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Abstract

This working paper makes use of a new data resource—merged birth and school records 

for all children born in Florida from 1992 to 2002—to study the effects of birth weight on 

cognitive development from kindergarten through schooling. Using twin fixed effects 

models, the researchers find that the effects of birth weight on cognitive development are 

essentially constant through the school career, that these effects are very similar across a 

wide range of family backgrounds, and that they are invariant to measures of school 

quality. They conclude that the effects of poor neonatal health on adult outcomes are 

therefore set very early. 



A large literature documents the effects of neonatal health (commonly proxied 

by birth weight) on a wide range of adult outcomes such as wages, disability, 

adult chronic conditions, and human capital accumulation. A series of studies, 

conducted in a variety of countries, including Canada, Chile, China, Norway, and 

the United States, have made use of twin comparisons to show that the heavier 

twin of the pair is more likely to have better adult outcomes measured in various 

ways.1 

While the existing literature makes clear that there appears to be a permanent 

effect of poor neonatal health on socio-economic and health outcomes, it is 

important for a variety of policy reasons to know how poor neonatal health affects 

child development, and whether there are public policies that might act to 

remediate the negative relationship between early poor health and later-life 

outcomes. Knowing this relationship can also be useful in helping to understand 

whether favorable health at birth can shield children against adverse shocks, 

policy or otherwise. However, we know very little to date about whether the 

effects of poor neonatal health on cognitive development vary at different ages 

(say, at kindergarten entry versus third grade versus eight grade), and no existing 

study identifies whether public policies such as school quality could help to 

mitigate the effects of poor neonatal health on cognitive development. We also 

know very little about whether these effects vary heterogeneously across different 

demographic or socio-economic groups, or whether early neonatal health and 

parental inputs are complements or substitutes. While we have strong evidence 

 
1

 Examples of influential previous research include Behrman and Rosenzweig (2004) on schooling and wages, Almond, 
Chay, and Lee (2005) and Conley, Strully, and Bennett (2003) on neonatal outcomes and hospital costs, and Royer (2009) 
on next generation birth weight, neonatal outcomes and educational attainment, for the United States; Black, Devereux, and 
Salvanes (2007) on neonatal outcomes, height, IQ, high school completion, employment, earnings and next generation 
birth weight, for Norway; Oreopoulos et al. (2008) on neonatal outcomes, health outcomes in adolescence, educational 
attainment and social assistance take up, for Canada; Rosenzweig and Zhang (2014) on educational attainment, wages and 
weight for height, for China; and Torche and Echevarria (2011) on fourth-grade mathematics test scores, for Chile. In a 
current working paper, Bharadwaj, Eberhard, and Neilson (2013) study fourth-grade test scores and grades in school, also 
in Chile. 
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from twin comparison studies that poor initial health conveys a disadvantage in 

adulthood, we have little information about the potential roles for policy 

interventions in ameliorating this disadvantage during childhood. 

The principal reason for these gaps in the literature involves data availability. 

The datasets that previous researchers have used to study the effects of poor 

neonatal health on adult outcomes (e.g., Scandinavian registry data, or data 

matching a mother’s birth certificate to her children’s birth certificates) do not 

include information on schooling and human capital measures during key 

developmental years.2 

Another gap in the adult-outcomes literature is that the subjects of that literature 

were necessarily born in the 1970s and earlier. Given the advances in modern 

neonatology, it is reasonable to believe that poor neonatal health in the 21st 

century may bear little resemblance to poor neonatal health fifty years ago.3 There 

have been no studies linking neonatal health to either educational or later 

outcomes in a highly developed country context using very recent birth cohorts.4 

We make use of a major new data source that can help fill these gaps in the 

literature. We match all births in Florida from 1992 through 2002 to subsequent 

schooling records for those remaining in the state to attend public school. Florida 

is an excellent place to study these questions because it is large (its population of 

 
2

 Exceptions include Bharadwaj, Eberhard, and Neilson 2013; Torche and Echevarria, 2011; and Rosenzweig and 
Zhang, 2009, which examine this relationship in developing countries with less access to advances in medical technology 
that have reduced the lower end of viable birth weights, and in settings that lack the socioeconomic and ethnic diversity 
that is present in the data from Florida used in this paper. Another alternative data source is the Early Childhood 
Longitudinal Study – Birth Cohort (ECLS-B) of children born in the United States in 2001 which oversamples twins. 
However, the ECLS-B is too recent to investigate outcomes in late elementary school or adolescence, too small to study 
heterogeneous effects of birth weight, and does not include cognitive outcomes that have high stakes for children. 

3
 One example of the temporal differences in neonatology is that, whereas 50 years ago the threshold for infant viability 

was around 1500 grams, today the threshold for viability in developed countries is as low as 500 grams or even lower (Lau 
et al., 2013). Thus, it is independently valuable to study the effects of birth weight using a more contemporary set of births 
than those used in the existing literature. 

4
 The potential benefits of using more current data from a highly developed country become apparent when we compare 

the mean birth weight amongst twins in our study of children born after 1992 (2410 grams) to those from previous studies 
of twins from highly developed countries born in the 1930s through the 1970s (which range from 2517 to 2598 grams, 
depending on the cohort and country) and those from the late 1990s in Chile (2500 grams).   
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around 17 million compares to Norway, Denmark, and Sweden combined) and 

heterogeneous (nearly half of mothers are racial or ethnic minorities, and nearly 

one-quarter of mothers were born outside the United States). In addition, Florida 

has some of the strongest education data systems in the United States, and Florida 

has been testing children annually from third through tenth grade for well over a 

decade. With these new data, we follow over 1.3 million singletons and nearly 

15,000 pairs of twins from birth through middle school to study the relationship 

between birth weight and cognitive development. 

We find that neonatal health, as measured by birth weight, affects cognitive 

development in childhood, and that this relationship is remarkably consistent 

across subgroups from a wide range of family socio-economic status.5 We 

observe this relationship for twin-pair comparisons, sibling-pair comparisons, and 

singletons, and while the magnitudes of these comparisons differ somewhat, they 

provide reasonable bounds of the likely effects of neonatal health on children’s 

cognitive outcomes.  

Comparing across a range of demographic and socio-economic dimensions 

allows us to address both the stability of results across background and the degree 

to which parental inputs and early health are complements or substitutes. 

Understanding this complementarity is important because it provides a window 

into the mechanisms by which neonatal health and parental resources and 

behavior contribute to human capital development. Whether parental inputs and 

neonatal health are complements or substitutes also has important implications 

 
5

 We are certainly not the first paper to conduct heterogeneity analyses of families with twins. Black, Devereux and 
Salvanes (2007) mention that they investigated sample splits by income and education and find no significant differences, 
but do not report their subgroup-specific findings, making it impossible to address the question of whether parental inputs 
and early health are complements or substitutes. Oreopoulos et al. (2008) report results broken down by birth weight group, 
gestational length, and APGAR scores, but not by different socio-economic groups. Johnson and Schoeni (2011) report 
results by parental age and the presence of health insurance, which could reflect a variety of factors other than the key 
questions that we are interested in studying. Bharadwaj, Eberhard, and Neilson’s (2013) working paper and Torche and 
Echevarria (2011) split their analyses by maternal education – but the developing Chilean context at the time means that 
Bharadwaj, Eberhard, and Neilson (2013) only split by high school and over versus middle school or lower education. 
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theoretically for understanding the distributional effects of investments in infant 

health, and for guiding the targeting of policies intended to reduce inequalities by 

improving early life health (e.g. consider the role complementarities play in the 

models of human capital accumulation of Cuhna et al. (2006), Cunha and 

Heckman (2007), and Conti and Heckman (2010)). We find evidence that the 

effects of birth weight on student outcomes are stronger for higher-SES families 

than for lower-SES families, suggesting that neonatal health and parental inputs 

are at least to some degree complements. Such complementarity could be driven 

by parents with more resources investing more in children with better neonatal 

health, or could be the result of parents making equal investments but those 

investments by more educated higher-SES parents being relatively more or less 

effective at building the human capital of children born with better initial health. 

Importantly, ours is the first study to explore the interaction between schooling 

factors and the relationship between birth weight and children’s cognitive 

development. Once children reach school age, they spend considerably more time 

with adults who are not their parents than they did before school age. Schooling is 

the most natural place where public policy can play a role in promoting cognitive 

development amongst children in non-familial settings. We seek to understand the 

degree to which school quality can help to overcome disadvantages associated 

with poor neonatal health. We find that the relationship between birth weight and 

cognitive outcomes is invariant to a variety of measures of school quality, 

suggesting that while high-quality schools have the potential to improve the 

outcomes of all children, they do not reduce the gaps generated by poor neonatal 

health. 
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I. A new data source 

A. Description of the data set and match diagnostics 

We make use of matched data for all children born in Florida between 1992 and 

2002 and educated in a Florida public school between 1996 and 2012. For the 

purposes of this study, Florida’s education and health agencies matched children 

along three dimensions: first and last names, exact date of birth, and social 

security number, with a small degree of fuzziness permitted in the match. 

Common variables excluded from the match were used as checks of match 

quality. These checks confirm that the matches are very clean: In the overall 

population, the sex recorded on birth records disagreed with the sex recorded in 

school records in about one-one thousandth of one percent of cases, suggesting 

that these differences are almost surely due to typos in the birth or school records.  

Between 1992 and 2002, 2,047,663 births were recorded by the Florida Bureau 

of Vital Statistics, including 22,625 pairs of twins. Of these children, 1,652,333 

were subsequently observed in Florida public school data maintained by the 

Florida Department of Education’s Education Data Warehouse, and 17,639 pairs 

of twins have both twins present in the Department of Education data. All told, 

80.7 percent of all children born in Florida, and 79.5 percent of all twins born in 

Florida, were matched to school records using the match protocols. 

In order to judge the quality of the match, we compare the 80.7 percent rate to 

population statistics from the American Community Surveys and Census of 

Population from 2000 through 2009.6 Recall that a child can only be matched in 

the Florida data if he or she (1) is born in Florida; (2) remains in the state of 
 
6

 The benefit of non-name unique match identifiers in Florida becomes apparent when we compare our 80.7 percent 
match rate to the match rate in North Carolina, the only other state where, to our knowledge, researchers are making use of 
matched birth-school data today. The cleanest North Carolina match rate, which relies on children being matched by name, 
date of birth, and county, is just over 50 percent, and when the match is made less exactly, just on name and date of birth, 
the match rate in North Carolina is between 60 and 65 percent, depending on subgroup (Ladd, Muschkin, and Dodge 
2012). 
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Florida until school age; (3) attends a Florida public school; and (4) is 

successfully matched between birth and school records using the protocol 

described above. Reasons (1) through (3) are “natural” reasons why we might lose 

children from the match. Our calculations from the American Community Survey 

indicate that, amongst the kindergarten-aged children found in that survey who 

were born in Florida, 80.9 percent were remaining in Florida at the time of 

kindergarten and were attending public school.7 We therefore conclude that the 

match rate is extremely high, and that nearly all potentially matchable children 

have been matched in our data. 

B. Comparisons of the matched data set to the overall population 

The set of Florida-born children attending Florida public schools differs 

fundamentally from the set of all Florida-born children. It is important to note that 

twins differ from singletons in important ways. Twins have a lower mean 

gestational age and a lower mean birth weight than singletons; they have older 

and more educated mothers, as well as mothers who are more likely to be married 

(Antsaklis et al., 2013). We discuss issues of external validity in the conclusion. 

