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Abstract 
 

Earthquake hazard maps play an important role in the formulation of building codes 
throughout the U.S. and much of the world.  An important question is what to do after a 
major earthquake yielding shaking larger than anticipated in a hazard map. Common 
practice is to revise the map  to show increased hazard in the heavily-shaken area. 
However, a new map that better describes the past does not necessarily better predict the 
future. The researchers examine the logic underlying map revision and argue that 
Bayesian modeling can play a useful role in deciding whether and how to revise the maps 
to improve forecasting the future. 
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Recent large earthquakes that gave rise to ground 
shaking larger than anticipated in an earthquake hazard map 
have generated interest in how to improve hazard mapping.  
Issues under discussion include how to evaluate the 
performance of maps, how to assess their uncertainties, how 
to make better maps, and how to best use maps given their 
strengths and limitations. 

 
In this context, an important question is what to do 

after a major earthquake yielding shaking larger than 
anticipated in a hazard map. Hazard mappers have two 
choices. One is to regard the high shaking as a low-
probability event allowed by a probabilistic seismic hazard 
map, which used estimates of the probability of future 
earthquakes and the resulting shaking to predict the 
maximum shaking expected with a certain probability over a 
given time (Hanks et al., 2012; Frankel, 2013). The usual 
choice, however, is instead to accept that high shaking was 
not simply a low-probability event consistent with the 
existing map, and revise the map to show increased hazard 
in the heavily-shaken area (Figure 1).  
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Figure 1: Top: Comparison of Japanese national seismic 
hazard maps before and after the 2011 Tohoku earthquake. 
The predicted hazard has been increased both along the east 
coast, where the 2011 earthquake occurred, and on the west 
coast. (http://www.j-shis.bosai.go.jp/map/?lang=en) Bottom: 
Comparison of successive Italian hazard maps (Stein et al., 
2013). The 1999 map was updated to reflect the 2002 Molise 
earthquake and the 2006 map will likely be updated after 
the 2012 Emilia earthquake. 
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Whether and how much to revise a map is a complicated 
issue, because a new map that better describes the past may 
or may not better predict the future. For example, 
increasing the predicted hazard after an earthquake on a 
fault will make better predictions if the average 
recurrence time is short compared to the map’s time window, 
but will overpredict future shaking if the average 
recurrence time is much longer than the map’s time window.  

 
Bayes’ Rule 

 
To get insight into the question of whether and how to 

remake a hazard map, consider a simple analogy. Imagine 
tossing a coin, which comes up heads four times in a row. 
How likely do you think it is to come up heads on the next 
toss? You started off assuming that the coin is fair - 
equally likely to land heads or tails. Should you change 
that assumption after four heads? 

 
Either choice runs a risk. If the coin is severely 

biased, staying with the assumption that it is fair will 
continue to yield poor predictions. However, if the coin is 
fair and the four heads were just a low-probability event, 
changing to the assumption that the coin is biased - heads 
more likely - does a better job of describing what happened 
in the past, but will make your prediction worse.  

 
Your choice would likely depend on how confident you 

were in your initial assumption, prior to the tosses, that 
the coin was fair. If you were confident that the coin was 
fair, you would not change your model, and continue to 
assume that a head or tail is equally likely.  However, if 
you were given the coin at a magic show, your confidence 
that the coin is fair would be lower and you would be more 
apt to change your model to one predicting that a head is 
more likely than a tail.  

 
A statistical approach that combines preconceptions 

with observations to decide how to update forecasts as 
additional information becomes available uses Bayes' Rule 
(Sivia, 2006; Rice, 2007). In this formulation  
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revised or likelihood of

prior
posterior observations given

probability,
probability the prior model

∝ ×  

 
where we omit the normalization factor.  This formulation 
starts by assuming an initial or prior probability model 
based on information available prior to the additional 
observations, calculating how likely the observations were 
given that model, and using the product as the revised or 
posterior probability model to account for the additional 
observations. 
  
 For example, if we describe a coin's probability of 
landing heads by a parameter from 0 (always tails) to 1 
(always heads), we can represent our beliefs about the 
parameter by a probability distribution. If, prior to 
observing the four heads, we are confident the coin is fair 
or nearly fair, our prior probability distribution is 
tightly clustered around 0.5 (although to allow for 
surprises, the distribution assigns positive probability 
throughout the interval). If we think the coin may be 
biased, our prior distribution would have a much larger 
spread and might be skewed towards 0 or 1. 
 
 After some tosses, the revised model depends on both 
the observations and the prior model. If we had high 
confidence that the coin was fair, a few low-probability 
observations would not change it much. However, if we had 
little confidence in the prior model, these low-probability 
observations change it a lot. 
 
