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Abstract 

 

Recent large earthquakes that did great damage in areas predicted to be relatively safe 

illustrate the importance of criteria to assess how well earthquake hazard maps used to 

develop codes for earthquake-resistant construction are actually performing. At present, 

there is no agreed way of assessing how well a map performed and thus whether one map 

performed better than another. The fractional site exceedance metric implicit in current 

maps, that during the chosen time interval the predicted ground motion will be exceeded 

only at a specific fraction of the sites, is useful but permits maps to be nominally 

successful although they significantly underpredict or overpredict shaking, or to be 

nominally unsuccessful but do well in terms of predicting shaking. We explore some 

possible metrics that better measure the effects of overprediction and underprediction and 

can be weighted to reflect the two differently and to reflect differences in populations and 

property at risk. Although no single metric alone fully characterizes map behavior, using 

several metrics can provide useful insight for comparing and improving hazard maps. For 

example, both probabilistic and deterministic hazard maps for Italy dramatically 

overpredict the recorded shaking in a 2,200-year-long historical intensity catalog, 

illustrating problems in the data (most likely), models, or both. 

 



Introduction 

 

 How good a baseball player was Babe Ruth? The answer 

depends on the metric used. In many seasons Ruth led the 

league in both home runs and in the number of times he 

struck out. By one metric he did very well, and by another, 

very poorly. 

 

 Metrics are numerical measures that describe some 

property of a system, so its performance can be quantified 

beyond terms like "good", "fair," or "bad." However, 

metrics do not tell why the system behaves as it does. 

Similarly, although metrics measure relative performance, 

they do not themselves tell whether the differences are 

explicable solely by chance, or instead are “statistically 

significant”. Assessing whether a baseball player whose 

batting average – ratio of hits to times at bat - is .280 

is significantly "better" than one whose average is .260 

requires assuming and applying a probability model to the 

data underlying the metric (batting averages). 

 

As the example shows, performance typically has 

multiple aspects. Performance of medical diagnostic tests 

is assessed in terms of specificity, the lack of false 

positives (type I errors), and sensitivity, lack of false 

negatives (type II errors). A statistical estimate may be 

biased with high precision or unbiased with low precision; 

more generally its performance is described by a 

probability distribution for its error.  

 

 Metrics are crucial in assessing the past performance 

of forecasts. For example, weather forecasts are routinely
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evaluated to assess how well their predictions matched what 

actually occurred (Stephenson, 2000). This assessment 

involves adopting metrics. Murphy (1993) notes that "it is 

difficult to establish well-defined goals for any project 

designed to enhance forecasting performance without an 

unambiguous definition of what constitutes a good 

forecast."  

 

 Figure 1 shows an example comparing the predicted 

probability of rain to that actually observed. National 

Weather Service forecasts have only a slight "wet bias" 

toward predicting rain more often than actually occurs. 

This bias is much greater for a local television station, 

whose forecasts are much less accurate. A metric describing 

the misfit would quantify the difference, but would not 

tell us why the television forecasts do worse. Silver 

(2012) suggests that television forecasters feel that 

viewers enjoy unexpectedly sunny weather but are annoyed by 

unexpected rain, and so prefer the biased forecast. Other 

users, however, would likely prefer the less biased 

forecast. Similarly, the metric does not quantify the 

possibility that the television station's forecast is worse 

purely by chance, which requires assuming and applying a 

probability model to the data. Information about how a 

forecast performs is crucial in determining how best to use 

it. The better a weather forecast has worked to date, the 

more we factor it into our daily plans. 

 

 Similar issues arise for earthquake hazard maps that 

are used to develop codes for earthquake-resistant 

construction. These maps are derived by estimating a 
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variety of parameters for selected models that are used to 

forecast future seismicity and the resulting shaking.  

 

Recent destructive large earthquakes underscore the 

need for agreed metrics that measure how well earthquake 

hazard maps are actually performing. The 2011 M 9.1 Tohoku 

earthquake, and thus the resulting tsunami, was much larger 

than anticipated in the Japanese national earthquake hazard 

map (Geller, 2011).  The 2008 M 7.9 Wenchuan, China, and 

2010 M 7.1 Haiti earthquakes occurred on faults mapped as 

giving rise to low hazard (Stein et al., 2012). The 2011 M 

6.3 earthquake, which did considerable damage in 

Christchurch, New Zealand, caused much stronger ground 

motion than predicted for the next 10,000 years (Reyners, 

2011). 

 

These events have catalyzed discussions among 

seismologists and earthquake engineers about commonly used 

earthquake hazard mapping practices (Kerr 2011; Stirling, 

2012; Gulkan, 2013; Iervolinoa, 2013). The underlying 

question is the extent to which the occurrence of low 

probability shaking indicates problems with the maps or 

chance occurrences. Several explanations have been offered.  