[Insert Table 1 Here] 

Table 1 presents some evidence regarding the overall representativeness of the 

population of children matched to schools and the population of twins, along a 

number of dimensions: maternal race and ethnicity, maternal education, maternal 

age, maternal immigrant status, and parental marital status. There are four 

columns in the table: The first column reflects the total population of children 
 
7

 The 80.9 percent figure is an overstatement of the true expected match rate because the American Community Survey 
includes only children who are still living in the United States at the time of kindergarten. Given that some children born in 
Florida leave the country in their first five years because of emigration, because they were born to non-immigrant visitors 
to the country, or because they were born to undocumented immigrants who returned to their home countries, the true 
expected match is somewhat below 80.9 percent. 
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born in Florida; the second reflects the population of children matched to Florida 

public school records; the third represents the set of children with a third grade 

test score; and the fourth reflects the set of twins born in Florida who have a third 

grade test score. (Children in these last two columns also must fulfill the other 

data requirements, such as non-missing core control variables, for inclusion in the 

study.) The comparison between the first and second columns makes clear the 

costs associated with carrying out this type of analysis in the United States, where 

children are lost for matching if they cross state lines between birth and school or 

if they attend private school. We observe that the set of matched children are 

more likely to be black (24.8 percent of matched children versus 22.6 percent of 

all children) and less likely to have married mothers (62.2 percent versus 64.8 

percent of all children). The mothers of matched children are more likely to be 

less educated (17.1 percent college graduate versus 20.1 percent overall, and 22.5 

percent high school dropout versus 20.9 percent overall) and are moderately 

younger (23.6 percent aged 21 or below versus 22.0 percent overall, and 9.3 

percent aged 36 or above versus 9.8 percent overall).   

The comparison between the second and third columns of table 1 shows the 

difference in composition of the population of test-takers in elementary school 

versus those matched to school records more generally. Third-grade test-takers 

are still lower in terms of socio-economic status than are all children appearing in 

public school data. The fact that matched children are of somewhat lower socio-

economic status, and that those with 3rd-grade scores are somewhat lower again, is 

unsurprising, given the well-documented relationship between family income (or 

parental education) and private school attendance.8 However, our findings of 

estimated relationships between birth weight and test scores that are remarkably 

 
8

 These relationships are observed in the Census data: In the 2000 Census, for instance, 6 percent of families earning 
$0-$25,000 per year sent their children to private school, as compared with 7 percent for those earning $25,000-$50,000 
per year, 13 percent for those earning $50,000-$75,000 per year, and 19 percent for those earning over $75,000 per year. 
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similar across very dissimilar groups reduces some of the potential concerns 

regarding external validity. 

The comparison between the third and fourth columns of table 1 demonstrates 

the consequences of making use of twin comparisons. Mothers of twins are quite 

different from the overall population: Mothers of twins are substantially less 

likely to be Hispanic or foreign-born and substantially more likely to be married 

than are mothers of singletons. In addition, they are considerably better educated 

(23.1 percent college graduate versus 15.8 percent in the overall population of 

test-takers, and 15.5 percent high school dropout versus 23.3 percent of all test-

takers) and considerably older (13.6 percent aged 36 or above versus 9.2 percent 

in the overall population of test-takers, and 14.4 percent aged 21 or below versus 

24.2 percent in the overall population of test-takers.)9 Therefore, the decision to 

focus on twin comparisons to promote increased internal validity brings with it 

some cost in terms of external validity. In this paper, we therefore present 

evidence on the relationship between birth weight and cognitive development 

both in the case of twin comparisons – where internal validity is greatest – as well 

as the case of singletons – where external validity is greatest. Our general patterns 

of results are quite similar across both cases. 

C. Birth weight distributions 

The variation that we use to identify the effect of poor neonatal health on 

cognitive skills comes from the fact that nearly all twin pairs differ in the birth 

weights of the two newborns, and sometimes the difference is substantial. In 

Florida, the average discordance in twins’ birth weight is 284 grams (0.63 

 
9

 Twins are also more likely to be the consequence of in-vitro fertilization (IVF) or other forms of assisted reproductive 
technologies (ART). Later in this paper we investigate the differential effects of birth weight for twins likely conceived 
using IVF/ART versus those less likely to have been conceived using IVF/ART. 
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pounds), or 11.8 percent of the average twin’s birth weight of 2410 grams.10 

Figure 1 shows that the distribution of discordance for all twins is virtually 

identical to the distribution of discordance for twins matched to test scores. 51.4 

percent of twin pairs have birth weight discordance over 200 grams, and 16.8 

percent have birth weight discordance over 500 grams. Forty five percent of twin 

pairs have birth weight discordance greater than 10 percent of the larger twin’s 

birth weight, 26.6 percent have discordance greater than 15 percent of the larger 

twin’s birth weight, and 14.7 percent have discordance greater than 20 percent of 

the larger twin’s birth weight.11 

[Insert Figure 1 Here] 

[Insert Figure 2 Here] 

Figure 2 makes clear that twins have a dramatically different distribution of 

birth weight than do singletons. The mean twin birth weight during our time 

period (2410 grams) is 27.9 percent smaller than the mean singleton birth weight 

of 3342 grams. For both twins and singletons the birth weight distribution of 

children observed in the test score data is identical to the distribution of all 

children born in Florida. 53.2 percent of twins have birth weights below 2500 

grams (considered clinically low birth weight), as compared with 5.9 percent of 

singletons, while 7.1 percent of twins have birth weights below 1500 grams 

(considered clinically very low birth weight), as compared with 0.9 percent of 

singletons. 

 
10

 Blickstein and Kalish (2003) provide an overview of the literature on growth restriction explanations for birth weight 
discordance. In addition, there are some medical reasons that might lead to birth weight discordance; for example, Kent et 
al. (2011) find that noncentral placental cord insertion leads to birth weight discordance in some pregnancies. Breathnach 
and Malone (2012) survey the literature on fetal growth disorders in twin gestations. 

11
 There exists medical evidence that large birth weight discordances lead to increased chances of severe disability. For 

instance, Luu and Vohr (2009) find that the likelihood of cerebral palsy in a twin is four times greater when birth weight 
discordance is over 30 percent than when it is less than 30 percent. 
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II. Empirical framework 

Our empirical framework largely follows what has become standard in the 

literature. For our twins’ analysis, we estimate twin fixed effect models in which 

the regressor of interest is the natural logarithm of birth weight.12 Following 

Almond, Chay and Lee (ACL, 2005) and Black, Devereaux and Salvanes (BDS, 

2007), let 

 
'ln( )ijk ijk ijk jk ijky bw xα β γ φ ε= + + + +  (1) 

where i indexes individuals, j indexes mothers, k indexes births, ijky  denotes the 

outcome of child i, born to mother j in twin-pair k, x is a vector of child-specific 

determinants of the outcome (in the case of twins, child gender and within-twin-

pair birth order), φ  denotes unobservable determinants of the outcome that are 

specific to the mother and birth, and ε  is an error term. We also estimate 

singleton-specific analyses in which we control for a wide range of maternal 

characteristics, as well as (in some specifications) gestational length, to make as 

apples-to-apples comparisons with the twin specifications as possible. Our results 

are invariant to whether or not we condition on geography. 

Our outcome, denoted y, is a test score – the criterion-referenced Florida 

Comprehensive Assessment Test (FCAT) – which is standardized within grade 

and year to have mean zero and standard deviation one in the entire population of 

children in Florida.13 For ease of presentation, we average standardized reading 

and mathematics FCAT scores for our dependent variable, but our results are 

qualitatively similar for reading and mathematics, and the test-specific results are 

 
12

 We follow an analogous approach regarding sibling comparisons. 
13

 We standardize FCAT scores for ease of interpretation. Our results are not substantively changed if instead we 
measure the FCAT in its unstandardized developmental scale score format.  
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available on request.14 The regressor of interest, ln(bw), is the natural logarithm of 

birth weight in grams. In section 6 we present results from specifications other 

than the linear-in-log model, but the linear-in-log model appears to fit the data 

well. 

Ordinary Least Squares (OLS) estimation of (1) would produce biased 

estimates of β  if jkφ  were correlated with ln( )ijkbw  – in other words, if there 

were unobservable determinants of cognitive ability that were correlated with 

birth weight. To address the potential bias due to correlation between jkφ  and 

ln( )ijkbw , we estimate a twin fixed effect model. Twins necessarily share the same 

jkφ . A twin fixed effect model essentially differences out any mother- or birth-

specific confounder and identifies β  based on between-twin variation in test 

scores and birth weight. Logically, birth weight can vary due either to variation in 

gestation length, or to variation in fetal growth rates. By focusing on twins, we 

necessarily hold gestation length constant. Our estimates are identified, therefore, 

by variation in fetal growth rates. We also present evidence from singleton births 

that, while they lack the internal validity of the twin comparisons, allow us to 

show the relationships between gestation length, birth weight, and cognitive skills 

in the overall population of children. 

One potential internal validity concern is that we can only make use of test 

score data for a twin pair if both members of the pair have test scores. If one twin 

is present in the test score data but not the other, and the reasons for differential 

inclusion in the data are correlated with neonatal health, the absence of one twin’s 

test score could present a source of bias. A related concern relates to the fact that 

we only observe education records for individuals born in Florida who remained 

 
14

 In the main twins regression specification, 99.5 percent of observations have both math and reading scores, 0.2 
percent have only math and 0.3 percent have only reading. 
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in Florida, attended Florida public schools and took the FCAT. Various tests 

reported in detail in Figlio et al. (2013) suggest that in practice the selection bias 

resulting from either of these sources is likely to be minimal. For example, the 

likelihood of leaving the sample between 3rd grade and 4th or 5th grade is 

uncorrelated with whether the twin is the heavier or lighter of the pair, and only 

slightly more likely for the lighter twin in grades 6-8. The relative number of 

missing twins is too small to make a meaningful difference in the estimates even 

in these later grades. Furthermore, estimates in which we impute very low or very 

high test scores for missing twins yield almost identical results as those reported 

in the main specifications. 

III. Preliminary results – heavier versus lighter twins 

To fix ideas before presenting the main regression results, figure 3 shows the 

average within twin pair difference in average math and reading test score 

between the higher birth weight twin and the lower birth weight twin for grades 

three through eight.15 Within twin pairs, on average the heavier twin scores about 

five percent of a standard deviation higher than the lighter twin. This difference in 

test scores is statistically distinguishable from zero, and is stable from third 

through eighth grades, covering ages from approximately 9 to 14.16 The results 

imply that neonatal health, as proxied by birth weight, has effects on cognitive 

skills by age 9. Furthermore, this effect does not seem to either dissipate or widen 

through middle school.  

[Insert Figure 3 Here] 
 
15

 The same patterns for math and reading separately are in figures A1 and A2 in an online appendix. 
16

 For all analyses separated by grade, we assign students to the grade they would have been in had they progressed one 
grade per year from the first time we observe them with an FCAT score in third grade. We use this “imputed grade” rather 
than the student’s actual grade because grade retention may be affected by birth weight and because we are interested in 
following children longitudinally. All results are extremely similar if we focus on actual grade rather than this imputed 
grade. 
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[Insert Figure 4 Here] 

Figure 4 breaks down this mean difference by quartile of twin birth weight 

discordance17; the bottom and top quartiles average 2.5 and 23.9 percent 

discordance, respectively. Two facts are apparent from this figure: First, the 

relationship between relative birth weight and relative test scores within twin 

pairs is roughly flat as children age. Second, the higher degree of birth weight 

discordance, the larger test score gap between the larger and the smaller twin. 

Figure A3 in an online appendix shows that the positive relationship between 

birth weight discordance and test score differences is present and clear when we 

break down the twin pairs or sibling pairs into fine discordance bins (one for each 

percentage point, and a final bin for twin pairs with greater than twenty percent 

discordance), with the slope of the relationship modestly flatter for sibling pairs 

than it is for twin pairs. These findings foreshadow the main findings of this 

paper. 

IV. Main results 

A. Pooled results for full sample 

We now turn to our main regression results. The basic regression model is an 

OLS estimate that includes twin-pair fixed effects, a gender dummy, and a 

dummy for within-twin-pair birth order. The dependent variable is the 

standardized FCAT score averaged between reading and math18, and the regressor 

of interest is the natural logarithm of birth weight in grams. We report some 

results based on separate regressions for each grade from three through eight, and 

 
17

 We limit this analysis to same-sex twins to ensure that the differences in discordance are not due to well-documented 
differences in birth weight between boys and girls. 

