in model-based 

estimates the same way that we treat errors in census counts. NSA grants use BEA measures of food 

cost inflation. We treat the NSA grants as unaffected by census inaccuracy.  

Child Care Mandatory and Matching Funds of the Child Care and Development Fund (93.596) 

Mandatory funds are allocated based on a state’s share of expenditures for the now-repealed AFDC 

child care programs during the years 1992-1995, and thus not based on government statistics. Matching 

funds are allocated proportional to a state’s population under age 13, which is determined from 

postcensal single year of age estimates. 
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Child Care and Development Block Grant (93.575) 

Grants to states depend on a variety of statistics. Census statistics include state population and state 

population under age 5 (from postcensal single year of age estimates). Non-census statistics include BEA 

personal income and the number of children receiving free or reduced school lunch from the Department 

of Agriculture. Specifically, state i  receives grant iG  where 

 
 
 



 

 
0.5 .i i i i

j j j jj j

i

YH L H

Y H L
A

H
G  

Here, A is the total amount allocated for the program, iY  is population under age 5, iL  is free or reduced 

lunch population, iI  is personal income, iP  is population, and  min 1.2,max(0.8, / )ii iPH I is the 

reciprocal of per capita personal income, constrained to lie between 0.8 and 1.2. 

Social Services Block Grant (93.667) 

Grants to states are proportional to state population statistics. 

English Language Acquisition Grants (84.365) 

Grants to states use measures for the number of Limited English Proficiency (LEP) children and the 

number of immigrant children and youth, both estimated from the American Community Survey. 

Specifically, state grants are proportional to the sum of 80% of the state’s national share of LEP children 

plus 20% of the state’s national share of immigrant children and youth. 

Special Education-Grants for Infants and Families (84.181) 

Grants to states are proportional to state population age 0 to 2, which is determined from postcensal 

single year of age estimates. Each state receives a minimum of 0.5% of all funding allocated for the grant 

program. 

Nonpoint Source Implementation Grants (66.460) 

Grants to states are determined using a formula based on a variety of government statistics, including 

1990 census state population and 1987 postcensal state population estimates. New census statistics are 

not used in the determination of grant amounts. 
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Title V Delinquency Prevention Program (16.548) 

Grants to states are proportional to a state’s youth population under the maximum age of original 

juvenile court delinquency jurisdiction, which is estimated from postcensal single year of age estimates. 

The maximum age of juvenile court delinquency jurisdiction varies by state and is available at 

<http://www.ojjdp.gov/ojstatbb/structure_process/qa04101.asp > for 2013. 
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Appendix 4:  Specification of Population Sizes of States in 2020 

For the analysis of the sensitivity of House apportionment to census data quality, we developed a joint 

probability distribution for the true and census-estimated population sizes.  The means of the true 

population sizes were set equal to the state population projections for 2020 prepared by the University 

of Virginia’s Weldon Cooper Center for Public Service (2013) based on the 2010 census results.  We did 

not use projections from the Census Bureau because the Bureau no longer produces state population 

projections.  The variances of the 2020 population sizes were specified to be consistent with the 

observed levels of error in state population projections prepared a decade earlier by the Census Bureau.  

Specifically, in 2005 the Census Bureau used 2000 census results to project state populations for July 1, 

2010.  The error in those projections was estimated by the difference between the projection, say ,Y   

and the Census Bureau’s population estimates for July 1, 2010, say ,X  which are equal to the 2010 

census enumeration adjusted for births, deaths, and net migration over the 3 month interval from April 

1 to July 1.  The relative error was computed as the error Y X  divided by ,X  or equivalently / 1.Y X 

The relative errors were observed to be approximately normally distributed about zero, and the relative 

errors tended to be closer to zero for the larger states than the smaller states.  To model the squared 

relative error as a function of the true population size, we used Stata® 11 to carry out a lowess fit of 

2( / 1)Y X  against X  using a bandwidth of 0.8 and preserving the mean.  The lowess fitted values were 

taken as the relative variances of the population projections for 2020 and as the relative variances of the 

future 2020 population sizes of the states.  As specified in Section 2, the joint conditional distribution of 

the census estimates given the true state population sizes was modelled as independent across states, 

with mean equal to the true size and constant coefficient of variation. 

The assumption of independence for the distribution of true population sizes of states was motivated by 

the following considerations.  State population projections typically will be controlled to sum to national 

forecasts, which account for births, deaths, and net immigration since the last census.  The latter likely 

induce a source of positive covariance among state population projections (if we treat the projections as 

random variables, as in Alho and Spencer 2005).  However, the dominant source of error in forecasts of 

10 years or shorter will be uncertainty about interstate migration.  Since the interstate migration flows 

must sum to zero, the covariances cannot all be positive, but will have a more complex pattern.  For 

simplicity, we take the 2020 population sizes to be independent, knowing that only the population 

shares matter for apportionment, and that the shares implicitly include some negative covariances 

because the sum of shares is always 1. 
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State Mean Coefficient of Variation (%) 