 

One explanation (Hanks et al., 2012; Frankel, 2013) is 

that these earthquakes are low-probability events allowed 

by probabilistic seismic hazard maps, which use estimates 

of the probability of future earthquakes and the resulting 

shaking to predict the maximum shaking expected with a 

certain probability over a given time. Some such events are 

expected. For example, although the chance that a given 

lottery ticket is a winner is low, the probability that 
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some lottery ticket wins is high. However, the common 

practice of extensively remaking a map to show increased 

hazards after “unexpected” events or shaking (Figure 2) is 

inconsistent with the interpretation that these were simply 

low-probability events consistent with the map. In the 

lottery example, the odds of winning are only reassigned 

after a winning ticket is picked when the operators think 

their prior model was wrong. The revised maps thus reflect 

both what occurred in these earthquakes and other 

information that was either unknown or not appreciated 

(e.g., Minoura et al. 2001; Manaker et al., 2008; Sagiya, 

2011) when the earlier map was made (Stein et al., 2012).  

 

Choosing whether to remake the map in such cases is 

akin to deciding whether and how much to revise your 

estimate of the probability that a coin will land heads 

after it landed heads four times in a row (Stein et al., 

2015). If, prior to the coin tosses, you had confidence 

that the coin was fair - equally likely to land heads or 

tails - and the person tossing it would not deliberately 

influence how it lands, you might regard the four heads as 

an unlikely event consistent with your probability model, 

and so not change it.  But, if a magician was tossing the 

coin, your confidence in your prior model would be lower 

and you would likely revise it. When and how to update 

forecasts as additional information becomes available, 

depending on one’s confidence in the initial model, is 

extensively discussed in the statistical literature (e.g., 

Siliva, 2006; Rice, 2007) but beyond our scope here. 

 

Another explanation is that the probabilistic approach 

is flawed (Klügel et al., 2006; Wang, 2011; Wang and Cobb, 
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2012) in that the expected value of shaking in a given time 

period is a mathematical quantity not corresponding to any 

specific earthquake that is inappropriate for designing 

earthquake-resistant structures, especially for rare large 

events that critical facilities like nuclear power plants 

should withstand. In this view, it is better to specify the 

largest earthquakes and resulting shaking that 

realistically could occur in a deterministic seismic hazard 

assessment (Peresan and Panza, 2012). This approach avoids 

uncertainties from assumptions about earthquake 

probabilities, but otherwise faces the same uncertainties 

as a probabilistic approach.   

 

In an intermediate view, both the probabilistic and 

deterministic algorithms are reasonable in principle, but 

in many cases key required parameters, such as the maximum 

earthquake magnitude, are poorly known, unknown, or 

unknowable (Stein et al., 2012; Stein and Friedrich, 2014). 

This situation causes maps to have large, albeit unstated, 

uncertainties and some apparent failures, notably that 

presumed low probability events occur often.  

 

 The importance of these issues is illustrated by 

Geller (2011), who noted that the Tohoku earthquake and the 

others that caused 10 or more fatalities in Japan since 

1979 occurred in places assigned a relatively low 

probability. Hence, he argued that “all of Japan is at risk 

from earthquakes, and the present state of seismological 

science does not allow us to reliably differentiate the 

risk level in particular geographic areas,” so a map 

showing uniform hazard would be preferable to the existing 

map.  
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Geller’s proposal raises the question of how to 

quantify how well an earthquake hazard map is performing. 

Because the maps influence policy decisions involving high 

costs to society, measuring how well they perform is 

important. At present, there are no generally accepted 

metrics to assess performance. Hence there are no agreed 

ways of assessing how well a map performs, to what extent 

it should be viewed as a success or failure, or whether one 

map is better than another. Similarly, there is no agreed 

way of quantifying when and how new maps should be produced 

and the improvements that they should provide.  

 

In this paper, we explore some possible metrics. 

Although no single metric can fully characterize map 

behavior, examining map performance using several metrics 

can provide useful insight. 

 

Hazard maps 

 

Conceptually, the issue is how to compare a map of 

predicted shaking to the maximum shaking observed at sites 

within it over a suitably long period of time after the map 

was made. There is increasing interest in this issue, and a 

variety of approaches have recently been used (Stirling and 

Peterson, 2006; Albarello and D’Amico, 2008; Mucciarelli et 

al., 2008; Miyazawa and Mori, 2009; Stirling and 

Gerstenberger, 2010; Kossobokov and Nekrasova, 2012; Wyss 

et al., 2012; Nekrasova et al., 2014; Mak et al., 2014) and 

are being developed under auspices of the Global Earthquake 

Model project (http://www.globalquakemodel.org). 
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The natural first way to do this is to compare the 

observations and predictions in map view, as illustrated by 

schematic maps in Figure 3, where for simplicity we assume 

the observation time well exceeds the return time. Such 

maps could represent ground shaking as acceleration, 

velocity, or intensity.  

 

In general, this map did reasonably well, in that it 

identified most of the areas that were subsequently shaken. 

However, it overpredicted the shaking associated with the 

north-south striking fault, and underpredicted that 

associated with the associated east-west striking fault. It 

also did not predict the shaking caused by earthquakes on 

an unrecognized smaller fault to the northeast. 

 

Quantifying these statements requires going beyond the 

visual comparison, and depends on how the map was made and 

what it seeks to predict. Most seismic hazard maps are made 

using probabilistic seismic hazard assessment (Cornell, 

1968; Field, 2010), which involves assuming the location 

and recurrence of earthquakes of various magnitudes and 

forecasting how much shaking will result. Summing the 

probabilities of ground motions exceeding a specific value 

yields an estimate of the combined hazard at a given point. 