18
 See Figlio et al. (2013) for separate findings for reading and mathematics. 



 14 

other results that pool test scores across all six grades. In the pooled regressions, 

standard errors are clustered at the individual level (for singletons) and twin-pair 

level (for twins) to account for the fact that each individual has up to six 

observations, one for each grade in which he or she was tested.19 

[Insert Figure 5 Here] 

The non-parametric plots of the relationship between test scores and birth 

weight reported in figure 5 present evidence supportive of the log birth weight 

specification that we employ, as there appears to be a concave relationship 

between birth weight and test scores. The figure shows two series, each derived 

from a test score regression that pools grades 3-8 and both math and reading 

scores. Each series plots the coefficients from a set of 36 dummy variables 

corresponding to 100 gram-wide birth weight bins. The bins range from a low of 

501-600g to a high of 4,001-4,100 grams. In both regressions, the left-out group is 

below 501 grams. As was observed in similar sets of plots by ACL and BDS, the 

shape of the relationship between test scores and birth weight is similar whether 

or not we condition on twin-pair fixed effects.  

[Insert Table 2 Here] 

The main result, an estimated coefficient of 0.443 presented in column 2 of 

table 2, implies that a ten percent increase in birth weight is associated with just 

under one-twentieth of one standard deviation increase in test scores in grades 

three through eight.20 The coefficient is precisely estimated, with a t-statistic of 

 
19

 An earlier version of this paper (Figlio et al., 2013) clusters standard errors for twins at the individual level. The 
level of clustering (individual versus twin pair) has no substantive effect on our findings. In grade-by-grade singleton 
models with one observation per child, we estimate robust standard errors. 

20
 We also find that birth weight is associated with a modest but strongly statistically significant increase in a child’s 

grade in school at any given age. In the twin fixed effects model, a ten percent increase in birth weight is associated with 



 15 

over 10. The fixed effects result is modestly larger than, but close to, the 

equivalent OLS coefficient of 0.285 reported in the first column of table 2.21 

To put the magnitude of these coefficients into perspective, BDS estimate that 

the effect of log birth weight on log earnings is 0.12. Assuming the log wage 

return to cognitive skills is 0.2 as estimated by Neal and Johnson (1996), our 

estimates imply that increases in cognitive skills present in grades three through 

eight explain approximately three-quarters of the effect of birth weight on wages 

found by BDS. Similarly, Royer (2011) estimates that a 1000 gram increase in 

birth weight is associated with an extra 0.16 years of schooling. Using the online 

analysis tool of the High School & Beyond data set, which longitudinally follows 

a cohort in the middle of Royer’s sample, we estimate that a one standard-

deviation increase in 10th grade test scores is associated with 0.84 additional years 

of completed education.22 Combining this with our finding that a 1000 gram 

increase in birth weight is associated with a 0.187 standard deviation increase in 

test scores, our results imply a 1000 gram increase in birth weight is associated 

with 0.156 additional years of schooling, almost exactly in line with Royer’s 

findings. 

[Insert Figure 6 Here] 

Our estimate of the effect of neonatal health on cognitive development is 

reasonably large in these terms, but it is worth comparing to other important 

correlates of student achievement. Figure 6 shows that the difference in test scores 

                                                                                                                                
just under 1/100 higher grade for any given age; the estimated coefficient on log birth weight when the dependent variable 
is grade for age is 0.083 with a standard error of 0.019. 

21
 We concentrate on birth weight because there is greater variation in birth weight than in other measures of neonatal 

health. That said, we find positive, statistically significant relationships between APGAR scores and test scores. For 
instance, in a pooled twin fixed effects model, a one unit increase in one minute APGAR scores is associated with 0.8 
percent of a standard deviation higher average reading and math scores. 

22
 We weighted the individuals in the High School & Beyond data by their base year replicate weights. For the sake of 

this analysis, we define high school dropouts as having 10 years of education, GED recipients as having 11, high school 
graduates as having 12, certificate recipients as having 13, associates recipients as having 14, bachelors recipients as 
having 16, masters or professional degree recipients as having 18, and doctorate recipients as having 19 years of education. 
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resulting from differences in birth weight is small compared with differences in 

achievement associated with mother’s education. Each of the differences between 

heavier and lighter twins shown in the figure is statistically significant. However, 

it is clear that in terms of math and reading achievement, it is better to be the 

lighter twin of a college educated mother than the heavier twin of a high school 

dropout mother. Taken together, these findings suggest that while “nurture” can 

go a long way toward remediating a child’s initial disadvantage, there are still 

biological factors at play that make it difficult to fully remediate this 

disadvantage.23 

B. Results by grade for full sample 

A key question of interest is how the cognitive effects of in utero conditions 

and neonatal health develop. We have already shown that the effects of birth 

weight on cognitive achievement in grades three through eight are similar to those 

observed with respect to adult earnings. We next explore how the impact on test 

scores changes during these important years for human capital development. Does 

the effect of birth weight grow larger as children develop, or does the effect 

appear by age 9 and remain constant through the upper elementary and middle 

grades?  

The results are presented in columns 3-8 in table 2. The table shows the 

estimated effect of log birth weight from twin fixed effects models that are 

estimated separately for test scores from each grade, three through eight. The 

table shows that the twin fixed estimate of the effect of birth weight on cognitive 

achievement is already 0.444 by the third grade, and that the grade-specific 

estimated effect remains fairly stable from third through eighth grade, ranging 

 
23

 We do not mean to suggest that our results answer the age-old nature-nurture question. Rather, they are consistent 
with the growing literature on epigenetics that shows that environmental and biological factors interact (Miller et al., 2009 
or Lam et al., 2012). 
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from 0.376 to 0.526. The F-test that the grade-level estimated effects are identical 

is rejected at a moderate level of statistical significance (p=0.069). However, there 

is no evidence that this effect follows a substantial systematic pattern as children 

progress through school; in a regression model in which we interact the log of 

birth weight linearly with grade in school, the coefficient estimate on the 

interaction term is one-two thousandth the magnitude of the coefficient on log 

birth weight. These results suggest that whatever effect early health at birth has on 

cognitive development occurs largely by age 9, and remains fairly constant 

throughout the preadolescent and adolescent years.  

In a previous version of this paper (Figlio et al., 2013), we look further back, to 

the beginning of formal schooling.24 In various years between 1998 and 2008, 

Florida performed universal kindergarten readiness screening. From 1998 through 

2001 all kindergarten entrants were screened with the School Readiness Checklist 

(SRC), a list of 17 expectations for kindergarten readiness. Subsequently, 

kindergarten entrants were screened with the Dynamic Indicators of Basic Early 

Literacy Skills (DIBELS), and beginning in 2006 the results of this screening 

were collected and recorded by the Florida Department of Education.25 DIBELS 

rates children’s letter sound recognition and letter naming skills and categorizes 

children as above average, low risk, moderate risk or high risk. In our data, 82.1 

percent of children were deemed ready according to the earlier SRC screen, and a 

very similar 83.8 percent of children were deemed either above average or low 

risk according to the DIBELS. Making use of twin comparisons in a linear 

 
24

 There is some reason to believe that the effects of early health deficits may differ between the start of kindergarten 
and the end of third grade. At ages 6-8, as children enter full time schooling, they spend on average 30 percent less time 
being actively cared for by their parents than they did when they were 3-5 and 43 percent less time than when they were 0-
2 (Folbre et al., 2005). The shift in time spent with parents to time spent with other adults (such as teachers) and peers 
(Sacerdote, 2001) suggests it may be important to gauge how the effect of neonatal health on cognitive development 
changes in the early schooling years. 

25
 For more details about the structure and interpretation of DIBELS, see, e.g., Hoffman, Jenkins, and Dunlap (2009). 
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probability model26, we observe that a 10 percent increase in birth weight is 

associated with a 0.67 percentage point increase in being deemed ready for 

kindergarten according to the school readiness checklist, and a 1.15 percentage 

point increase in kindergarten readiness according to the DIBELS. When we pool 

the two sets of cohorts, these figures average to a 0.86 percentage point increase.27 

All estimates are statistically distinct from zero at conventional levels. These 

results suggest that the effect of neonatal health on cognitive development is 

present by age 5. 

C. Role of genetic differences between twins 

For some policy questions, it might be important to isolate the impact of factors 

that change intrauterine growth while holding genetics constant. A potential 

weakness of our data is that they do not include the zygosity of the twins. 

However, we can look at same-sex versus different-sex twins: If genetic 

differences were driving a significant portion of the relationship between birth 

weight and test scores, and birth weight were positively correlated with positive 

determinants of later cognitive skills, we would expect to see a stronger 

correlation between birth weight and test scores among different-sex twin pairs. 

As can be seen in second and third rows of table 2, the estimated effect of birth 

weight is extremely similar for same-sex twins (0.452) and different-sex twins 

(0.421), suggesting that the estimated relationship is within the same general 

range regardless of zygosity. Our finding is consistent with results reported in 

BDS, who find no significant difference in the effect of birth weight on adult 

earnings between same-sex and opposite-sex twins, nor do they find a significant 

 
26

 The pattern of results and statistical significance is extremely similar when we instead estimate conditional logit 
models.  

27
 In Figlio et al. (2013) we go into detail about the metrics one can employ to directly compare the dichotomous 

kindergarten readiness assessments to later continuous test scores. 
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difference in the estimated effect of birth weight on earnings for monozygotic 

twins and dizygotic same-sex twins in their sample with available zygosity 

information. 

D. Parallel results for singletons 

As mentioned above, our emphasis (and the prevailing emphasis in the 

literature) on using twin comparisons to improve internal validity comes at a cost 

in terms of external validity. Twins have older and more educated mothers, and 

weigh considerably less on average at birth than singletons. In addition, there 

could be some unmeasured factor (e.g., a factor associated with in-utero fetal 

competition) associated with both birth weight and cognitive skills that could 

compromise our ability to draw causal inferences about the effects of neonatal 

health on later test scores in twin comparison studies. For these reasons, it is 

valuable to gauge the degree to which the estimated relationships for singletons 

compare with the findings for twins. In our singletons regressions, we further 

control for a set of background characteristics - gender, month and year of birth 

dummies, marital and immigrant status, race and ethnicity, three dummies for 

maternal education, and dummies for age and number of prior births. 

The fourth row of table 2 presents OLS findings for singletons. Two features 

are apparent: First, the relationship between log birth weight and test scores is 

roughly constant as children grow older, just as it was in the case of twins. 

Furthermore, the OLS coefficient for singletons in the pooled model (0.285) is 

identical to the comparable OLS coefficient for twins (0.285). This similarity 

provides the first piece of evidence about the potential external validity of our 

twin results. 

Recall that our twin fixed effects relationship is larger than our twin OLS 

relationship. One possible reason for this difference is that the twin fixed effects 
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relationship effectively conditions on gestational length. In the fifth row of table 2 

we condition on gestational length for singletons, and find an OLS coefficient that 

is somewhat larger than was the case without controlling for gestational length. A 

comparison of the results may indicate that the rate of intrauterine growth matters 

for cognitive development, above and beyond the effect of measured birth weight.  

Singletons include some infants whose birth weight is high enough that it likely 

indicates an underlying poor maternal health condition such as gestational 

diabetes, whereas it is rare for a twin to have a birth weight in this high range. 

When we further limit the singletons analysis to the range between 847 and 3600 

grams, the 1st and 99th percentiles of the twin birth weight distribution, we 

estimate the OLS relationship between log birth weight and pooled test scores, 

conditional on gestational length, to be 0.421, extremely similar to the twin fixed 

effects finding of 0.443. In sum, the closer we get to shaping the singletons OLS 

analysis to be parallel to the twin fixed effects analysis, the closer the two results 

become. In addition, as can be seen in the seventh row of the table, when we look 

just at the relationship between weeks of gestation and standardized test scores, 

we observe that each week of gestation is associated with just over one percent of 

a standard deviation increase in test scores. 