.Alabama 5,066,866 2.6 

.Alaska 811,718 4.4 

.Arizona 7,604,382 2.5 

.Arkansas 3,120,724 3.1 

.California 41,715,522 2.0 

.Colorado 5,733,049 2.5 

.Connecticut 3,723,612 2.8 

.Delaware 997,528 4.2 

.Florida 21,784,582 1.8 

.Georgia 11,078,010 2.3 

.Hawaii 1,489,774 3.8 

.Idaho 1,772,613 3.7 

.Illinois 13,277,307 2.1 

.Indiana 6,804,046 2.5 

.Iowa 3,085,572 3.0 

.Kansas 3,011,419 3.1 

.Kentucky 4,558,229 2.7 

.Louisiana 4,635,071 2.7 

.Maine 1,394,018 3.9 

.Maryland 6,282,303 2.5 

.Massachusetts 6,806,874 2.3 

.Michigan 10,074,617 2.2 

.Minnesota 5,704,065 2.5 

.Mississippi 3,111,177 3.2 

.Missouri 6,336,145 2.5 

.Montana 1,055,292 4.1 

.Nebraska 1,908,775 3.6 

.Nevada 3,328,548 3.1 

.New Hampshire 1,446,097 3.9 

.New Jersey 9,252,696 2.3 

.New Mexico 2,307,561 3.5 

.New York 19,952,674 1.8 

.North Carolina 10,736,114 2.3 

.North Dakota 678,125 4.5 

.Ohio 11,763,865 2.2 

.Oklahoma 3,986,956 2.7 

.Oregon 4,223,601 2.7 

.Pennsylvania 12,961,019 2.1 

.Rhode Island 1,085,957 4.1 

.South Carolina 5,118,310 2.7 

.South Dakota 853,943 4.3 

.Tennessee 6,919,966 2.5 

.Texas 28,738,112 1.8 

.Utah 3,193,030 3.1 

.Vermont 662,770 4.7 

.Virginia 8,871,484 2.3 

.Washington 7,576,478 2.3 

.West Virginia 1,817,852 3.5 

.Wisconsin 6,004,398 2.5 

.Wyoming 594,027 4.8 

Table A4.  Specifications of moments of state populations in 2020. 
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Appendix 5: Modeling Effects of Census Error for Unemployment Rates and CPI-U 

CPS Unemployment Rates 

From 2008 through 2013, two programs were available in the U.S. that provided additional funding for 

unemployment insurance (UI) for states with elevated unemployment rates, Extended Benefits (EB) and 

Emergency Unemployment Compensation (EUC). We modeled the effect of census error on UI for these 

two programs.  

We used estimates of differential net undercount by age, race and sex2 as well as unemployment rates 

by these groups3, to estimate error in unemployment rates. We obtained unemployment rate estimates 

for cross-tabulations by age, race and sex via raking. We then developed an adjusted estimate of the 

2010 U.S. unemployment rate, adjusting the original estimate by age/race/sex groups. We estimated 

that adjusting the U.S. unemployment rate for undercount would increase the 2010 estimate from 

9.63% to 9.66%.  

We determined how EB and EUC benefits would change for each year 2008 to 2013 if unemployment 

rates had been increased by 0.1% for census error. We found that EB would have increased by $18.6 

million per year and EUC would have increased by $724.4 million per year. As these reflect results 

occurring near a major recession when two programs for extra benefits were available, we estimated 

the effect of census undercount by group on UI distribution each year by multiplying these results by 

0.1. We suggest 0.1 as a plausible subjective probability of a specific year having a program like EUC 

available due to a severe recession. The program user can adjust this subjective probability in our 

estimation programs and study the sensitivity of estimates. 

To relate errors in state population counts to errors in state unemployment rates, we used the 

simplifying assumption that the estimated effect of undercount by age, race and sex on state 

unemployment rates is proportional to the effect of error in the state population counts on errors in 

estimated state unemployment rates. 

2 Data from www.census.gov/coverage_measurement/pdfs/g01.pdf , accessed February 12, 2015. 
3 Data from www.bls.gov/cps/aa2010/cpsaat3.pdf accessed February 20, 2015. 
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CPI-U 

Estimating the bias in CPI-U due to census undercount is more difficult than for CPS unemployment 

rates. The census serves as a sampling frame for the Consumer Expenditure Survey, which determines 

the weights on different consumption component categories used to calculate CPI-U. Separate surveys 

estimate the price indexes within a consumption component category (Bureau of Labor Statistics 2007). 

Correspondence with the Bureau of Labor Statistics led us to find that, for the most part, the surveys 

used for the consumption component indexes rely on the 1990 census for a sampling frame. The 

exception is for rent and owners' equivalent rent, which are based on the CPI Housing Survey and rely 

on more frequently updated sampling frames.4  

To model the effects of census on error on CPI-U, we examine how changes in owner and renter census 

undercount affect the weights on the consumption component indexes used to calculate CPI-U.5 We 

estimated a historical series of error in CPI-U due to census error and forecasted the error with 

confidence intervals through 2029 with an AR(2) model. We found the error to be negative, with the 

lower bound of the 95% prediction interval for each forecasted year through 2029 never less than 

0.015%.  Thus, we chose -0.015% as a lower bound for the forecasted relative error each year.  

Grant distributions for three programs depend on poverty thresholds using CPI-U: SNAP, Head Start and 

Pell Grants. For SNAP, we used data on SNAP recipients and amounts and modeled how much SNAP 

benefits would change with a relative error of -0.015% in CPI-U.  

Head Start preschools are eligible for grants if a certain percentage of students are below poverty 

thresholds. We assume CPI-U error has no effect on Head Start funding as preschools can always recruit 

more or fewer students to their schools as poverty thresholds change.  

We estimated the effect of census error on Pell Grant funding as -0.015%, recognizing this would be a 

bound on the error due to caps on grant amounts.  

To relate errors in state population counts to error in estimating CPI-U, we used the simplifying 

assumption that the estimated effect of undercount by owners and renters on CPI-U is proportional to 

the effect of error in the state population counts on errors in the estimated CPI-U. 

4 See www.bls.gov/opub/mlr/2013/article/updating-the-rent-sample-for-the-cpi-housing-survey.htm , accessed 
February 20, 2015. 
5 Data downloaded from  http://research.stlouisfed.org/fred2/   on August 31, 2014. 
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