The resulting hazard curve (Figure 4a) shows the estimated 

probability that shaking will exceed a specific value 

during a certain time interval.  

 

The predicted hazard in probabilistic maps depends on 

the probability, or equivalently the observation period (t) 

and return period (T ), used. The Poisson (time independent) 

probability  p  that earthquake shaking at a site will 
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exceed some value in t  years, assuming this occurs on 

average every  T  years, is assumed to be  

 

= − −1 exp( / )p t T  

 

which is approximately /t T for << .t T  For a given 

observation period, lower probabilities correspond to 

longer return periods. For example, shaking that there is a 

10% chance of exceeding at least once in 50 years will 

occur on average once about every 50/0.1 = 500 years 

(actually 475 using the exponential). However shaking with 

a 2% chance of being exceeded in 50 years will occur on 

average only about every 50/0.2 = 2500 (actually 2475) 

years. For a given return period, higher probabilities 

occur for longer observation periods, as shown by Figure 5 

for a return period of T = 2475 years. For t = 50 years, p 

= 0.020, for t = 2475 years p = 0.632, and for t = 5000 

years p = 0.867. In other words, in 50 years there should 

be only a 2% probability of exceeding the mapped shaking, 

whereas there is a 63% probability of doing so in an 

observation period equaling the return period. 

 

Probabilistic hazard maps are developed by 

representing hazard curves for different sites, which is 

done in two ways.  In constant probability hazard maps the 

hazard curves for areas are sampled at a fixed probability, 

p, to predict the largest anticipated shaking in each area 

during a certain observation period. Thus the map shows the 

predicted shaking levels is  for a given probability 

= ≥Pr( )i ip x s   for all areas  .i   For example, Figure 4b 

shows the shaking intensity on the Japan Meteorological 
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Agency scale that is anticipated to have only a 3% chance 

of exceedance in 30 years. This approach, termed uniform 

hazard, is used in developing seismic design maps in the 

U.S. and Europe. An alternative is to present constant 

threshold hazard maps like that in Figure 4c. In these, the 

hazard curves are sampled at a fixed shaking level to 

estimate the probability that this shaking level will be 

exceeded. The resulting map shows the forecasted 

probabilities = ≥Pr( )i ip x s  for all sites. This 

representation is commonly used in Japan to show the 

probability of shaking at or above a given intensity, in 

this case 6-lower on the Japan Meteorological Agency scale 

(corresponding approximately to Modified Mercalli intensity 

VIII) in 30 years. Such maps show how the probability that 

a structure will be shaken at or above a certain threshold 

varies across locations. 

 

Exceedance metric 

 

Because maps can be made in various ways and thus 

predict different aspects of the future shaking 

distribution, we can ask two questions: 

 

1) How well does the map predict the aspects of 

distribution of shaking that it was made to predict?  

 

2) How well does the map predict other aspects of the 

distribution of shaking? 

 

These are most easily explored for the commonly used 

constant probability maps. These maps predict that ground 
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shaking at any given site will exceed a threshold only with 

probability p in a given time period. This prediction can 

be assessed by comparing the actual fraction f  of sites 

with shaking exceeding the threshold to .p   This approach, 

introduced by Ward (1995), considers a large number of 

sites to avoid the difficulty that large motions at any 

given site are rare. For example, suppose a map correctly 

specifies that for a given site there is a 2% chance of a 

given amount of shaking in a 50-year period, corresponding 

to a 2475 year return period. If the observation period is 

250 years, Figure 5 shows that there is a 10% chance that 

the maximum shaking is as large or larger than predicted, 

and hence a 90% chance that it is less than predicted.   

 

The longer the observation time compared to the return 

period assumed in making the map, the more information we 

have, and the better we can evaluate the map (Beauval et 

al., 2008; 2010). For example, if in a 50 year period a 

large earthquake produced shaking exceeding that predicted 

at 10% of the sites, this situation could imply that the 

map was not performing well. However, if in the subsequent 

200 years no higher shaking occurred at the sites, the map 

would be performing as designed. The exceedance fraction 

can be thought of as a random variable whose expected value 

is better estimated with longer observation periods. As the 

length of the observation period as a fraction of the 

return period increases, the more likely it is that a 

difference between the predicted and observed exceedance 

fractions does not occur purely by chance, as discussed 

later. 
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 This approach allows for the fact that both 

predictions and observations at nearby sites are 

correlated.  The expected value of the empirical fraction 

of sites with shaking exceeding thresholds, ,Ef  always 

equals the average true probability of exceedance, 

regardless of any correlation between sites. This equality 

holds regardless of any correlation between sites, because 

the expected value of a sum always equals the sum of the 

expected values, provided the expected values are finite, 

as they are. However, as shown later, positive spatial 

correlation decreases the information available for 

evaluating maps. 

 

The difference between the observed and predicted 

probabilities of exceedance, − ,f p  decomposes into a random 

component and a systematic component, 

[ ] [ ]− = − + − .

random    systematic

component  component

f p f Ef Ef p

 

The systematic component is the difference between the 

average true probability (which equals Ef ) and the average 

predicted probability p  of exceedance. If the map 

parameters do reasonably well in describing earthquakes in 

the area, Ef  will be close to the average predicted 

probability of exceedance ,p  and the systematic error will 

be small.  The remaining random component depends on the 

probability distribution of shaking, which includes both 

actual chance effects and unmodeled site effects that 

appear as random scatter. The magnitude of the random 
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component is affected by correlation across sites, as shown 

in the example discussed later in the paper.  