In a set of counties representing 56 percent of the population of the state of 

Florida, we are able to also control for family fixed effects in the singletons 

analysis. The results of this sibling analysis are presented in the eighth through 

tenth rows of table 2. The estimated effects of birth weight on test scores in the 

sibling comparisons tend to be around three-quarters of the magnitude of the twin 

fixed effects estimates, but remain in the same ballpark. The differences in 

magnitudes are due to the differences between the sibling comparisons and the 

twin comparisons, and not the fact that we observe siblings in a subset of the 

state, as can be seen when we consider the OLS coefficients in the sibling 

subpopulation to the overall singletons population. The OLS coefficient on log 
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birth weight is 0.277 for siblings and 0.285 for singletons, and the coefficient on 

log birth weight conditional on gestation in the overlapping sample is 0.403 

versus 0.421 for all singletons. We suspect that the modest differences between 

the twin fixed effects models and sibling fixed effects models are due to factors 

such as differential parental investments in siblings (Bharadwaj, Eberhard, and 

Neilson, 2013; Hsin, 2012) or direct spillovers between siblings (as we find in 

Black et al., 2014). 

[Insert Figure 7 Here] 

Since we find that the estimated coefficients on log birth weight are so similar 

when we condition on twin fixed effects or when we use the population of 

singletons with birth weights in the observed range of twins and condition on 

gestation length, a natural next step is to observe whether the distribution of these 

estimated effects are the same as well. In figure 7, we present the estimated 

marginal effects of log birth weight on different parts of the CDF of the test score 

distribution, broken down by half-standard-deviation increments, for twins, 

singletons, and siblings. This figure demonstrates that additional birth weight is 

especially strongly associated with moving children from the range of scores just 

below average to the range of scores just above average, and is less strongly 

related to test scores far away from the average score. 

E. Heterogeneity of results by gender, maternal health, and background 

The diversity of demographics in Florida combined with the size of the dataset 

allow us to investigate heterogeneity in the effects of birth weight in ways that 

have not been possible in other related work to this point. It is inherently 

interesting to learn whether the long-term effects of in utero conditions on 

cognitive development vary across demographic and socio-economic groups. 
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Moreover, examining this heterogeneity may shed light on the mechanisms by 

which neonatal health affects cognitive skills. If the factors of disadvantage – e.g., 

household income, wealth and parental education – are substitutes with neonatal 

health in the production of cognitive skills one should expect to see larger effects 

of birth weight on test scores for more disadvantaged groups. If they are 

complements with neonatal health, one should expect to see larger effects for 

more advantaged groups.  

[Insert Table 3 Here] 

Table 3 presents a wide range of heterogeneity findings. For the sake of clarity, 

in the table we report the results in which we pool test scores across all grades; in 

online appendix table A1 we report grade-by-grade results for all subgroups of the 

twins analysis. Furthermore due to space constraints, in the print appendix table 

A1 we report the group mean test score and birth weight for twins and singletons, 

respectively, in each subgroup. The first column in table 3 reports the mean and 

standard error of the estimated effect of birth weight on test scores in a twin fixed 

effects model. The second through fourth report the parallel findings for 

singletons: The estimated coefficient on log birth weight (column 2), log birth 

weight conditional on gestation length (column 3)28, and gestation length (column 

4), while the fifth through seventh columns perform the same analysis when we 

condition on sibling fixed effects. 

As can be seen in the first panel of table 3, the results are very similar for boys 

and girls.29 While boys are heavier than girls (4.4 percent for twins, 3.8 percent 

for singletons), the pooled twin fixed effects estimates for boys and girls are 

 
28

 In the singleton and sibling specifications conditioning on gestational length, we also limit the range of birth weights 
to the approximate twins birth weight range, between 847 and 3600 grams. 

29
 Rosenzweig and Zhang (2009) suggest that there could be important differences by gender in their study’s setting. 

However, these differences may reflect cultural factors specific to the rural Chinese context. 
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virtually identical (0.454 and 0.449, respectively). The same is true when we 

make comparisons in either the singleton population or in the case of sibling fixed 

effects. 

The second panel of table 3 stratifies births based on whether the mother has a 

medical history that potentially posed a problem for the pregnancy or delivery.30 

Around one-quarter of mothers have at least one of these risk factors. We observe 

that the pooled fixed effects estimates are very similar (0.422 for mothers with 

medical history, and 0.449 for mothers without medical history), as are the log 

birth weight coefficients for singletons (for instance, 0.372 for mothers with 

medical history, and 0.437 for mothers without medical history in the case where 

we condition on gestational length). These results indicate that maternal health at 

the time of labor and delivery does not appear to matter much in terms of the 

effects of birth weight on cognitive development. 

The third through ninth panels of table 3 show estimates of the effect of birth 

weight on pooled third through eighth grade test scores separately by maternal 

race (panel 3), maternal ethnicity (panel 4), maternal immigrant status (panel 5), 

maternal education (panel 6), a proxy for family income – the zip code’s median 

income as of the 2000 Census (panel 7), maternal marital status (panel 8), and 

maternal age at the time of the child’s birth (panel 9). These factors represents a 

massive range of student advantage, with average group test scores among twins 

as low as -0.475 and as high as 0.663 (see print appendix table A1), reflecting 

gaps that are consistent with other studies of U.S. school children (e.g., Chay, 

Guryan, and Mazumder 2009). Strikingly, the twin fixed effects coefficient 

estimates are remarkably similar across this wide range of groups, with point 

estimates ranging between 0.358 and 0.523. The OLS coefficient estimates in the 
 
30

 The specific medical history factors recorded on the birth record are anemia; cardiac disease; acute or chronic lung 
disease; diabetes; genital herpes; hydramnios/oligohydramnios; hemoglobinopathy; chronic hypertension; pregnancy-
associated hypertension; eclampsia; incompetent cervix; previous infant over 4000 grams; previous preterm or small for 
gestational age infant; renal disease; RH sensitization; uterine bleeding; and other specified history factors. 
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singleton population range from 0.249 to 0.326, and the OLS coefficient estimates 

on birth weight conditional on gestation range between 0.344 and 0.490. Sibling 

fixed effects coefficients conditional on gestation range from 0.282 to 0.418. 

Taken together, these results indicate that the effects of birth weight on test scores 

are roughly the same for children from a wide range of different backgrounds. 

F. Complementarity of neonatal health and parental inputs 

A close look at the subgroup analysis can provide some evidence regarding the 

degree to which neonatal health and parental inputs are complements or 

substitutes. One might expect parents with more resources to be better able to 

remediate the effects of poor neonatal health. However, whether neonatal health 

and parental inputs are complementary is determined by whether parents with 

more resources are relatively more effective at building human capital for 

children of good versus poor neonatal health, which could happen either because 

parents with more resources invest more or because the investments they make 

have higher returns.31 Learning whether parental resources and neonatal health are 

complementary provides a window into mechanisms by which parents and early 

health interact in the human capital development process. 

[Insert Figure 8 Here] 

To explore this question systematically, we pursue an approach similar to that 

employed by Hoynes, Miller, and Simon (2014) to study the relationship between 

the Earned Income Tax Credit (EITC) and rates of low birth weight for different 

groups broken down by their rate of EITC usage. In our case, we use maternal 

race, maternal ethnicity, maternal immigrant status, maternal marital status, 
 
31

 See Guryan, Hurst and Kearney (2008) for evidence that more educated parents spend more time in parenting 
activities with their children, and for a discussion of how that could theoretically result from either a desire to invest more 
or from higher returns.  
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maternal age, maternal education, and neighborhood income to predict student 

test scores in order to construct an index of the family socio-economic status 

(SES), and then divide the students into ten mutually-exclusive groups; these 

groups range in mean predicted test scores from -0.701 to 0.809 in the twins 

population – a range greater than a full individual-level standard deviation of the 

test score distribution.32 Figure 8 plots each group’s estimated coefficient on log 

birth weight against the group’s mean score. We explore the relationship between 

SES and the effect of birth weight on children's cognitive development in three 

different models – the twin fixed effects model, the sibling fixed effects model 

conditional on gestation and restricted to the population of singletons whose birth 

weights fall within the observed range of twin birth weights, and the comparable 

OLS model for singletons. 

The figure demonstrates two important features of the heterogeneity of birth 

weight effects across a wide range of groups stratified by predicted test scores. 

First, the estimated effects of birth weight are all within the same general range 

between 0.30 and 0.67 in the twin fixed effects model, between 0.29 and 0.48 in 

the singletons OLS model, and between 0.24 and 0.45 in the sibling fixed effects 

model, and the estimated effects are both statistically and economically 

significant for every demographic and socio-economic group analyzed.33 These 

magnitudes would imply that the effects on cognitive development could account 

for half to all of the long-term relationship between birth weight and earnings 

estimated by BDS.  

 
32

 The groups range in mean test scores from -0.618 to 0.755 in the case of singletons and from -0.696 to 0.817 in the 
case of sibling fixed effects. 

33
 We have also estimated specifications in which we interact log birth weight separately with the socioeconomic 

variables referenced in table 3. We then evaluated the marginal effect of log birth weight separately for every child in the 
population. The marginal effects in the case of the twin fixed effects specification ranged from 0.17 to 0.62. Online 
appendix figure A4 plots the estimated marginal effects of log birth weight for the full distribution of possibilities in this 
specification. 
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The second pattern the figure illustrates is an upward-sloping relationship 

between estimated treatment effects and the subgroup’s mean test score. This 

positive relationship indicates that the effects of birth weight are larger for 

relatively advantaged groups of children than they are for relatively disadvantaged 

groups of children. The slopes of the lines plotted in figure 8 are 0.132, with a 

standard error of 0.086, in the case of the twin fixed effects model, 0.136, with a 

standard error of 0.060, in the case of the sibling fixed effects model, and 0.083, 

with a standard error of 0.019, in the case of the singletons OLS model.34 The 

three lines are similar in terms of both slope and intercept, and indeed, the twin 

fixed effects and sibling fixed effects lines are virtually parallel. It is highly 

unlikely that these results are driven by differential selection into the sample 

across groups, at least by birth weight. As an illustration, the difference in gaps in 

average birth weight between twin-pairs with test scores and those without test 

scores ranges from -47 grams to 82 grams, and follow no apparent pattern: The 

typical gap is just 3 grams for the bottom half of the SES distribution and 7 grams 

for the top half. Therefore, while by no means definitive, these patterns indicate 

that poor neonatal health may disproportionately affect children growing up in 

high socio-economic status families, and are suggestive that neonatal health and 

parental resources are to some degree complementary.35 

 
34

 We estimate the standard errors of the slopes of these lines by bootstrapping. We randomly drew twin pairs (sibling 
pairs or singletons) with replacement to generate a sample of the same size as our analysis sample. We then used this 
sample to predict test scores and to separate the bootstrapped sample into ten deciles based on predicted test scores. Next, 
we estimated twin fixed effects (sibling fixed effects or singleton) models for each of the ten deciles. For both twins, 
siblings and singletons, we ran 1000 replications of these 10-observation regressions and calculated the standard deviation 
from these slopes for our bootstrapped standard errors. 

