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Abstract 

In a traditional regression-discontinuity design (RDD), units are assigned to treatment on 

the basis of a cutoff score and a continuous assignment variable. The treatment effect is 

measured at a single cutoff location along the assignment variable. A more flexible 

conceptualization of RDD, however, allows researchers to examine effects along a multi-

dimensional frontier using multiple assignment variables and cutoffs. This paper 

introduces the multivariate regression-discontinuity design (MRDD). For a MRDD with 

two assignment variables, we show that the overall treatment effect at the cutoff frontier 

can be decomposed into a weighted average of two univariate RDD effects, and that the 

weights depend on the scaling of the assignment variables. The paper discusses four 

methods for estimating MRDD treatment effects—the frontier, centering, univariate, and 

instrumental variable approaches—and compares their relative performance in a Monte 

Carlo simulation study under different scenarios. We find that given correct model 

specifications, all four approaches estimate treatment effects without bias, but the 

instrumental variable approach has severe limitations in terms of more stringent required 

assumptions and reduced efficiency.  
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1. INTRODUCTION 

In a traditional regression-discontinuity design (RDD), units are assigned to 

treatment and comparison conditions solely on the basis of a single cutoff score on a 

continuous assignment variable. The discontinuity in the functional form of the outcome 

at the cutoff represents the treatment effect. Proven by Goldberger (2008) in 1972, the 

design has been shown empirically to produce effects akin to an experiment’s (Aiken, 

West, Schwalm, Carroll, & Hsuing, 1998; Buddelmeyer & Skoufias, 2004; Black, Galdo, 

& Smith, 2007; Berk, Barnes, Ahlman, & Kurtz, in press; Shadish, Galindo, Wong, 

Steiner, & Cook, under review). It has been used for program evaluations in criminal 

justice (Berk & Rauma, 1983), medicine (Finkelstein, Levin, & Robbins, 1996b), 

economics (see Lee & Lemieux, 2009, for review), and education (Jacob & Lefgren, 

2004; Gill, Lockwood, Martorell, Setodji, & Booker, 2007; Wong, Cook, Barnett, & 

Jung, 2008).  

However, units are frequently assigned to treatment on more than one continuous 

assignment variable. More recent applications of RDD in education have had multiple 

assignment variables and cutoff scores available for treatment assignment. For example, 

Jacob and Lefgren (2004) examined the effects of a remedial education intervention that 

was assigned to students based on missing a reading cutoff, a math cutoff or both. Gill et 

al. (2007) examined the effects of schools’ failure to make Adequate Yearly Progress 

(AYP) under No Child Left Behind by missing one of 39 possible assignment criteria. 

Both are examples of the multivariate regression-discontinuity design (MRDD), where 

treatment effects may be estimated across a multi-dimensional cutoff frontier, as opposed 

to a single point on the assignment variable. Other MRDD examples in education 

2



 Multivariate Regression Discontinuity  

research are by Kane (2002), Matsudaira (2008), Papay, Murnane and Willett (in press), 

and van der Klaauw (2002). With the exception of the latter, all of these studies analyze 

each of the assignment rules separately. Multiple assignment variables in RDD are not 

unique to education; they also occur with increasing frequency in other fields of research, 

such as in the evaluation of labor market programs (Card, Chetty & Weber, 2007; Lalive, 

Van Ours & Zweimüller, 2006; Lalive, 2008).  

Using the potential outcomes notation of the Rubin Causal Model (Holland, 1986; 

Rubin, 1974), this paper defines the causal estimand τMRD  for a MRDD with two 

assignment variables (M and R) and cutoffs. It then shows that the overall treatment 

effect τMRD may be decomposed into a weighted average of two univariate RDD effects, 

τM  at the M-cutoff and τR  at the R-cutoff, and that the weights for τMRD  depend on the 

scaling of the assignment variables.  