 

 Thus the implicit criterion of success, which can be 

called a fractional site exceedance criterion, is that if 

the maximum observed shaking is plotted as a function of 

the predicted shaking, only a fraction p  (or percentage P ) 

of sites or averaged regions should plot above a 45° line 

(Figure 6), aside from chance effects and unmodeled site 

effects.  

 

 How well a map satisfies the fractional site 

exceedance criterion can be measured using a corresponding 

metric. A hazard map shows, for all N   areas i  within it, 

an estimate of the probability that the maximum observed 

ground shaking ix  in a time period of length t  exceeds a 

shaking value .is  This estimated probability can be written 

Pr( ).i i ip x s= ≥   For a sufficiently large number of areas, 

the fraction f  of areas where >i ix s  should be 

approximately equal to the average probability for the 

areas, or ≈f p   with −

=
= ∑1 1

.
N

ii
p N p   For the commonly used 

constant probability maps, .p p=    

 

Hence the simplest measure of how well such maps 

performed is to use a metric based on the fractional site 

exceedance criterion used in making them. This fractional 

site exceedance metric can be written as  

 

| |,M0 f p= −  
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where f  is the fraction of sites at which the predicted 

ground motion was exceeded during a time period for which  

p is the appropriate probability (Figure 5). M0 ranges from 

0 to 1, with an ideal map having M0  equal to zero. If 

> 0M0  then the map has either positive fractional site 

exceedance, measured by 

 

| | if 

0        otherwise,

f p f p
M0+

− >⎧
= ⎨
⎩

 

 

or negative fractional site exceedance, measured by 

| |  if f

0        otherwise.

f p p
M0−

− <⎧
= ⎨
⎩

 

 

For any map, either M0+  or M0−  must equal zero, and 

.M0 M0 M0+ −= +   

  

Limitations of exceedance metric 

 

Although the exceedance metric is reasonable, it only 

reflects part of what we might want a probabilistic hazard 

map to do. This issue is illustrated by the results from 

four hypothetical probabilistic hazard maps (Figure 6), all 

of which satisfy the criterion that the actual shaking 

exceeds that predicted for this observation period only at 

10% of the sites. Thus all these maps have zero fractional 

site exceedance, or M0 = 0. However, some of these maps 

would be more useful than others. 

 

The map giving rise to the results in Figure 6a would 

be viewed as highly effective, in that the maximum actual 
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shaking plots close to that predicted. The map largely 

avoided underprediction, which would have exposed 

structures built using a building code based on these 

predictions to great-than-expected shaking. Similarly, it 

largely avoided overprediction, which would have caused 

structures to be overdesigned and thus waste resources.  

 

Mathematically, largely avoiding underprediction can 

be posed as saying that in the fN  areas where ≥ ,i ix s  the 

excess shaking −i ix s  should be modest. Similarly, largely 

avoiding overprediction means that in the −(1 )f N   areas 

where < ,i ix s  the overpredictions should be modest. Maps can 

do well as measured by the fractional site exceedance 

metric, but have significant overpredictions or 

underpredictions. 

 

For example, the map giving rise to the results in 

Figure 6b exposed some areas to much greater shaking than 

predicted. This situation could reflect faults that were 

unrecognized or more active than assumed. Hence although 

the map satisfies the fractional site exceedance metric 

that it was designed to achieve, we would not view this map 

as very effective. 

 

Conversely, the maps in Figures 6c and 6d 

overpredicted the shaking at most sites, although they have 

zero fractional site exceedance. Figure 6c shows a 

systematic bias toward higher-than-observed values, as 

could arise from using inaccurate equations to predict 

ground motion. The map for Figure 6d overpredicted the 

shaking in that the actual shaking was everywhere less than 
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a threshold value (dashed line), as could arise from 

overestimating the magnitude of the largest earthquakes 

that occurred.  

 

 Hence the fractional site exceedance metric M0  

measures only part of what we would like a map to do, as 

illustrated in Figure 7 for hazard maps in which the 

predicted shaking threshold for each site should be 

exceeded with probability 10% in the observation period. 

The map in Figure 7a is nominally very successful as 

measured by = 0,M0   but significantly underpredicts the 

shaking at many sites and overpredicts it at others. 

Conversely, the map in Figure 7b is nominally unsuccessful 

as measured by ,M0  because ground shaking at 20% of the 

sites exceeds that predicted, so = 0.2.f   However, it does 

a reasonable job of predicting the shaking at most sites. 

Thus in many ways, the nominally unsuccessful map is better 

than the nominally successful one.  

 

Alternative metrics 

 

Many other metrics could be used to provide additional 

information for quantifying aspects of the observed vs. 

predicted graphs in Figures 6 - 7. As these additional 

metrics numerically summarize aspects of the graphs, they 

account for the length of the observation period. We 

consider four (Figure 8) that compare the maximum observed 

shaking ix  in each of the map’s N  subregions over some time 

interval to the map’s predicted shaking .is  Like those in 

Figures 6 and 7, the hazard maps represented were 

constructed so that the shaking threshold for each site 
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should be exceeded with probability 10% over the 

observation period. 