35
 Children in higher-scoring subgroups – who tend to have high income, highly educated families with older mothers – 

are more likely to have been born with the assistance of in-vitro fertilization (IVF) or other assisted reproduction 
technologies (ART). It is therefore conceivable that the positive relationship plotted in figure 8 – at least for the twins 
population - is due at least in part to differential patterns of IVF/ART. This association could be especially important in a 
population of twins, given that Bitler (2008) demonstrates that requiring health insurance plans to cover use of IVF/ART 
substantially increases the likelihood that a mother will have twins, and these new twins likely conceived with the 
assistance of IVF/ART have lower-quality birth outcomes. While we cannot measure IVF/ART use in our data, we conduct 
two checks to see whether or not differential IVF/ART prevalence is a plausible explanation for our findings. First, we 
conduct the identical analysis for twins born to mothers aged 30 and above, versus those under 30. Bitler uses this age 
breakdown to proxy for IVF/ART likelihood. Next, we conduct the identical analysis for twins who were the first children 
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V. Effect variation across the birth weight distribution and by discordance 

levels 

Thus far, we have presented estimates of our baseline model, which specifies 

that the relationship between average test scores and birth weight is linear in the 

log of birth weight. Understanding how the marginal effect of birth weight varies 

across the birth weight distribution and with birth weight discordance may be 

helpful in narrowing down potential mechanisms for the relationship. Public 

health officials and medical practitioners frequently direct attention on the 

thresholds of 1500g and 2500g, the conventional delimiters of very low birth 

weight and low birth weight, respectively. Stronger marginal effects of 

proportional increases in birth weight for very low and low birth weight babies 

might suggest different physiological mechanisms than if the effects were only 

present in comparisons between moderate and high birth weight infants. 

We have already presented non-parametric evidence (figure 5) that the 

relationship between birth weight and student test scores appears to be concave, 

supporting the log birth weight specification that is common in the related 

literature. That said, there could still be some important nonlinearities in the 

relationship. In this subsection we relax the assumptions underlying our main 

specification and explore how the marginal effect of poor neonatal health varies 

across the distribution of birth weight and with birth weight discordance. First we 

estimate models that allow the marginal effect of log birth weight to vary across 

different bins of the birth weight distribution. As seen in figure 9, which presents 

separate twin fixed effects coefficients for 20 equally-sized bins, based on the 

                                                                                                                                
born to the mother to those who were not the first children born to the mother, given that IVF/ART is more likely amongst 
families with previous fertility challenges. We do not find evidence that these slopes differ appreciably across these groups 
of mothers. Taken together, these results suggest that differential probabilities that children from high-scoring subgroups 
were conceived via IVF/ART are not responsible for the positive-sloped relationship between the scoring level of the 
subgroup and the subgroup-specific estimated effect of birth weight on test scores. 
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lighter-born twin’s birth weight,36 we observe no systematic relationship between 

the marginal effect of log birth weight on test scores and the level of birth weight. 

The estimated effects are largely stable, aside from variation that appears to be 

due to sampling variation, across the distribution of birth weight.37  

[Insert Figure 9 Here] 

[Insert Figure 10 Here] 

We next explore whether the relationship between birth weight and test scores 

varies by birth weight discordance in figure 10. We divide twins into 20 bins by 

birth weight discordance, excluding the twin pairs that are very close in weight 

(<150g difference).38 As can be seen in the figure, the estimated relationship 

between log birth weight and test scores is qualitatively similar across a wide 

range of discordance. 

Given the salience in the medical and public health literature of specific birth 

weight thresholds (1500g and 2500g), we next explore whether the estimated 

effects of log birth weight in twin fixed effects models differs systematically 

above and below 2500g. Rows 2 through 5 of online appendix table A2 break 

down our estimates into different groups based on the birth weights of the smaller 

twin. As can be seen, the estimated effect of a marginal increase in birth weight is 

quite similar for pairs with at least one low birth weight (<2500g) twin and those 

with only normal birth weight (≥2500g) twins; the estimate for the former is 

0.428, and for the latter it is 0.526, and the two pooled coefficients are not 

 
36

 We have also estimated models that define the bins based on the heavier-born twin’s birth weight. These results are 
very similar and are presented in online appendix figure A8. 

37
 An F-test fails to reject the null hypothesis that the coefficient on log birth weight is the same across all 20 bins (p-

value: 0.943). 
38

 At very small discordances of less than three or four percent, the estimates are too noisy to obtain a meaningful 
result. We exclude the very small discordances, therefore, so that the results for more meaningful discordances are more 
straightforward to present and observe. 
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statistically distinguishable from one another. Likewise, the estimated effects 

reported in rows 4 and 5 of the table for twin pairs with at least one very low birth 

weight (<1500g) and those where the smallest twin is low birth weight (1500-

2499g) twins do not vary substantially across these groups. The estimated effects 

for very low birth weight, low birth weight and normal weight are, respectively, 

0.432, 0.431 and 0.526. The table also presents other specifications, such as birth 

weight measured linearly, and birth weight interacted with the population 

demeaned mean birth weight in the twin pair, and all sets of results paint the same 

fundamental picture. 39 

VI. School quality and the effect of birth weight on test scores 

The results presented thus far have demonstrated that there is a robust 

relationship between birth weight and third through eighth grade test scores, and 

that this relationship is remarkably stable as children age through preadolescence, 

across different demographic groups, and across different socio-economic groups. 

The stability of this relationship is all the more notable because the marginal 

effect of birth weight does not vary much across groups that have very different 

average test scores. Children growing up in circumstances that lead to very 

different achievement levels nonetheless appear to be impacted by early health 

conditions in similar ways. This finding raises the question whether investments 

in children remediate the effect of early deficits in health.  

Schools are an obvious place to look for investments in human capital. In this 

section we ask whether the effect of birth weight on test scores is different for 

students who attend high quality versus low quality schools. Students who attend 

higher quality schools have higher test scores. But does a lower birth weight twin 

perform better relative to his counterpart if the twin pair attends a high quality 
 
39

 Additional formal tests supporting the linear in log birth weight specification are described in Figlio et al. (2013).  
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school instead of a low quality school? In other words, does school quality 

remediate the effect of early health deficits? 

To answer this question, we measure school quality in six different ways. All 

are based on test scores; however, the available evidence (e.g., Chetty et al., 2011, 

Chetty, Friedman, and Rockoff 2013) suggests that measures of school or teacher 

quality based on test scores correlate strongly with later-life outcomes. First, we 

take advantage of the fact that since 1999 the state of Florida has given each of its 

public schools a letter grade ranging from A (best) to F (worst). Initially, this 

grading system was based mainly on average proficiency rates on the FCAT. 

Beginning in 2002, grades were based on a combination of average FCAT 

proficiency rates and average student-level FCAT test score gains from year to 

year. We stratify schools based on average proficiency levels and average student 

gains from year to year. 40 In addition, because jurisdictions have made very 

different determinations about what it means to be a “good” school, we have 

coded, to the closest degree possible in our data, three other highly-publicized 

state/city school grading systems that weight measures of school quality in 

substantially different ways – the systems in Indiana, Louisiana, and New York 

City. 

[Insert Table 4 Here] 

[Insert Table 5 Here] 

The results of the school quality analyses are presented in tables 4 and 5 

(similarly to table 3 we present mean group test scores and birth weight in the 

print appendix table A1). The first panel of table 4 shows estimates separately for 

 
40

 If we code the school grades on the scale from 0 (F) to 4 (A), we observe that state-awarded grades correlate with 
average school achievement at 0.71 and with growth in achievement at 0.23, while the average achievement correlates with 
achievement growth at 0.03. 
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twins who attended schools that received an A, a B, and a C or below. For reasons 

due either to school quality or to selection, test scores are much higher in A-rated 

schools than in lower-rated schools, and we also observe that twins and singletons 

who attend higher-rated schools tend to have heavier birth weights than those 

attending lower-rated schools. But while there are relationships between school 

grade, birth weights, and test scores, there is no monotonic relationship in the 

association between birth weight and test scores: The estimated effect of birth 

weight is largest among twins who attend schools receiving a grade of B (0.499). 

The smallest estimated effect is for twins attending A schools (0.407), and the 

estimate in the middle is for twins attending C/D/F schools (0.458). These 

coefficients are not statistically distinguishable from one another. The point 

estimates are even closer together for singletons, where the estimated coefficient 

on birth weight varies between 0.273 and 0.284 (0.224 to 0.237 for sibling pairs) 

and the estimated coefficient on birth weight conditional on gestational length 

ranges from 0.377 to 0.413 (0.276 to 0.333 for siblings). 

Florida’s school grades are based in large measure on the school’s average 

FCAT scores and the school’s average student-level FCAT score improvements. 

The second and third panels of table 4 explicitly subdivide schools based on these 

dimensions. We find that regardless of whether schools are stratified by average 

levels of FCAT scores or average score improvements, the estimated effects of 

birth weight are present and approximately the same. For instance, the estimated 

marginal effect of log birth weight for twins attending schools with above-median 

FCAT scores is 0.426, versus 0.437 for twins attending schools with below-

median FCAT scores, and the estimated marginal effect twins attending a school 

that had above-median year-to-year gains in FCAT scores is 0.427, versus 0.453 

for schools with below-median gains in FCAT scores.  

Applying other jurisdictions’ school grading formulas to Florida’s data, as 

reported in table 5, does not change the fundamental conclusion regarding school 
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quality. We break the Florida school rankings based on each of the three state 

alternative grading systems into thirds and find several consistent patterns: First, 

the estimated relationship between log birth weight and student test scores is 

strong and present in all cases. Second, there is rarely a monotonic relationship 

observed between the measure of school quality and the coefficient on log birth 

weight, whether it is derived from a twin fixed effect model, a sibling fixed effect 

model or from a singletons model controlling for gestational length or from a 

singletons model without controlling for gestation. Third, in the rare cases in 

which there exists a monotonic relationship, in one case (singletons in New York 

City) the pattern runs counter to that of the other two (sibling fixed effects in 

Indiana and Louisiana), and in all cases the coefficient estimates are very 

similar.41 

Given that we observe larger estimated effects of birth weight for higher socio-

economic status families than for lower socio-economic status families, and since 

higher socio-economic status families tend to select into higher-rated schools, it is 

possible that our finding of no relationship between measured school quality and 

the estimated effect of birth weight is biased due to these differentials. To 

investigate this possibility, we repeat the school grades analysis but further 

stratify the estimated effects of birth weight by predicted socio-economic status 

using the same approach that we followed to generate figure 8. These results are 

presented in online appendix table A3. We continue to observe strong, positive 

relationships between log birth weight and test scores for all school grade levels 

and all predicted socio-economic groups. In addition, there continues to be no 

consistent pattern in these estimated relationships across school grades. For the 

twin fixed effect model, the smallest estimated effects are seen in A schools in 

two of the three socio-economic groups (the lower and middle SES groups), but 
 
41

 The relationship between gestational length and test scores is monotonic in measured school quality, but the results 
across measured school quality are always similarly-sized, consistent with our overall findings. 
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the patterns are different for singletons. It appears, therefore, that the differential 

selection of higher-SES families into higher-rated schools is not responsible in a 

substantial way for our finding that school quality appears to not substantively 

affect the relationship between birth weight and student outcomes.42 

In summary, the evidence appears to indicate that the effect of birth weight on 

test scores does not vary substantially with measures of the quality of schools that 

a child attends. One view of this result could be that the effects of in utero health 

conditions create a ceiling to learning that cannot be remediated after the fact, at 

least by the time that children are of schooling age. Students spend a great deal of 

time in schools, and schooling is the primary formal way that human capital 

investment takes place during childhood. The amount (Card, 1999) and quality 

(Card & Krueger, 1992a, Card & Krueger, 1992b, Krueger & Whitmore, 2001, 

Chetty et al., 2011, Chetty, Friedman, and Rockoff 2013) of schooling have been 

shown to have significant positive impacts on earnings and other outcomes. If 

attending a better school improves all students’ outcomes in parallel but does not 

completely remediate the effects of early health deficits on cognitive 

development, it may be that schools currently lack the resources or information 

necessary to fully remediate these deficits. 

An alternative view of the results is that school quality does not differentially 

affect remediation, but leaves open the possibility that remediation could happen. 