The paper also describes four analytic approaches for estimating treatment effects 

in a MRD design: the frontier, centering, univariate, and instrumental variable (IV) 

approaches. The frontier approach estimates treatment effects by first modeling the 

discontinuity at the cutoff frontier using parametric, semiparametric or nonparametric 

procedures, and then by applying appropriate treatment weights to each cutoff frontier to 

estimateτMRD . The frontier approach estimates the overall (τMRD ) and frontier-specific 

effects (τM  and τR ) simultaneously. It is an extension of an approach introduced by Berk 

and de Leeuw (1999), which relied on parametric regression estimation of the entire 

response surface under the assumptions of constant treatment effects and a correctly 

specified regression model. The proposed frontier approach relaxes these assumptions by 

allowing for heterogeneous treatment effects at the cutoff frontier. In the centering 
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approach, all assignment variables are centered at their respective cutoffs, and each unit 

is assigned its minimum centered assignment score. The minimum assignment score is 

used then as single assignment variable in a traditional univariate RDD. This approach 

was employed by Gill et al. (2007) in their evaluation of No Child Left Behind. In the 

univariate approach, researchers choose a single assignment variable and cutoff to 

estimate an effect, and exclude all observations that are assigned to treatment via the 

second assignment variable and cutoff. Jacob and Lefgren (2004) applied this approach in 

their evaluation of Chicago remedial education programs. Finally, in the IV approach, 

researchers use at least one assignment mechanism as an instrument for treatment receipt 

and designate units assigned by the second assignment variable and cutoff as treatment-

misallocated cases. Although Robinson and Reardon (2009) and Cook et al. (2009) have 

proposed this approach for analyzing MRDDs, the IV approach has yet to be applied to 

actual evaluation data.  

Though the univariate and centering approaches have been applied in the RD 

literature, we know of no study that examines systematically the causal estimands and the 

validity of the four proposed approaches for handling multiple assignment variables. In 

this paper, we discuss the causal quantities, theoretical underpinnings, and required 

assumptions for each approach. Through Monte Carlo simulations, we show that the four 

approaches succeed in yielding unbiased effect estimates when their required 

assumptions are met. Before introducing the MRDD, we give a brief description of the 

traditional RDD with a single assignment variable and cutoff (Hahn, Todd, & van der 

Klaauw, 2001; Trochim, 1984). We then show the MRDD as an extension of the 

traditional RDD, except that treatment effects are estimated for cutoff frontiers, as 
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opposed to at a single cutoff point. Although we discuss MRDDs with two assignment 

variables only, the concepts and analytic approaches presented here extend to MRDDs 

with more than two assignment variables. 

 

2. THE REGRESSION-DISCONTINUITY DESIGN 

2.1 The Regression-Discontinuity Design with a Single Assignment Variable 

Under the standard Rubin Causal Model, the causal treatment effect is estimated 

for a binary treatment intervention D, where Di = 0 if unit i belongs to the control 

condition and Di = 1 if it belongs to the treatment condition. Let Yi(0) and Yi(1) denote 

the pair of potential outcomes with Yi(0) as the potential control outcome which is 

observed if unit i is not exposed to treatment (Di = 0), and Yi(1) the potential treatment 

outcome which is observed if unit i is exposed to treatment (Di = 1). In practice, we do 

not observe both potential outcomes for each unit (“the fundamental problem of causal 

inference,” Holland, 1986). Rather, we observe only the potential treatment or control 

outcome for each unit depending on the treatment received. Hence, the observed outcome 

can be written as a function of the potential outcomes: Yi = (1− Di ) ⋅Yi(0)+ Di ⋅Yi (1) .  

In a traditional RDD, units are assigned to treatment solely on the basis of a cutoff 

score (zc) on a continuous assignment variable (Z). The assignment variable is any 

measure taken prior to the treatment intervention. Let us assume that a unit gets assigned 

to the treatment condition if it scores below the cutoff of the assignment variable and to 

the control condition if its score is equal to or above the assignment variable: Di = 1 if 

ci zZ < and Di = 0 if ci zZ ≥ . When the assignment rule is implemented perfectly, the 

probability of receiving treatment drops at the cutoff from 1 to 0. More formally, the 
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discontinuity in the probability of treatment receipt at the cutoff is 

lim
z↑zc

E[Di | Zi = z]− lim
z↓zc

E[Di | Zi = z] = 1 . Such a RD design is called “sharp” as opposed 

to a “fuzzy” design (Trochim, 1984) where due to noncompliance, the probability of 

treatment receipt does not switch from 1 to 0 at the cutoff, but exhibits a jump less than 1: 

0 < lim
z↑zc

E[Di | Zi = z]− lim
z↓zc

E[Di | Zi = z] < 1 . The jump needs to be strictly positive 

because a valid RDD requires the treatment probability to be discontinuous at the cutoff 

(Hahn, Todd, & van der Klaauw, 2001).  

In a sharp RDD, the causal quantity of interest is the difference in the potential 

outcomes at the cutoff, that is,  

τSRD = E[Yi(1)−Yi (0) | Zi = zc ]= E[Yi(1) | Zi = zc ]− E[Yi(0) | Zi = zc] .  