 

One metric is simply the squared misfit to the data  

 

( ) ( )2
1

,  /
N

i ii
M1 s x x s N

=
= −∑   

 

which measures how well the predicted shaking compares to 

the highest observed. Given the probabilistic nature of the 

ground motion prediction, scatter above and below the 

predicted value is expected (Beauval et al., 2010). Even 

so, smaller overall deviations correspond to better-

performing maps. Hence maps a)-d) in Figure 6 have  

= 36,M1  69, 253, and 370.  

 

 Similarly, by this metric, the map in Figure 7b (M1 = 

25) does better than that in Figure 7a (M1 = 135). Hence 

from a purely seismological view, M1 seems an appropriate 

metric that tells more than M0 about how well a map 

performed.  

 

However, a hazard map’s goal is societal – to guide 

mitigation policies and thus reduce losses in earthquakes. 

Hence we might also use metrics that weight different 

aspects of the prediction differently. For example, because 

underprediction does potentially more harm than 

overprediction, we could weight underprediction more 

heavily. One such asymmetric metric is 

 

( ) + −

=
⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦∑

2 2

1

1
, ( ) ( )

N

i i i ii
M2 s x a x s b x s

N
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where +− = −( ) max( ,0)i i i ix s x s  and −− = −( ) max( ,0)i i i ix s s x  and 

> ≥ 0.a b   

 

A refinement would be to vary the asymmetric weights a 

and b so that they are larger for the areas predicted to be 

the most hazardous, such that the map is judged most on how 

it does there. In this metric 

 

( ) + −

=
⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦∑

2 2

1

1
3 , ( ) ( ) ( ) ( )

N

i i i i i ii
M s x as x s b s x s

N
 

 

where > ≥( ) ( ) 0i ias bs  and both a and b  increase with .is   

 

Another option is to vary the asymmetric weights a and 

b so that they are larger for areas with the largest 

exposure of people and/or property, such that the map is 

judged most on how it does there. Defining ie  as a measure 

of exposure in the ith region yields a metric 

 

( ) + −

=
⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦∑

2 2

1

1
, ( ) ( ) ( ) ( )

N

i i i i i ii
M4 s x ae x s b e x s

N
 

  

where > ≥( ) ( ) 0i iae be  and both a and b increase with .ie  

 

 Although these metrics are discussed in terms of 

probabilistic hazard maps, they can also be applied to 

deterministic maps. 

 

Example 
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The examples here illustrate some of the many metrics 

that could be used to provide more information about how 

well an earthquake hazard map performs than is provided by 

the implicit fractional site exceedance metric. Ideally, we 

would use them to evaluate how different maps of an area, 

made under different assumptions, actually performed. We 

would then be in a position to compare the results of the 

different maps and identify which aspects require 

improvement. 

 

For example, Figure 9a compares historical intensity 

data for Italy from 217 B.C. to 2002 A.D., developed from a 

compilation by Gruppo di Lavoro (2004), to a probabilistic 

map for 2% in 50 years and a deterministic map (Figures 9b 

and 9c) (Nekrasova et al., 2014). As seen in Figure 5, this 

~2200 year observation time and 2475 year return period 

correspond to an exceedance probability p = 58.89%. Hence 

the observed shaking at most sites should exceed that 

predicted.  

 

However, the probabilistic map has only 2 sites out of 

800 for which the observed shaking exceeding exceeds the 

threshold value, for f = 0.25%. Comparing that with p = 

58.89% we find large negative fractional site exceedance, 

with M0 = 0.5864.  

 

For the deterministic map, the predicted threshold of 

ground motion was exceeded at 13 of the 800 sites, so f = 

1.62%. The fractional exceedance metric for the 

deterministic map cannot be computed, because the map does 

not provide a stated probability of exceedance over a time 

period. In principle, we can use the past performance to 
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crudely calibrate the deterministic map, however. Thus, the 

empirical probability of exceedance for sites in Italy was 

1.62% over 2200 years, corresponding to 2% over 2713 years, 

or 0.037% over 50 years. A similar approach has been used 

to calibrate deterministic scenario-based population 

forecasts (Keyfitz, 1981; Alho and Spencer, 2005). However, 

as discussed below, there are questions about the data so 

this example is purely illustrative. 

 

Both hazard maps significantly overpredict the 

observed shaking, as shown by the M1 metric. The 

deterministic map does better (M1 = 23.7) than the 

probabilistic map (M1 = 27.2) because its overall 

overprediction is somewhat less. 

 

The large misfit between the data and probabilistic 

map shown by M0 is unlikely to have occurred purely by 

chance, given the length of the historical catalog, which 

is comparable to the map’s return period of 2475 years. The 

poor fit of both maps indicate a problem with the data, 

maps, or both. The metrics illustrate the problem, but do 

not indicate its cause. 

 

It is possible that some of the assumptions in the 

hazard map making were biased toward overpredictions. 