This view is supported by a few observations. The difference in birth weights 

between twins or siblings is probably far more noticeable to parents than to 

classroom teachers. To parents a 15 percent difference in twins’ or siblings’ birth 

weight would be noticeable, but to a teacher nine to fourteen years later children’s 

initial birth weights would be insignificant compared to the cognitive achievement 

 
42

 We have also estimated models in which we control for log birth weight interacted with observable maternal and 
socio-economic characteristics. Our results regarding no apparent relationship between school quality measures and the 
estimated effect of log birth weight are fundamentally unchanged when we further condition on these interaction terms. 
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she observes in the classroom. Even differences in cognitive achievement 

resulting from large discordances in birth weight among twins or siblings 

probably appear to the teacher to be the result of temperamental differences. 

Recall that the difference in achievement between the average high and low birth 

weight twin is far less than the difference in achievement between children born 

to college educated and high school dropout mothers. Given this discrepancy, it is 

likely that teachers treat twins or siblings – or, for that matter, similar children 

under a different dimension – similarly. The lack of relative improvement of 

children with poor neonatal health in better-rated schools may not indicate that it 

is impossible to remediate. Rather, it may indicate that it is not done, or at least 

not done systematically. 

VII. Conclusion 

Using a unique population-level data source from Florida, we present the first 

look at the effects of poor neonatal health on child cognitive development in a 

highly developed context, provide the first comprehensive study of the differential 

effects on a wide range of different demographic and socio-economic groups, and 

offer the first exploration of the degree to which school quality might influence 

these effects. Our results are remarkably consistent: Children with higher birth 

weight enter school with a cognitive advantage that appears to remain stable 

through the elementary and middle school years. The birth weight-related patterns 

in test score performance observed in twins are also seen in the overall population 

of singletons. The estimated effects of low birth weight are present for children of 

highly-educated and poorly-educated parents alike, for children of both young and 

old mothers, and for children of all races and ethnicities, parental immigration 

status, parental marital status, and other background characteristics. The estimated 

effects of neonatal health are of roughly the same magnitude throughout the tested 
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grades as they are at the beginning of kindergarten (Figlio et al., 2013), and even 

as they are in very early childhood (Hart, 2008).43 The estimated effects are just as 

pronounced for students attending highly-performing public schools (measured in 

a variety of ways) as they are for students attending poorly-performing public 

schools. These results strongly point to the notion that the effects of poor neonatal 

health on adult outcomes are largely determined early – in early childhood and the 

first years of elementary school. 

 This pattern persists despite parental attempts to provide different 

experiences to their different children in early childhood. Bharadwaj, Eberhard, 

and Neilson (2013) and Hsin (2012), for example, find evidence that parents tend 

to invest more in lower birth weight children than they do in higher birth weight 

children, indicating a desire for remediation. While our administrative data do not 

offer the types of survey data used in those two papers, we see evidence of parents 

actively and simultaneously making different choices for their twins, suggesting 

that parents recognize developmental differences in their children and seek to 

remediate these differences in early childhood. It is reasonably common in Florida 

for parents to send one twin to preschool but not the other (true in 7.6 percent of 

twin pairs and 8.9 percent of twin pairs in which the birth weight discordance is 

greater than 20 percent). In 9.2 percent of twin pairs (10.5 percent of twin pairs 

with discordance greater than 20 percent) parents choose different preschool 

arrangements for their twins – either sending one twin to preschool but not the 

other, or sending both twins to preschool but only one to privately-financed 

preschool. And in just under one percent of cases (1.2 percent of twin pairs with 

 
43

 Hart’s (2008) study of a much smaller set of twins in the ECLS-B finds estimated effects of birth weight on the 
Bayley Scales of Infant Development that are close in effect size to those presented in our paper. 
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discordance greater than 20 percent) parents “redshirt” one twin but not the other 

– starting twins in school at different ages.44  

 Children with poor neonatal health who come from highly-educated 

families perform much better than those with good neonatal health who come 

from poorly-educated families, indicating that “nurture” can at least partially 

overcome “nature.” Indeed, this finding is very much in keeping with the 

literature on the positive relationship between household income and health status 

in childhood and adulthood (see, e.g., Case, Lubotsky and Paxson, 2002). Still, 

the fact that these initial biological factors are not fully overcome for even the 

most affluent and educated families – and, indeed, that the estimated effects of log 

birth weight are actually somewhat higher for these families – is consistent with 

the notion that parental inputs and neonatal health are complements rather than 

substitutes. While what exactly parents do to successfully remediate initial 

biological disadvantage and what schools and parents could potentially do in early 

childhood and the early elementary grades and beyond to continue to remediate 

are open questions, this study provides numerous indications that poor neonatal 

health establishes a stable trajectory for children’s cognitive development.   

These findings have potential implications for both health and education policy 

and practice. While it is premature to suggest specific policy responses based on 

this work, these findings indicate some potentially fruitful places to look for 

additional evidence. On the health side, for example, it will be valuable to learn 

whether improvements in earnings by families with pregnant women, improved 

maternal nutrition, or reduced maternal stress – all factors associated with higher 

birth weight – also translate to better cognitive outcomes in childhood. On the 

education side, it will be important to learn whether the relationship between birth 

weight and cognitive outcomes is attenuated in cases in which health and 
 
44

 In cases of differential redshirting, parents are slightly more likely to redshirt the lighter twin than they are to redshirt 
the heavier twin. We discuss differential redshirting in greater detail in Figlio et al. (2013). 
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education providers have more interaction, such as in the case of children who 

participate in early intervention pre-kindergarten programs. Understanding these 

types of relationships will help us to modify the mechanisms through which 

neonatal health affects cognitive outcomes in childhood and adulthood, and guide 

health and education policy and practice. 
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FIGURES 

 
FIGURE 1. DISCORDANCE IN BIRTH WEIGHT BETWEEN TWINS BORN IN FLORIDA BETWEEN 1992 AND 2002 

Notes: Figure 1 plots kernel density distributions of within-twin-pair difference in birth weight for all twin births in Florida 
(solid pink line) between 1992 and 2002 and twin births who were born in Florida and were successfully matched to 
Florida public school records (dashed blue line). Distributions are censored at 2000 grams for the sake of clarity. 
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FIGURE 2. DIFFERENCE IN BIRTH WEIGHT DISTRIBUTIONS BETWEEN SINGLETONS AND TWINS BORN IN FLORIDA BETWEEN 

1992 AND 2002 

Notes: Figure 2 plots kernel density distributions of infant birth weight for all singletons (solid pink line) and twins (solid 
purple line) born in Florida between 1992 and 2002 as well as infant birth weight distribution of singletons (dashed blue 
line) and twins (dashed orange line) that were successfully matched to Florida public school records. 
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FIGURE 3. AVERAGE WITHIN-TWIN-PAIR DIFFERENCE IN TEST SCORES BETWEEN HEAVIER AND LIGHTER TWINS 

Notes: Figure 3 plots difference between the mean test score of heavier and lighter twin from each pair in each grade and 
the respective 95% confidence interval of this difference. Mean test score is constructed as an average of scores in 
mathematics and reading for each individual in each grade where we observe both twins. If score in mathematics is not 
available then only reading is used and vice versa. In each grade we create an average of scores for heavier and lighter 
twins and then calculate the difference between the two. 
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FIGURE 4. MEANS OF SCORES BY DISCORDANCE QUARTILES 

Notes: Figure 4 plots difference between the mean test score of heavier and lighter twin from each pair in each grade for 
four quartiles of discordance in birth weight. Mean test score is constructed as an average of scores in mathematics and 
reading for each individual in each grade where we observe both twins. If score in mathematics is not available then only 
reading is used and vice versa. In each grade we create an average of scores for heavier and lighter twins and then calculate 
the difference between the two. Discordance is calculated as the difference between heavier and lighter twin birth weight 
over the weight of the heavier twin. Mean discordance for each group in parentheses. 
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FIGURE 5. NON-PARAMETRIC RELATIONSHIP BETWEEN BIRTH WEIGHT AND TEST SCORES 

Notes: Figure 5 plots coefficients from OLS (purple solid line) and twin-FE (orange solid line) models where the dependent 
variable is the mean of pooled grades three through eight of combined mathematics and reading test scores for each 
individual and the independent variables are indicators for 37 weight bins corresponding to each individual birth weight. 
No additional controls are included in the models. 
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FIGURE 6. AVERAGE WITHIN TWIN PAIR DIFFERENCE IN TEST SCORES BETWEEN THE HIGHER BIRTH WEIGHT AND THE LOWER 

BIRTH WEIGHT TWIN BY MATERNAL EDUCATION CATEGORIES 

Notes: Figure 6 plots means of combined mathematics and reading test scores for lighter and heavier twins from each pair 
stratified by maternal education. Purple lines correspond to averages for lighter while orange lines correspond to heavier 
twins. Solid lines present means for high school drop-out mothers, dashed lines present means for children of mothers with 
high school diploma or some college while dotted lines present means for college graduates. 
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FIGURE 7. ESTIMATED EFFECTS OF BIRTH WEIGHT ON THE POSITION IN THE TEST SCORE DISTRIBUTION 

Notes: Figure 7 plots estimated effects of log birth weight on the CDF of test scores. Specifically, the top-left panel plots 
coefficients on log birth weight from a series of standard twin FE regressions in which the dependent variables are 
indicators marking various points in the CDF of test scores (e.g. greater than -3.5, greater than -3, etc.). The top-right panel 
plots estimates from analogous regressions that include singletons with birth weights that overlap with the twin birth 
weight distribution. The bottom-center panel plots estimates from analogous sibling fixed effects regressions conditional 
on gestation that include singletons with birth weight that overlap with the twin birth weight distribution. 
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FIGURE 8. AVERAGE TEST SCORES AMONG GROUPS AND ESTIMATED BIRTH WEIGHT EFFECTS 

Notes: Figure 8 plots the estimates for the 10 predicted groups based on the regression of test scores on maternal race, 
ethnicity, immigrant origin, marital status, education, age categories and income indicators. These groups are not 
overlapping. In this graph income from 1992 and 1993 is imputed based on observables. Groups are calculated only for 
individuals with all information available and for all singletons and siblings with birth weight in a range of 847 to 3600 
grams. 
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FIGURE 9. ESTIMATED EFFECTS OF BIRTH WEIGHT, BY WEIGHT OF SMALLER TWIN 

Notes: Figure 9 plots coefficient estimates from a twin FE regression where the dependent variable is the mean test score 
and the independent variables are the products of log birth weight with indicators for 20 bins reflecting lighter twin 
percentiled birth weight. The regression additionally controls for infant gender and birth order within-twin pair. 
Heteroskedasticity robust standard errors are used to calculate the 95% confidence interval. Numbers on the x-axis 
correspond to the mean smaller twin birth weight in each of the 20 bins.  
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FIGURE 10. ESTIMATED EFFECTS OF BIRTH WEIGHT, BY BIRTH WEIGHT DISCORDANCE 

Notes: Figure 10 plots coefficient estimates from a twin FE regression where the dependent variable is the mean test score 
and the independent variables are the products of log birth weight with indicators for 20 bins reflecting birth weight 
discordance between twins. The regression additionally controls for infant gender and birth order within-twin pair. 
Heteroskedasticity robust standard errors are used to calculate the 95% confidence interval. Numbers on the x-axis 
correspond to the mean twin pair percentage discordance. 
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TABLES 

 
TABLE 1—REPRESENTATIVENESS OF THE FLORIDA TEST SCORE AND TWIN POPULATION 

 (1) (2) (3) (4) 