 An important feature of the Bayesian approach is that 
in it “probability” represents our belief in how a system 
works based on the information we have. In this 
formulation, probability is subjective, in that given the 
little information we know about the coin, we have no way 
to know what the actual probability of a head on the next 
toss is. Once we have chosen a model, we can calculate 
precisely the probability of observing a head on the next 
toss. However, because this calculated probability assumes 
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that the model is true, it also is subjective and subject 
to revision after the next toss.  
 
 This view is more complicated than the "frequentist" 
view of probability in which the probability of an event is 
the relative frequency in which it occurs in an 
indefinitely large number of trials. If we flipped the coin 
a thousand times independently under standard conditions, 
the fraction of heads would be a good estimate of the 
probability of a head on the next toss under the same 
conditions. However, because we only have the results of 
four tosses, we factor in our preconceptions rather than 
automatically assume that the four heads prove that the 
probability of a head in the next toss is near 1.  
 
 Although the Bayesian approach requires assuming a 
prior probability distribution, the effect of this 
assumption is reduced as more data become available, 
provided that the prior distribution does not assign zero 
probability to sets of parameter values that include the 
true state of nature. Once the coin has been flipped many 
times, there are enough observations that the posterior 
distribution does not depend on the assumed prior 
distribution as long as it assigns positive values 
throughout the interval from 0 to 1.  
 

Earthquake probabilities 
 
Seismologists’ approach to estimating earthquake 

hazards is often in the spirit of Bayes’ Rule, in that it 
involves assuming probability models based on limited data 
and then using new data to improve them (Parvez, 2007; 
Marzocchi and Jordan, 2014). To see this, consider a simple 
example in which we assume that the probability of a large 
earthquake on a fault is described by a Poisson process 
with parameter λ  = 1/T, corresponding to an average return 
time of T years. Following Cornell (1972), Campbell (1982), 
and later authors, we represent our uncertainty about the 
value of λ by using a gamma probability distribution with 
mean µ  and standard deviation σ  as our prior probability 

distribution. If an earthquake occurs only 1 year after the 
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past one, then by Bayes’ Rule the prior distribution is 
updated to the posterior distribution, and the prior mean µ  

updates to the posterior mean µ µ σ µ σ µʹ′ = + +2 2 2(1 / )/(1 / ). 
(Rice, 2007, 288).  

 
Consider the prior mean µ  to be specified as 0.02, 

corresponding to T = 50 years. If we are highly confident 
about λ  when the forecast is made, the standard deviation 
σ  is small, so the posterior mean µʹ′  and the prior mean µ  
are close. We treat the new observation that did not fit 
the model well as a rare event that does not change our 
preconception much. But, if we were uncertain that the 
actual value of λ  would be near the prior mean µ, i.e., σ  
is large, then the new observation changes our view, making 
the posterior mean very different (larger) than the prior 
mean.   

 
Figure 2 shows how the updated forecast, described by 

the posterior mean, increasingly differs from the initial 
forecast (prior mean) when the uncertainty in the prior 
distribution, as measured by the standard deviation ,σ  is 
larger.  In other words, large changes from updating can be 
appropriate when the original forecast is very uncertain. 
The less confidence we have in the prior model, the more a 
new datum can change it.  

 
This example is useful because experience shows that 

inferring earthquake probabilities, which are crucial 
inputs for hazard mapping, is very difficult given the 
poorly-understood faulting process and the intrinsic 
limitations of the earthquake record (Sieh et al., 1989; 
Savage, 1992, 1994; Parsons, 2008). It is still unclear 
whether to assume the recurrence of large earthquakes is 
described by a Poisson process that has no "memory,” so the 
probability of an earthquake is constant with time, or by 
time-dependent models based on an earthquake cycle in which 
the probability is small shortly after the past one, and 
then increases with time. A numerical simulation shows that 
these two are difficult to distinguish even in a simple 
case (Stein and Stein, 2013). Moreover, using a time-
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dependent model requires choosing many parameters, because 
both the model used for recurrence times and its parameters 
are needed, but are poorly constrained by the available 
earthquake history. 

 
 
 

 
 
Figure 2.  Sensitivity of updated forecast of λ, initially 
assumed to equal 0.02, to assumed prior uncertainty in the 
initial forecast. The less confidence we have in the 
initial forecast, the more the new datum changes it.  