However, it is likely that much of the misfit results from 

catalog being biased to too-low values. The historical 

catalog is thought to be incomplete (Stucchi et al., 2004) 

and may underestimate the largest actual shaking in areas 

due to a space-time sampling bias and/or difficulties with 

the historically inferred intensities. Figure 10 shows 

schematically how sampling bias could understate actual 
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shaking, and Hough (2013) shows that sampling bias can also 

overestimate actual shaking.  

 

This example also illustrates other complexities.  The 

historical intensity data have a long enough observation 

time for reliable comparison with the 2% map. However, they 

have the difficulty that regions can have no reported 

shaking either because no shaking large enough to be 

reported occurred, or because such shaking occurred but is 

not reflected in the historical record. When the sites with 

no reported shaking are omitted, M1 values for the 

probabilistic map drop from 27.2 to 10.4, and M1 values for 

the deterministic map drop from 23.7 to 7.2. The difference 

in M1 values between the probabilistic and deterministic 

maps stays about the same, ~3.  Because f is so small 

relative to p for the probabilistic map, the M0 value just 

barely changes, decreasing from 0.5864 to 0.5857. These 

issues would not arise for instrumentally recorded data for 

which low values can be distinguished from missing values 

(no data). 

 

Another complexity is that hazard maps predict average 

effects over some area for a uniform site response, whereas 

actual ground shaking includes local site effects. Hence 

ideally site effects would be included or removed if the 

structure were adequately known. Otherwise, nearby sites 

could be averaged to reduce the effect of variations on a 

spatial scale smaller than can be modeled with available 

information. 

 

Most crucially, this analysis compared a set of 

observations to maps produced after the earthquakes 
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occurred. The metrics thus describe how well the maps fit 

data that were used in making them. Such retrospective 

analysis has been the norm to date, given that hazard 

mapping is a relatively new technology compared to the 

earthquake record. Prospective testing will be needed to 

see how well maps predicted future shaking. By examining 

how well a map described what happened (or happens) over 

its entire area, metrics like those discussed here have the 

benefit of requiring a much shorter time span of data than 

would be required to assess how the map performed at 

individual sites.  

 

Effect of Random Error and Bias on Metrics 

 

 Although metrics measure how well the predicted 

shaking matches that observed, assessing their statistical 

properties requires also assuming and applying a 

probability model to the data underlying the metrics. 

 

 The situation is analogous to deciding if a diet is 

working. Using your weight as a metric shows changes over 

time, but deciding whether these could have occurred purely 

by chance or are significant requires assuming and applying 

a probability model for the scale’s weight measurements.  

The probability model involves the properties of the scale: 

different scales all measure weight, but with different 

precision and accuracy. Hence statistical significance 

depends on the model assumed to describe the data. 

 

Recall that for the exceedance metric, ,M0  the 

difference −f p  between observed and forecasted is the sum 
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of the chance component, − ,f Ef  and the bias, − .Ef p  To 

interpret the difference −f p  we want to know how large 

the chance component might be, and then to assess whether 

the bias appears to be appreciable. Statistical 

significance tests often are used for this purpose in 

analogous applications.  

 

Understanding the effect of chance and biases on 

numerical values of metrics requires considering the 

sources of randomness and bias. Are the sites the whole 

population or a sample, how was the sample chosen, how 

accurate are the measurements of shaking, and what is the 

joint probability distribution of shaking? 

 

One also needs to consider how the map was developed.  

To the extent that past shaking data were used in 

developing the hazard curves underlying the map, the 

numerical values of the metrics applied to past data may 

not reflect their numerical values when applied to future 

events.  This is a potential problem, because the 

forecasts' purpose is to predict the future, not the past. 

Cross-validation methods may be useful, but the limited 

number of sites and their correlations over space and time 

may pose difficulties. 

 

For illustrative purposes, we consider the probability 

distribution of f, the fraction of sites whose shaking 

exceeded the specified thresholds, for the Italy data used 

in Figure 9.  We take the sites to be a population of 

interest, rather than a sample from a larger population. We 

consider only randomness associated with ground motion at 
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each site, and for clarity of exposition we use a simple 

model. Figure 9b is a constant probability map, predicting 

that the probability is 0.02 that in 50 years shaking at a 

given site exceeds a threshold value for the site, and thus 

that in 2200 years the probability of exceedance is p = 

58.89%.   

 

It is of interest to test whether the difference 

between the observed number of exceedances and the expected 

number is greater than what would be likely to occur by 

chance when the model is correct, i.e., whether the 

difference is “statistically significant”, the known 

limitations of hypothesis testing notwithstanding 

(Marzocchi et al., 2012). For each site = 1, , ,Ki N  define 

= 1iX  if shaking exceeded the threshold and = 0iX  

otherwise.  Consistent with the model underlying the 

constant probability map, we assume each iX  has a Bernoulli 

distribution with parameter ,p  i.e., = 1iX  with probability 

p  and = 0iX  with probability −1 .p  If the iX ’s are 

mutually independent, then the total number of exceedances,

=
= ∑ 1

,
N

ii
Nf X  has a binomial distribution with parameters N  

and .p   

 

For = 800N  sites, the data show 2 exceedances, so 

2Nf =  and thus 0.0025.f =  In contrast, for a binomial 

model with parameters 800 and 0.5889 (the probability 

specified for the map) the expected number of exceedances 

is = 471.2,Np  and the probability that the observed count 

Nf  is 2 or smaller or 798 or larger is astronomically 

small, 1.7×10-179. This probability is vastly smaller than 

the conventional 0.05 level of significance, indicating 
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that the discrepancy between Nf  and ,Np  or equivalently 

between f  and ,p  is statistically significant. If the 

assumed model is correct, there is almost no chance that 

the observed number of exceedances would be so far from the 

expected number.  Either an incredibly unlikely small 

amount of exceedance occurred just by chance, or there are 

problems with the model or data, as previously discussed.   