Maternal attribute Full population 
of births 

Population of kids 
matched to Florida 

school records 

Population of kids 
with a third-grade 

test score 

Population of twins 
with a third grade test 

score 
Black 22.6 24.8 25.7 25.9 
Hispanic 23.0 23.3 23.9 18.0 
High school dropout 20.9 22.5 23.3 15.5 
High school graduate 58.6 60.0 60.5 61.5 
College graduate 20.1 17.1 15.8 23.1 
Age 21 or below 22.0 23.6 24.2 14.4 
Age between 22 and 29 42.2 42.2 42.2 40.2 
Age between 30 and 35 26.1 24.8 24.4 31.8 
Age 36 or above 9.8 9.3 9.2 13.6 
Foreign-born 23.4 22.9 23.2 18.0 
Married at time of birth 64.8 62.2 60.9 68.4 
Number of children 2,047,663 1,652,333 1,334,006 28,434 

Notes: The first column presents fractions in total population of children born in Florida between 1992 and 2002. The second 
column presents fractions in total population of children born between 1992 and 2002 linked to Florida school records. The 
third column presents fractions in total population of children born between 1992 and 2002 for whom we observe a third grade 
test score. Fourth column presents fractions in total population of twin pairs born between 1992 and 2002 for whom we observe 
third grade test scores fulfilling. We restrict columns (3) and (4) only to observations that include full information on birth 
certificate. 
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TABLE 2—ESTIMATED EFFECTS OF BIRTH WEIGHT ON COGNITIVE DEVELOPMENT 

 (1) (2) (3) (4) (5) (6) (7) (8) 
 Pooled Imputed grade 
 OLS FE 3 4 5 6 7 8 

Twins (Average of mathematics and reading): Estimates on ln(birth weight) 
All twins 0.285*** 0.443*** 0.444*** 0.526*** 0.431*** 0.428*** 0.390*** 0.376*** 
 (0.022) (0.039) (0.043) (0.045) (0.047) (0.053) (0.057) (0.061) 
 [126,636] [28,434] [26,508] [22,970] [19,340] [16,186] [13,198] 
Same sex twins 0.300*** 0.452*** 0.463*** 0.532*** 0.411*** 0.469*** 0.402*** 0.368*** 
 (0.027) (0.043) (0.050) (0.053) (0.053) (0.059) (0.062) (0.066) 
Opposite sex twins 0.259*** 0.421*** 0.399*** 0.513*** 0.475*** 0.330*** 0.360*** 0.390*** 
 (0.038) (0.082) (0.086) (0.088) (0.097) (0.112) (0.122) (0.136) 

Singletons (Average of mathematics and reading): Estimates on ln(birth weight) and gestation 
Ln(birth weight) 0.285*** 

- 
0.305*** 0.289*** 0.292*** 0.281*** 0.262*** 0.261*** 

 (0.004) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005) 
 [5,752,665] [1,254,821] [1,181,590] [1,040,814] [888,895] [756,478] [630,067] 
Ln(birth weight) | gestation 
weeks 

0.332*** 
- 

0.345*** 0.336*** 0.337*** 0.328*** 0.313*** 0.316*** 
(0.005) (0.005) (0.005) (0.006) (0.006) (0.007) (0.007) 

Ln(birth weight) | gestation 
weeks [overlapping] 

0.421*** 
- 

0.430*** 0.424*** 0.428*** 0.421*** 0.399*** 0.406*** 
(0.007) (0.008) (0.008) (0.009) (0.009) (0.010) (0.011) 

Gestation weeks 0.013*** 
- 

0.015*** 0.013*** 0.013*** 0.012*** 0.011*** 0.010*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) 

Siblings (Average of mathematics and reading): Estimates on ln(birth weight) and gestation 
Ln(birth weight) 0.277*** 0.238*** 0.263*** 0.254*** 0.241*** 0.219*** 0.179*** 0.178*** 
 (0.009) (0.011) (0.012) (0.013) (0.015) (0.017) (0.021) (0.026) 
 [1,110,206] [294,782] [267,751] [212,294] [156,910] [109,883] [68,586] 
Ln(birth weight) | gestation 
weeks [overlapping] 

0.403*** 0.317*** 0.345*** 0.335*** 0.315*** 0.344*** 0.227*** 0.200*** 
(0.018) (0.022) (0.024) (0.025) (0.028) (0.033) (0.039) (0.050) 

Gestation weeks 0.012*** 0.008*** 0.009*** 0.009*** 0.008*** 0.005*** 0.006*** 0.005** 
 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) 

Notes: Columns (1) and (2) present pooled grade three through eight results for OLS, twin and sibling-FE models. Columns (3) to (8) present OLS, 
twin and sibling-FE estimates separately for each of the 6 grades. Each coefficient comes from a separate regression. Sample sizes in square brackets 
reflect number of individual observations in each regression; only twin pairs where both twins are observed with test scores in each grade are 
included; only siblings where at least two siblings are observed with test scores in each grade are included. All singletons are included except for the 
second to last estimate for singletons where only singletons with birth weight in range 847 to 3600 grams. Siblings could be identified only in about 
half of the population. We include all siblings that have test scores in given grade. In second to last column we focus only on siblings where the birth 
weight ranges from 847 to 3600 grams. This restriction provides overlapping distribution of birth weight among twins and singletons. The dependent 
variables are averaged test scores in mathematics and reading. If the test score in mathematics is not available then reading is included and vice versa. 
The main variable of interest is natural logarithm of birth weight. The remaining independent variables in twin-FE models include infant gender and 
within-twin pair birth order. OLS estimates further controls for infant birth month and year, marital and immigration status, race and ethnicity, 
indicators for maternal age (each for one year), education (high school dropout, high school graduate, college graduate) and number of births (each 
for one birth). Sibling fixed effects estimates further control for birth order within a family. Naturally time invariant characteristics of the mothers are 
dropped in sibling fixed effects specifications. In siblings regressions we additionally control for birth order within the sibling pair observed in our 
data. Standard errors in all twin estimates are clustered at twin pair level. Standard errors in singleton estimates are clustered at individual level in 
pooled regressions (column (1)) while heteroskedasticity robust standard errors are calculated in columns (3) to (8) where there is just one 
observation per individual. Standard errors in all sibling estimates are clustered at mother level. 
*** Significant at the 1 percent level.  
** Significant at the 5 percent level. 
* Significant at the 10 percent level. 
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TABLE 3—ESTIMATED EFFECTS OF BIRTH WEIGHT ON COGNITIVE DEVELOPMENT BY CHILD AND MOTHER 

CHARACTERISTICS 

Sample 

(1) (2) (3) (4) (5) (6) (7) 
Twins Singletons Siblings 

Birth weight Birth weight 
Birth weight | 

gestation 
Gestation Birth weight 

Birth weight | 
gestation 

Gestation 

Boys 0.454*** 0.296*** 0.440*** 0.013*** 0.230*** 0.321*** 0.007*** 
 (0.068) (0.005) (0.011) (0.001) (0.022) (0.044) (0.002) 
Girls 0.449*** 0.276*** 0.407*** 0.013*** 0.223*** 0.291*** 0.008*** 
 (0.052) (0.005) (0.010) (0.000) (0.021) (0.037) (0.002) 
No medical  
problems 

0.449*** 0.296*** 0.437*** 0.011*** 0.249*** 0.331*** 0.007*** 
(0.048) (0.005) (0.009) (0.000) (0.015) (0.028) (0.001) 

Medical 
problems 

0.422*** 0.249*** 0.372*** 0.015*** 0.244*** 0.319*** 0.011*** 
(0.066) (0.006) (0.013) (0.001) (0.032) (0.063) (0.003) 

White 0.464*** 0.293*** 0.457*** 0.011*** 0.244*** 0.346*** 0.006*** 
 (0.045) (0.005) (0.009) (0.000) (0.015) (0.030) (0.001) 
Black 0.392*** 0.262*** 0.344*** 0.015*** 0.232*** 0.282*** 0.011*** 
 (0.082) (0.006) (0.013) (0.001) (0.017) (0.033) (0.002) 
Non-Hispanic 0.436*** 0.283*** 0.426*** 0.012*** 0.228*** 0.304*** 0.007*** 
 (0.044) (0.004) (0.008) (0.000) (0.013) (0.025) (0.001) 
Hispanic 0.480*** 0.270*** 0.384*** 0.012*** 0.270*** 0.357*** 0.012*** 
 (0.079) (0.008) (0.015) (0.001) (0.023) (0.046) (0.002) 
Non-immigrant 0.441*** 0.284*** 0.422*** 0.012*** 0.223*** 0.292*** 0.006*** 

(0.044) (0.004) (0.008) (0.000) (0.013) (0.024) (0.001) 
Immigrant 0.456*** 0.255*** 0.379*** 0.013*** 0.291*** 0.411*** 0.012*** 
 (0.077) (0.008) (0.015) (0.001) (0.024) (0.048) (0.002) 
Education  0.358*** 0.265*** 0.368*** 0.012*** 0.229*** 0.303*** 0.008*** 
Below 12 yrs (0.094) (0.008) (0.014) (0.001) (0.026) (0.046) (0.002) 
12-15 yrs 0.439*** 0.291*** 0.436*** 0.013*** 0.225*** 0.306*** 0.008*** 
 (0.050) (0.005) (0.009) (0.000) (0.016) (0.030) (0.001) 
Above 15 yrs 0.523*** 0.256*** 0.380*** 0.013*** 0.238*** 0.418*** 0.001 
 (0.079) (0.010) (0.020) (0.001) (0.031) (0.059) (0.003) 
Bottom 0.388*** 0.289*** 0.407*** 0.015*** 0.250*** 0.287*** 0.011*** 
 (0.076) (0.007) (0.013) (0.001) (0.020) (0.038) (0.002) 
Middle 0.445*** 0.269*** 0.407*** 0.012*** 0.221*** 0.339*** 0.007*** 
 (0.072) (0.007) (0.014) (0.001) (0.024) (0.047) (0.002) 
Top 0.447*** 0.264*** 0.400*** 0.011*** 0.239*** 0.401*** 0.004* 
 (0.078) (0.008) (0.016) (0.001) (0.026) (0.049) (0.002) 
Non-married 0.372*** 0.269*** 0.384*** 0.013*** 0.235*** 0.284*** 0.009*** 
 (0.076) (0.006) (0.011) (0.001) (0.018) (0.034) (0.002) 
Married 0.482*** 0.292*** 0.439*** 0.012*** 0.259*** 0.366*** 0.007*** 
 (0.044) (0.005) (0.010) (0.000) (0.017) (0.032) (0.001) 
Age below 22 0.372*** 0.268*** 0.373*** 0.011*** 0.195*** 0.305*** 0.005** 
 (0.115) (0.007) (0.014) (0.001) (0.025) (0.046) (0.002) 
22-29 0.444*** 0.274*** 0.415*** 0.011*** 0.249*** 0.317*** 0.009*** 
 (0.059) (0.006) (0.012) (0.001) (0.022) (0.042) (0.002) 
30-35 0.490*** 0.294*** 0.446*** 0.014*** 0.228*** 0.329*** 0.006** 
 (0.069) (0.007) (0.015) (0.001) (0.034) (0.066) (0.003) 
Above 35 0.410*** 0.326*** 0.490*** 0.018*** 0.269*** 0.335*** 0.016*** 
 (0.104) (0.012) (0.024) (0.001) (0.054) (0.119) (0.005) 

Notes: Column (1) presents pooled grades three through eight twin-FE model estimates corresponding to model outlined in column (2) in table 2. 
Columns (2) to (4) present estimates for singleton population. Column (2) presents the correlation between pooled grades three through eight test 
scores and birth weight for all singletons. Column (3) presents the correlation between pooled grades three through eight test scores and birth weight 
conditional on gestation for the sample of singletons that overlap in birth weight with twin population, i.e. birth weight in range 847 to 3600 grams. 
Column (4) presents the correlation between pooled grades three through eight test scores and gestation weeks for all singletons. Columns (5) to (7) 
present estimates for sibling population. Twins fixed effects regressions control for child gender and birth order. All singleton models include the 
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following controls: gender, month and year of birth dummies, marital and immigrant status, race and ethnicity, dummies for maternal education (3 
categories), age and number of births. Sibling models further control for birth order within a family. Standard errors in column (1) are clustered at 
twin-pair level, in columns (2) to (4) at individual level while in columns (5) to (7) at mother level. Sample sizes are: 126 636 individual-years 
observations in column (1), 5,752,665 individual-year observations in columns (2) and (4), 4,025,893 individual-year observations in column (3), 
1,110,206 individual-year observation in columns (5) and (7), 648,486 individual-year observations in column (6). There are fewer observations in 
zip code income because we do not observe these for years 1992 and 1993. There are fewer observations in racial breakdown because we exclude 
other races than Black or White from this comparison. There are fewer observations in maternal marital history breakdown because we miss 
information for some mothers.  
*** Significant at the 1 percent level.  
** Significant at the 5 percent level. 
* Significant at the 10 percent level. 