 
 
Hence from a statistical view, Stark and Freedman 

(2003) conclude that estimates of earthquake probabilities 
are "shaky." In their view, "the interpretation that 
probability is a property of a model and has meaning for 
the world only by analogy seems the most appropriate.... 
The problem in earthquake forecasts is that the models, 
unlike the models for coin-tossing, have not been tested 
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against relevant data. Indeed, the models cannot be tested 
on a human time scale, so there is little reason to believe 
the probability estimate." Savage (1991) similarly 
concluded that earthquake probability estimates for 
California are "virtually meaningless" and that it would be 
meaningful only to quote broad ranges, such as low (<10%), 
intermediate (10–90%), or high (>90%). In other words, it 
seems reasonable to say that earthquakes of a given size 
are more likely on some faults than others, but quantifying 
this involves large uncertainty. 

 
Hazard Maps 

 
The earthquake probability example illustrates the 

challenge for earthquake hazard maps, namely choosing 
hundreds or thousands of parameters to predict the answers 
to four key questions over periods of 500-2500 years: Where 
will large earthquakes occur? When will they occur? How 
large will they be? How strong will their shaking be? 

 
Some of the parameters required are reasonably well 

known, some are somewhat known, some are essentially 
unknown, and some may be unknowable (e.g., Stein et al., 
2012). As a result, mappers combine a variety of data and 
models with their sense of how the earth works. In Stark and 
Freedman’s (2003) words, the process involves “geological 
mapping, geodetic mapping, viscoelastic loading 
calculations, paleoseismic observations, extrapolating 
rules of thumb across geography and magnitude, simulation, 
and many appeals to expert opinion. Philosophical 
difficulties aside, the numerical probability values seem 
rather arbitrary.”   

 
Such models, which involve subjective assessments and 

choices among many poorly known or unknown parameters, are 
sometimes termed BOGSATs, from “Bunch Of Guys Sitting 
Around a Table” (Kurowicka and Cooke, 2006). Not 
surprisingly, sometimes the resulting maps do well at 
predicting what occurs in future earthquakes, and sometimes 
they do poorly. However, at this point, there is no way to 
avoid BOGSAT.  Although some parameters could be better 



9 
 

 

estimated, and knowledge of some will improve as new data 
and models become available, major uncertainties seem 
likely to remain (Stein and Friedrich, 2014). 

 
Nonetheless, despite their large uncertainties, hazard 

maps have some useful information. From a mitigation policy 
standpoint, inaccurate hazard (and loss) estimates are 
still useful unless they involve gross misestimates (Stein 
and Stein, 2013). For example, a highway department would 
likely use its limited funds to preferentially strengthen 
bridges in predicted high-hazard areas. 

 
Hence in our view, the most practical approach is to 

consider the BOGSAT process from a Bayesian perspective, in 
that the predicted hazard reflects the mapmakers’ view of 
the world based on their assessment of diverse data and 
models, and that when and how maps are revised once new 
data become available depends significantly on the 
mapmakers' preconceptions. Given that this is the case, how 
can it be done better? 

 
At a fundamental level, we need to learn more about 

when and how revising maps makes them better or worse 
predictors of the future. In some cases the revisions 
should make the map work better, and in others, worse. In 
particular, raising the predicted hazard where a large 
earthquake recently occurred may improve the match of the 
model to past data, but degrade its fit to future events.  

 
On a working level, we suggest several changes to 

current procedures. 
 
First, maps should specify what they seek to predict 

and how their future performance should be measured. 
Various metrics can be used, so users can know what the 
mappers’ goals are and be able at later time to assess how 
well the map met them. For example, how well did the map 
perform compared to one that assumed a much smoother 
variation in the predicted hazard (Geller, 2011)? 
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Second, documentation of hazard maps should explicitly 
list the parameters used and estimates of their 
uncertainties. Often much of this information is available 
in the documentation for maps (e.g., Field et al., 2008). 
In particular, the weights assigned to various branches in 
a logic tree are a discretized version of the prior 
probability density function assumed for that parameter. It 
would be useful to have model assumptions listed in a 
consistent form to make changes between successive maps 
easier to identify and discuss. 

 
Third, estimates of the expected uncertainty in the 

resulting map should be presented and explained.  Such 
uncertainties are typically presented in other complicated 
forecasts that have significant economic and policy 
implications (Figure 3). Although the forecasts sometimes 
miss their targets (Figure 4), uncertainty estimates are 
still useful. These would illustrate the range of predicted 
hazard at points in the mapped area. This would involve 
generating hazard curves and thus maps for different 
parameter values within their assumed uncertainties. The 
resulting large number of estimates could be presented in 
various ways, including maps of uncertainty or tabulations 
at sites, that would give users a sense of the 
uncertainties the mapmakers ascribe to predictions in 
different areas of the map. These uncertainties could then 
be factored in the policy making process, as is done for 
most other forecasts.  