 

Another possibility is that the model's assumption of 

independence across sites could be wrong, so exceedances at 

different sites are correlated. Although, as discussed 

earlier, this correlation does not bias the metric, it 

would affect significance tests because it affects the 

amount of chance variability in the number of exceedances. 

If the average correlation is positive, the observations 

carry less information, so the evidence against p = 0.5889 

is weaker.  

 

To see this, note that under the Bernoulli model, the 

covariance of iX  and jX  for sites i and j equals ρ −(1 ),ijp p  

with the correlation ijρ  reflecting the spatial correlation. 

The average correlation across different sites is 

/[ ( 1)].iji j
N Nρ ρ

≠
= −∑  For example, if each iX  has 

correlation ρ  with exactly k  other jX ’s and no correlation 

with all other jX ’s, then ρ ρ= −/( 1).k N  To help interpret 

the correlation, consider ρ ρ= ≥ 0ij  for all distinct sites 

i  and .j  This implies ρ ρ= . If there is independence, or 

more generally if ρ = 0, the probability of non-exceedance 

at a given pair of sites equals 2(1 ).p−   But, if the 
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correlation is ρ > 0 then the probability of non-exceedance 

at the pair of sites increases by ρ −(1 ).p p  Using = 0.589p  

and, purely for illustrative purposes, taking 0.36,ρ =  we 

see that the probability of non-exceedance at the pair of 

sites increases from 0.169, the probability under 

independence, to 0.256, a relatively large increase (52%).  

 

In general, the variance of Nf  is [ ]ρ− + −(1 ) 1 ( 1) .Np p N  

The term in square brackets is an inflation factor for the 

binomial variance when ρ > 0. Empirical estimation of ρ  is 

beyond the scope of this paper.  Once ρ  has been specified, 

however, the significance calculations can easily 

accommodate spatial correlation if the Gaussian 

approximation to the binomial distribution is used.  Under 

the independence assumption, a simple approximation to the 

binomial distribution of  Nf  is based on treating 

= − + −( )/ (1 )z Nf Np c Np p   as if it were Gaussian with mean 

0 and variance 1, where the “continuity correction” c 

equals  +1/2 if < ,f p  —1/2 if > ,f p  and 0 if = .f p  With 

= 471.2,Np  = 2,Nf  and = 800,N  we calculate  = −33.7,z    

which as before (with the binomial model) corresponds to an 

astronomically small probability. Now, suppose for 

illustrative purposes that 0.36,ρ = as discussed in the 

previous paragraph. To take correlation into account we 

divide the z-value of −33.7  by  =16.99 ρ+ −1 ( 1)N  to get 

an adjusted z-value of -1.98. This corresponds to a two-

tailed probability of 0.047, which is still smaller than 

the conventional significance level of 0.05. If the 

correlation parameter  ρ  were even larger, say 0.37, the 

adjusted z-value would increase and the associated two-
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tailed probability would exceed 0.05. In that case, the 

difference between Nf and Np would not be “statistically 

significant” at the 0.05 level. It is clear that an 

assumption of independence can make a huge difference in 

these calculations (Kruskal, 1988).  

 

Starting with the decomposition of −f p  given 

earlier, squaring both sides, and taking expected values, 

shows that the mean squared deviation between f  and p 

equals the sum of the variance in f  and the squared bias in 

p, that is, ( )− = +2 2( ) .E f p V f Bias   

When the variance ( )V f  is not too large, we may use the 

following estimator of the squared bias in the 

specification of ,p   

( )= − −2Estimator of squared bias of  ( ).p f p V f  

For example, for the 2%-in-50-years model with correlation, 

we can estimate  ( )V f  by [ ]ρ− + −(1 ) 1 ( 1) / ,f f N N  or 0.0071, 

which does not assume that the specification of p   is 

correct.  The estimate of squared bias is 0.337.  The ratio 

of the square root of 0.337 to p is 0.99.  According to 

this analysis, then, based on illustrative assumptions that 

may not capture reality, the estimate of p is almost all 

systematic error (bias). 

 

Map Comparison and Updating 

 

The metrics discussed here can also be used to compare 

the maximum shaking observed over the years in regions 
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within a hazard map to that predicted by the map and by 

some null hypotheses.  This could be done via the skill 

score, a method used to assess forecasts including weather 

forecasts 

 

SS(s,r,x) = 1 - M(s,x)/M(r,x) 

 

where M is any of the metrics, x is the maximum shaking, s 

is the map prediction, and r is the prediction of a 

reference map produced using a reference model (referred to 

as a null hypothesis). The skill score would be positive if 

the map's predictions did better than those of the map made 

with the null hypothesis, and negative if they did worse.  

We could then assess how well maps have done after a 

certain time, and whether successive generations of maps do 

better. 