Since we never observe control and treatment cases at the cutoff, the causal estimand is 

better defined in terms of the difference in limits of conditional expectations as we 

approach the cutoff from below and above:  

τ SRD = lim
z↑zc

E[Yi (1) | Zi = z]− lim
z↓zc

E[Yi (0) | Zi = z]

= lim
z↑zc

E[Yi | Zi = z]− lim
z↓zc

E[Yi | Zi = z]
   (1)  

The second equality is with observed instead of potential outcomes. This holds because 

we observe only the potential treatment outcomes below the cutoff, and only the potential 

control outcomes above or at the cutoff. The difference in limits represents the 

discontinuity (treatment effect) at the cutoff. However, for SRDτ  to be interpreted as a 

causal effect, the potential outcomes must be continuous at the cutoff (Hahn, Todd, & 

van der Klaauw, 2001; Imbens & Lemieux, 2007; Lee & Lemieux, 2009):  

]|)0([lim]|)0([lim zZYEzZYE ii
zz

ii
zz cc

===
↓↑

 and  
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lim
z↑zc

E[Yi (1) | Zi = z] = lim
z↓zc

E[Yi (1) | Zi = z] .  

The causal estimand in a fuzzy RDD, where not all units comply with their 

treatment assignment, is different from SRDτ . In addition to the continuity assumption for 

potential outcomes, the fuzzy RDD requires that there are no defiers close to the cutoff 

(Imbens & Lemieux, 2007; Hahn, Todd, & van der Klaauw, 2001). Defiers are units that 

take treatment when they are assigned to the control, but enter the control condition when 

they are assigned to treatment. If the continuity and “no defiers” assumptions are met, 

then the causal estimand identifies the treatment effect for the subpopulation of compliers 

at the cutoff (Imbens & Lemieux, 2007; Hahn, Todd, & van der Klaauw, 2001), where 

unit i is a complier (C) if it adheres with treatment assignment: i ∈C  if 1)(lim =
↑

zDi
zz i

 

and

 

0)(lim =
↓

zDi
zz i

, with D being the treatment indicator as defined above. Here, unit i 

takes the treatment when assigned to treatment and it takes the control condition when 

assigned to the control. The causal estimand for the fuzzy RDD is given by 

],|)0()1([ CizZYYE ciiiFRD ∈=−=τ  or in limits notation by  

. 
]|[lim]|[lim
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   (2)

 

 

2.2 The Multivariate Regression-Discontinuity Design with Two Assignment Variables 

The MRDD has an assignment process that is based on two or more assignment 

variables. In this paper, we consider only sharp MRDDs with two assignment variables, R 

and M with respective cutoffs rc and mc. Units are assigned to treatment if they miss 

7



 Multivariate Regression Discontinuity  

cutoff rc, mc, or both. Figure 1 shows that units are assigned to the control condition C if 

they score above both cutoffs ( cici mMrR ≥≥ , ) and to the treatment condition T if they 

score below either cutoff ( ci rR <  or ci mM < ). We partition the treatment assignment 

space into three subsets: T1 if units miss only cutoff rc, T3 if they miss only cutoff mc, and 

T2 if they miss both cutoffs. Though we partition the treatment space into three 

subspaces, we assume that all cases receive exactly the same treatment (otherwise, more 

than one potential treatment outcome needs to be considered). In this design, R and M 

may be reading and math test scores (respectively), treatment may be a standardized test 

preparation course, and assignment to treatment may be based on whether students fail to 

achieve minimum threshold scores for reading or math. Although this is a fairly specific 

implementation of a MRDD, the results presented here may also apply to MRDDs where 

treatment and control conditions are swapped. Figure 1 shows the cutoff frontier 

F = {(r,m) : (r ≥ rc,m = mc )∪ (r = rc,m ≥ mc )}  at which the average treatment effect is 

estimated. Assuming complete treatment compliance, the average treatment effect at the 

cutoff frontier is given by  

τMRD = E[Yi (1)−Yi (0) | (Ri , Mi )∈F] . (3) 

Decomposition of the average treatment effect MRDτ . Since the cutoff frontier 

consists of the R-frontier along assignment variable M, FR = {(r,m) : (r = rc ,m ≥ mc )} , and 

the M-frontier along assignment variable R, FM  = {(r,m) : (r ≥ rc,m = mc )} , we can 

decompose the treatment effect into a weighted average of the treatment effects at the R- 

and M-frontiers. Let the difference in potential outcomes be Gi =Yi (1)−Yi(0)  and the 

joint density function for assignment variables R and M be ),( mrf , then, we can define 
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the average treatment effect at the cutoff frontier F as the weighted average of conditional 

expectations given the single frontiers FR and FM (see Appendix A for the proof): 