 
Fourth, changes in the parameters between successive 

generations of maps should be explicitly listed and 
explained. Some changes will likely reflect what happened 
in earthquakes after the map was made (Figure 1), whereas 
others will reflect data not used in the earlier map, 
because they were not recognized, not appreciated, or not 
available. The criteria used to decide when parameters were 
changed should be defined (Ramsey 1926, 180). 
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Figure 3: Presenting forecast uncertainties. a) Forecast of 
Australian gross domestic product growth. Uncertainty 
bounds are 70% and 90% (Reserve Bank of Australia, 2013). 
b) Forecast of US Social Security expenditure as percentage 
of Gross Domestic Product (Congressional Budget Office, 
2010) c) Comparison of the rise in global temperature by the 
year 2099 predicted by various climate models. For various 
scenarios of carbon emissions, e.g., B1, the vertical band 
shows the predicted warming (IPCC, 2007). d) Comparison of 
earthquake hazard, described as peak ground acceleration 
(PGA) as a percentage of the acceleration of gravity 
expected with 2% risk in 50 years, predicted by various 
assumptions for two sites in the central U.S. (Stein et 
al., 2012). 
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Figure 4: Comparison of the predicted (top) and actual 
(bottom) tracks of Hurricane Ike in December 2008. The 
storm was predicted to continue westward, and then turn 
north along the Florida coast, but instead followed a track 
outside the 95% uncertainty cone that headed into the Gulf 
of Mexico, striking the Texas coast. (Stein and Stein, 
2014). 
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In this approach, deciding when and how to revise 
hazard maps would involve combining Bayes and BOGSAT. 
Conceptually, the process of changing parameters would 
reflect Bayes’ Rule, in that those previously thought to 
have greater uncertainty would be most easily changed by 
new data or ideas. Operationally, because most parameters 
are estimated via a combination of data, models, and 
assumptions, the actual values would still come from BOGSAT 
rather than explicit calculation. Even so, the Bayesian 
approach can add value because it is systematic.  If BOGSAT 
leads to big changes in the map, one can assess what that 
implies about prior confidence in the forecasts, and 
possibly revise BOGSAT. 

 
The real beneficiaries of posing the process in this 

combined form would be map hazard map users, who would gain 
information about the uncertainties involved and thus could 
make better decisions. The meteorological community 
(Hirschberg et al., 2011) has adopted a goal of “routinely 
providing the nation with comprehensive, skillful, 
reliable, sharp, and useful information about the 
uncertainty of hydrometeorological forecasts.” Although 
seismologists have an even tougher challenge and a longer 
way to go, we should try to do the same. 
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Figure 1: Top: Comparison of Japanese national seismic 
hazard maps before and after the 2011 Tohoku earthquake. 
The predicted hazard has been increased both along the east 
coast, where the 2011 earthquake occurred, and on the west 
coast. (http://www.j-shis.bosai.go.jp/map/?lang=en) Bottom: 
Comparison of successive Italian hazard maps (Stein et al., 
2013). The 1999 map was updated to reflect the 2002 Molise 
earthquake and the 2006 map will likely be updated after 
the 2012 Emilia earthquake. 
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Figure 2.  Sensitivity of updated forecast of λ, initially 
assumed to equal 0.02, to assumed prior uncertainty in the 
initial forecast. The less confidence we have in the initial 
forecast, the more the new datum changes it.  
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Figure 3: Presenting forecast uncertainties. a) Forecast of 
Australian gross domestic product growth. Uncertainty 
bounds are 70% and 90% (Reserve Bank of Australia, 2013). 
b) Forecast of US Social Security expenditure as percentage 
of Gross Domestic Product (Congressional Budget Office, 
2010) c) Comparison of the rise in global temperature by the 
year 2099 predicted by various climate models. For various 
scenarios of carbon emissions, e.g., B1, the vertical band 
shows the predicted warming (IPCC, 2007). d) Comparison of 
earthquake hazard, described as peak ground acceleration 
(PGA) as a percentage of the acceleration of gravity 
expected with 2% risk in 50 years, predicted by various 
assumptions for two sites in the central U.S. (Stein et 
al., 2012). 
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Figure 4: Comparison of the predicted (top) and actual 
(bottom) tracks of Hurricane Ike in December 2008. The 
storm was predicted to continue westward, and then turn 
north along the Florida coast, but instead followed a track 
outside the 95% uncertainty cone that headed into the Gulf 
of Mexico, striking the Texas coast. (Stein and Stein, 
2014). 
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