 

 One simple null hypothesis is that of regionally 

uniformly distributed seismicity or hazard. Geller (2011) 

suggests that the Japanese hazard map in use prior to the 

Tohoku earthquake is performing worse than such a null 

hypothesis. Another null hypothesis is to start with the 

assumption that all oceanic trenches have similar b-value 

curves (Kagan and Jackson, 2012) and can be modeled as the 

same, including the possibility of an M9 earthquake (there 

is about one every 20 years somewhere on a trench).  

 

 The idea that a map including the full detail of what 

is known about an area's geology and earthquake history may 

not perform as well as assuming seismicity or hazard are 

uniform at first seems unlikely. However, it is not 

inconceivable. An analogy could be describing a function of 
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time composed of a linear term plus a random component. A 

detailed polynomial fit to the past data describes them 

better than a simple linear fit, but can be a worse 

predictor of the future than the linear trend. This effect 

is known as overparameterization or overfitting (Silver, 

2012). A way to investigate this possibility would be to 

smooth hazard maps over progressively larger footprints. 

There may be an optimal level of smoothing that produces 

better performing maps, because on a large scale, regional 

differences are clearly important.  

 

Metrics for hazard maps can also be useful in dealing 

with the complex question of when and how to update a map. 

The typical response to “unexpected” earthquakes or shaking 

is to remake a hazard map to show higher hazard in the 

affected areas (Figure 2). The revised map would have 

better described the effects of past earthquakes, and is 

anticipated to better represent the effects of future 

earthquakes. Maps are also remade when additional 

information, such as newly discovered faults or improved 

ground motion prediction models, are recognized or become 

available. 

 

 Although remaking maps given new information makes 

sense, it is done without explicit assessment of how well 

the existing map has performed to date, or explicit 

criteria for when a map should be remade. Similarly, this 

process provides no explicit way to quantify what 

improvements are hoped for from the new map. These issues 

can be explored using metrics like those here. Statistical 

models, including Bayesian models, could be used to 

simultaneously provide appropriate updating as new data 
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become available and to smooth the maps. Specification of 

such models will involve an interesting blending of modern 

statistical modeling with advancing seismological 

knowledge. 

 

 In summary, we believe that metrics like those 

discussed here can help seismologists assess how well 

earthquake hazard maps actually perform, compare maps 

produced under various assumptions and choices of 

parameters, and develop improved maps.  

 

 

Data and Resources 

 

The historical intensity data for Italy from 217 B.C. to 

2002 A.D. from a compilation by Gruppo di Lavoro (2004), 

and the digital values for the hazard maps from Nekrasova 

et al. (2014) were provided by A. Peresean. 
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Figure 1: Comparison of the predicted probability of rain 

to that actually observed in National Weather Service and a 

local television station's forecasts. After Silver (2012).  
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Figure 2: Top: Comparison of Japanese national seismic 

hazard maps before and after the 2011 Tohoku earthquake. 

The predicted hazard has been increased both along the east 

coast, where the 2011 earthquake occurred, and on the west 

coast. (http://www.j-shis.bosai.go.jp/map/?lang=en) Bottom: 

Comparison of successive Italian hazard maps (Stein et al., 

2013). The 1999 map was updated to reflect the 2002 Molise 

earthquake and the 2006 map will likely be updated after 

the 2012 Emilia earthquake.
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Figure 3. Schematic comparison of hazard map prediction to 

a map of the maximum observed shaking.  
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Figure 4: a): Schematic hazard curves for two sites. 

Constant probability hazard maps like b) are made by 

sampling the hazard curves at a fixed probability to 

predict that the largest shaking in each area will exceed a 

specific value with a certain probability during a certain 

time (observation period). Constant threshold maps like c) 

are made by sampling the hazard curves at a fixed shaking 

level to predict the probability that this shaking level 

will be exceeded in a certain time. Maps b) and c) are from   

http://www.j-shis.bosai.go.jp/map/?lang=en.  
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Figure 5: Probability p that earthquake shaking exceeds a 

threshold, as function of observation period 0<t<2500 

years, for return period T = 2475 years, assuming p = 1 - 

exp(-t/T). 
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Figure 6. Comparison of the shaking predicted in various 

subregions of hazard maps to the maximum observed shaking. 

Each of the four maps satisfies the fractional site 

exceedance criterion for p=0.1, but b)-d) have significant 

underpredictions or overpredictions. 
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Figure 7. Comparison of the results of two hazard maps. 

That in a) is nominally successful as measured by the 

fractional exceedance metric, but significantly 

underpredicts the shaking at many sites and overpredicts 

that at others. That in b) is nominally unsuccessful as 

measured by the fractional site exceedance metric, but 

better predicts the shaking at most sites.  
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Figure 8: Four metrics that provide additional information 

beyond that from the fractional site exceedance metric. 

 

 

 

 



45 
 

 
 

Figure 9: Comparison of historical intensity data for Italy 

a) to a probabilistic b) and a deterministic c) hazard map, 

both of which overpredict the observed shaking, as shown in 

(d) and (e). Several points are moved slightly for clarity. 
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Figure 10:  Schematic illustration of one way that 

variations in sampling over time could underestimate 

earthquake shaking. 
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