τMRD = E[Gi | (Ri , M i )∈F] = wRE[Gi | Ri ∈FR ]+ wM E[Gi | M i ∈FM ]

= wRτ R + wMτM  ,
  (4) 

where weights wR and wM reflect the probabilities for observing a unit at the R- or M-

frontier, 

∫∫

∫
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≥
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The conditional expectations represent the average treatment effects Rτ  and Mτ  at the 

two discontinuity frontiers FR and FM since 
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where g(r, m) = y1(r,m) − y0 (r,m)

 

is the difference in potential outcomes. As shown in 

Appendix A, we may also use conditional and marginal distributions for defining weights 

and conditional expectations which is more convenient for estimating the treatment 

effects. 
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Assumptions required for MRDD. Given that τMRD may be decomposed into a 

weighted average of frontier-specific effects, all required assumptions for the traditional 

univariate RDD must be met for each discontinuity frontier (FR and FM). First, the design 

requires a discontinuity in treatment probabilities at FR and FM. Second, the expectations 

of potential outcomes need to be continuous at FR and FM. Third, for fuzzy MRDDs, no 

defiers are allowed close to and at FR and FM. 

The second assumption requires some elaboration. For the potential treatment 

outcomes, the continuity assumption states that the limits of the expected values have to 

be identical at the cutoff frontiers:  

lim
r↑rc

E[Yi (1) | Ri = r, M i ≥ mc ]  = lim
r↓rc

E[Yi (1) | Ri = r, M i ≥ mc ]  and 

lim
m↑mc

E[Yi (1) | Ri ≥ rc,M i = m]  = lim
m↓mc

E[Yi (1) | Ri ≥ rc, M i = m]  .  

The same equality must hold for potential control outcomes Y(0). Two important 

remarks need to be made. First, no continuity is required for M < mc at R = rc and for R < 

rc at M = mc because these frontiers do not belong to the discontinuity frontier F (in 

Figure 1, these are the dashed frontiers between treatment subsets T1 and T2, and T2 and 

T3).  Second, the continuity assumption does not imply continuity of E[Y(1)] and E[Y(0)] 

along frontier F. Consider an arbitrary point r*≥ rc   at cutoff frontier FM. Then, 

lim
r↑r*

E[Yi (1) | Ri = r, M i = mc ]  may differ from lim
r↓r*

E[Yi (1) | Ri = r, M i = mc ] . In particular, 

the expectation of potential outcomes may be discontinuous at the intersection point 

),( cc mmrr ==  where frontiers FR and FM meet: lim
m↓mc

E[Yi (1) | Ri = rc, M i = m]  may differ 

from lim
r↓rc

E[Yi (1) | Ri = r, M i = mc ] , and both may differ from E[Yi(1) | Ri = rc,Mi = mc] at 

the intersection point. Such a discontinuity at the intersection point has no impact on the 
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frontier-specific treatment effects Mτ  and Rτ  because the intersection point has a 

probability mass of zero with respect to the discontinuity frontiers FM and FR. The same 

holds for the potential control outcome Y(0).  

Nonetheless, continuity in expectations of both potential outcomes along frontier 

F, particularly at the intersection point (rc, mc), is desirable in practice as Figure 2 

illustrates (for clarity we only show the response surface of E[Y(1)]). The left panel 

shows a continuous response surface of E[Y(1)] along the cutoff frontier F  (solid line) 

but also along the entire cutoffs rc and mc (i.e., including the dashed lines). The right 

panel illustrates a case where E[Y(1)] is discontinuous at the intersection point, but 

continuous at each of the two frontiers FM and FR. This requires a rather awkward 

functional form with several discontinuities (e.g., a discontinuity along the diagonal for 

the control cases) to ensure that the potential treatment outcomes are connected smoothly 

at both frontiers. The response surface of the potential treatment outcome presented here 

seems rather implausible with a single treatment. However, with multiple treatments 

(where a unique treatment is assigned to each subspace T1, T2, and T3), such 

discontinuities in the response surface of the potential treatment outcomes would be 

plausible, if not expected (the formalization would require four potential outcomes and a 

careful definition of the causal estimands of interest).  