 

 
TABLE 4—RESULTS BY SCHOOL QUALITY MEASURES 

Sample 

(1) (2) (3) (4) (5) (6) (7) 
Twins Singletons Siblings 

Birth weight Birth weight 
Birth weight | 

gestation 
Gestation Birth weight 

Birth weight | 
gestation 

Gestation 

Awarded grade 
A 0.407*** 0.273*** 0.412*** 0.012*** 0.233*** 0.333*** 0.005*** 
 (0.042) (0.004) (0.009) (0.000) (0.014) (0.027) (0.001) 
B 0.499*** 0.284*** 0.413*** 0.012*** 0.224*** 0.305*** 0.007*** 
 (0.063) (0.006) (0.011) (0.001) (0.022) (0.043) (0.002) 
C & D & F 0.458*** 0.275*** 0.377*** 0.014*** 0.237*** 0.276*** 0.010*** 
 (0.076) (0.006) (0.012) (0.001) (0.021) (0.040) (0.002) 

Average proficiency 
Below median 0.437*** 0.281*** 0.395*** 0.014*** 0.230*** 0.293*** 0.010*** 

(0.061) (0.005) (0.010) (0.000) (0.016) (0.030) (0.001) 
Above median 0.426*** 0.267*** 0.404*** 0.011*** 0.240*** 0.348*** 0.005*** 

(0.043) (0.004) (0.009) (0.000) (0.015) (0.029) (0.001) 
Growth in proficiency 

Below median 0.453*** 0.286*** 0.428*** 0.012*** 0.245*** 0.324*** 0.008*** 
(0.044) (0.004) (0.008) (0.000) (0.014) (0.026) (0.001) 

Above median 0.427*** 0.284*** 0.413*** 0.013*** 0.229*** 0.281*** 0.008*** 
(0.045) (0.004) (0.008) (0.000) (0.014) (0.026) (0.001) 

Notes: Column (1) presents pooled grades three through eight twin-FE model estimates corresponding to model outlined in column (2) in table 2. 
Columns (2) to (4) present estimates for singleton population. Column (2) presents the correlation between pooled grades three through eight test 
scores and birth weight for all singletons. Column (3) presents the correlation between pooled grades three through eight test scores and birth weight 
conditional on gestation for the sample of singletons that overlap in birth weight with twin population, i.e. birth weight in range 847 to 3600 grams. 
Column (4) presents the correlation between pooled grades three through eight test scores and gestation weeks for all singletons. Columns (5) to (7) 
present estimates for sibling population. Twins fixed effects regressions control for child gender and birth order. All singleton models include the 
following controls: gender, month and year of birth dummies, marital and immigrant status, race and ethnicity, dummies for maternal education (3 
categories), age and number of births. Sibling models further control for birth order within a family. Standard errors in column (1) are clustered at 
twin-pair level, in columns (2) to (4) at individual level while in columns (5) to (7) at mother level. In the case of awarded grades since not all 
schools are awarded grades every year our sample consist of 123,886 observations used in models in column (1), 5,650,536 observations used in 
models in column (2) and (4), 3,952,642 observations used in models in column (3), 1,084,620 observations used in models in columns (5) and (7), 
and 632,125 observations used in column (6). In the case of average proficiency we use 125,936 observations in models in column (1), 5,731,434 
observations in models in columns (2) and (4), 4,011,368 observations in models in column (3), 1,106,452 observations used in models in columns 
(5) and (7), and 646,284 observations used in column (6). In the case of growth in proficiency we use 125,566 observations in models in column (1), 
5,716,150 observations in models in columns (2) and (4), 4,000,486 observations in models in column (3), 1,102,938 observations used in models in 
columns (5) and (7), and 644,010 observations used in column (6). The discrepancy between the samples in table 3 and table 4 is due to the fact that 
we do not have data on school quality for the universe of schools in every year in Florida (in particular average proficiency and growth cannot be 
calculated for a newly established school). 
*** Significant at the 1 percent level.  
** Significant at the 5 percent level. 
* Significant at the 10 percent level. 
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TABLE 5—RESULTS BY SCHOOL QUALITY MEASURES: RUNNING FLORIDA DATA THROUGH OTHER STATE SCHOOL 
GRADING SYSTEMS 

  (1) (2) (3) (4) (5) (6) (7) 

State Quality 
group 

Twins Singletons Siblings 

Birth 
weight 

Birth 
weight 

Birth 
weight | 
gestation 

Gestation Birth 
weight 

Birth 
weight | 
gestation 

Gestation 

(1) 
New York 

City 

Top 0.389*** 0.270*** 0.405*** 0.011*** 0.195*** 0.265*** 0.004*** 
 (0.049) (0.005) (0.010) (0.000) (0.018) (0.035) (0.002) 

Middle 0.491*** 0.275*** 0.407*** 0.012*** 0.233*** 0.318*** 0.008*** 
 (0.051) (0.005) (0.009) (0.000) (0.018) (0.033) (0.002) 

Bottom 0.484*** 0.294*** 0.418*** 0.014*** 0.251*** 0.293*** 0.011*** 
 (0.062) (0.005) (0.011) (0.001) (0.020) (0.038) (0.002) 

(2) 
Louisiana 

Top 0.399*** 0.263*** 0.403*** 0.011*** 0.232*** 0.353*** 0.005*** 
 (0.048) (0.005) (0.010) (0.000) (0.018) (0.034) (0.002) 

Middle 0.480*** 0.283*** 0.409*** 0.013*** 0.241*** 0.319*** 0.008*** 
 (0.054) (0.005) (0.010) (0.000) (0.018) (0.035) (0.002) 

Bottom 0.450*** 0.267*** 0.360*** 0.015*** 0.218*** 0.250*** 0.010*** 
 (0.104) (0.008) (0.015) (0.001) (0.028) (0.052) (0.002) 

(3) 
Indiana 

Top 0.401*** 0.260*** 0.395*** 0.011*** 0.217*** 0.330*** 0.005*** 
 (0.047) (0.005) (0.010) (0.000) (0.017) (0.034) (0.001) 

Middle 0.522*** 0.286*** 0.415*** 0.013*** 0.236*** 0.290*** 0.008*** 
 (0.054) (0.005) (0.010) (0.000) (0.019) (0.034) (0.002) 

Bottom 0.434*** 0.276*** 0.384*** 0.015*** 0.243*** 0.274*** 0.010*** 
 (0.097) (0.007) (0.014) (0.001) (0.026) (0.049) (0.002) 

Notes: Column (1) presents pooled grades three through eight twin-FE model estimates corresponding to model outlined in 
column (2) in table 2. Columns (2) to (4) present estimates for singleton population. Column (2) presents the correlation 
between pooled grades three through eight test scores and birth weight for all singletons. Column (3) presents the correlation 
between pooled grades three through eight test scores and birth weight conditional on gestation for the sample of singletons that 
overlap in birth weight with twin population, i.e. birth weight in range 847 to 3600 grams. Column (4) presents the correlation 
between pooled grades three through eight test scores and gestation weeks for all singletons. Columns (5) to (7) present 
estimates for sibling population. Twin fixed effects regressions control for child gender and birth order. All singleton models 
include the following controls: gender, month and year of birth dummies, marital and immigrant status, race and ethnicity, 
dummies for maternal education (3 categories), age and number of births. Sibling models further control for birth order within a 
family. Standard errors in column (1) are clustered at twin-pair level, in columns (2) to (4) at individual level while in columns 
(5) to (7) at mother level. In the case of awarded grades since not all schools are awarded grades every year and not every 
system was functioning through the same time period our samples differ. New York system simulation consist of 107794 
observations used in models in column (1), 4972962 observations used in models in column (2) and (4), 3471424 observations 
used in models in column (3), 850751 observations used in models in columns (5) and (7) and 493281 observations used in 
models in column (6). Louisiana system simulation consist of 108926 observations used in models in column (1), 5027615 
observations used in models in column (2) and (4), 3508071 observations used in models in column (3), 850751 observations 
used in models in columns (5) and (7) and 493281 observations used in models in column (6). Indiana system simulation consist 
of 107798 observations used in models in column (1), 4973114 observations used in models in column (2) and (4), 3471516 
observations used in models in column (3), 850751 observations used in models in columns (5) and (7) and 493281 
observations used in models in column (6). 
*** Significant at the 1 percent level.  
** Significant at the 5 percent level. 
* Significant at the 10 percent level. 
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TABLE A1—MEAN TEST SCORES AND BIRTH WEIGHT FOR GROUPS USED IN TABLES 3, 4, AND 5 

Sample 

(1) (2) 

Sample 

(3) (4) 
Mean test score 

[Mean birth weight] 
Mean test score 

[Mean birth weight] 
Twins Singletons Twins Singletons 

Table 3 30-35 0.280 0.305 
Boys 0.049 0.051  [2467] [3390] 
 [2473] [3397] Above 35 0.342 0.306 
Girls 0.101 0.119  [2480] [3353] 
 [2369] [3274] Table 4 
No medical problems 0.076 0.098 A 0.278 0.276 
 [2457] [3359]  [2437] [3365] 
Medical problems 0.074 0.041 B -0.093 -0.039 
 [2356] [3259]  [2410] [3323] 
White 0.258 0.228 C & D & F -0.399 -0.310 
 [2457] [3393]  [2375] [3266] 
Black -0.465 -0.362 Below median -0.339 -0.248 
 [2318] [3180]  [2382] [3281] 
Non-Hispanic 0.099 0.110 Above median 0.298 0.298 
 [2413] [3333]  [2442] [3371] 
Hispanic -0.034 0.001 Below median 0.046 0.058 
 [2454] [3346]  [2421] [3337] 
Non-immigrant 0.074 0.079 Above median 0.100 0.106 
 [2414] [3334]  [2422] [3335] 
Immigrant 0.082 0.106 Table 5 
 [2452] [3344] New York City 
Education below 12 yrs -0.475 -0.339 Top 0.305 0.291 
 [2339] [3252]  [2440] [3363] 
12-15 yrs 0.005 0.095 Middle 0.053 0.073 
 [2430] [3348]  [2427] [3336] 
Above 15 yrs 0.663 0.677 Bottom -0.180 -0.120 
 [2451] [3417]  [2395] [3308] 
Bottom -0.216 -0.138 Louisiana 
 [2393] [3285] Top 0.375 0.371 
Middle 0.121 0.085  [2448] [3381] 
 [2410] [3337] Middle -0.090 -0.024 
Top 0.437 0.381  [2414] [3325] 
 [2434] [3382] Bottom -0.489 -0.377 
Non-married -0.359 -0.234  [2365] [3250] 
 [2336] [3237] Indiana 
Married 0.273 0.277 Top 0.359 0.349 
 [2459] [3396]  [2448] [3376] 
Age below 22 -0.394 -0.207 Middle -0.068 -0.006 
 [2268] [3237]  [2412] [3328] 
22-29 -0.005 0.076 Bottom -0.450 -0.352 
 [2419] [3357]  [2369] [3259] 

Notes: Descriptive statistics for each group reported in tables 3, 4, and 5. These present mean combined mathematics and 
reading test scores as well as mean birth weight for twins and singletons, respectively. 
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