Scale-dependency of the average treatment effect MRDτ . The decomposition of the 

average treatment effect of a MRDD into a weighted average of unviariate RDD effects, 

Rτ  and Mτ , reveals that the average treatment effect MRDτ  depends on weights wR and 

wM. Since the weights are determined by integrating the joint density ),( mrf  along 

frontier F, their ratios depend crucially on the scaling of assignment variables R and M. 
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For instance, the weight wR for the treatment effect at the R-frontier decreases relative to 

wM as assignment variable R is rescaled to Rs = sR  with s > 1 (with scaling of M held 

constant). Conversely, wR’s relative weight increases when the R assignment variable is 

rescaled with s < 1. This is because of the disproportional change in integrals 

f (r = rc , m)dm
m>mc
∫  and f (r, m = mc )dr

r>rc
∫  in equation (5) when R and M are rescaled 

with different scaling factors s. Figure 3 shows that when R is rescaled into Rs = 2R , 

such that the variance of the rescaled variable is four times larger than the original 

variable’s variance, the ratio of the weights also changes (as indicated by the shaded 

areas along the cutoff frontier). Since the average treatment effect MRDτ  is sensitive to the 

choice of the assignment variables’ scale, an infinite number of average treatment effects 

exist. This is an unpleasant property of MRDD that is of special relevance whenever the 

average treatment effects for treatment frontiers FM and FR differ (τM ≠ τR ). We discuss 

practical implications of the scale-dependency in the discussion section. 

 

3. ESTIMATION STRATEGIES FOR MRDD 

A MRDD with two assignment variables allows the estimation of three different 

causal quantities: two frontier-specific effects Rτ  and Mτ  and an overall effect MRDτ . In 

this paper, we present the following four estimation procedures: the frontier, centering, 

univariate, and instrumental variable approaches. The first two approaches aim at 

estimating the overall treatment effect τMRD , and the latter two at the frontier-specific 

effects Rτ  and Mτ . 
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Frontier approach. This procedure estimates the discontinuity along both 

frontiers simultaneously, and applies appropriate weights to obtain the overall effect τMRD

. It first estimates the discontinuous response surface ),(ˆ mry  using a parametric, semi-, 

or nonparametric regression method. Since we are interested only in the treatment effect 

at the cutoff frontier F, the treatment function )|,(ˆ Fmrg  is estimated by taking the 

difference in the estimated treatment outcome 1ŷ  and the control outcome 0ŷ  along F 

such that ĝ(r, m | F) = ŷ1(r, m | F) − ŷ0 (r, m | F) . Then, the joint density function f̂ (r, m)  is 

estimated by using a bivariate kernel-density estimator. Finally, we plug )|,(ˆ Fmrg  and 

f̂ (r, m) into equations (5) and (6) and estimate Rτ  and Mτ , as well as weights wM and wR 

(for estimating MRDτ ), by numerical integration.  

Since an accurate estimation of the bivariate density requires intense 

computational resources and a large number of observations, a nonparametric estimation 

of the univariate conditional and marginal densities MRf | , RMf | , Rf , and Mf  is 

preferable. Thus, by plugging the estimated univariate densities and treatment function 

into equations (A3) and (A4) and by using numerical integration, we obtain frontier-

specific effects Rτ̂  and Mτ̂ , weights Rŵ  and Mŵ , and the average treatment effect MRDτ̂ . 

This strategy also works with smaller datasets and for MRDDs with more than two 

assignment variables since univariate kernels suffice for estimating conditional and 

marginal densities. Because ),(ˆ mrf  and marginal densities 
Rf̂  and 

Mf̂  depend on the 

scaling of R and M, the choice of different bandwidths at the R- and M-cutoffs also would 

affect the ratio of weights. As a result, we recommend using the same bandwidth (in 

absolute units) for both dimensions. Bootstrapping may be used for estimating standard 
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errors. However, the nonparametric estimation of densities and numerical integration is 

cumbersome, data-hungry and computationally expensive (particularly in bootstrapping 

standard errors). The centering approach, which we discuss next, tries to overcome these 

issues by downscaling the multiple assignment variables into a single composite 

assignment variable. 

Centering approach. This procedure collapses multiple assignment scores into a 

single assignment variable, thereby reducing a high-dimensional assignment mechanism 

to a one-dimensional mechanism. This is achieved by the following procedure: For each 

assignment variable, center each unit’s score at its respective cutoff, such that 

Ri

z = Ri − rc  and M i

z = M i − mc . Then, choose the minimum centered value as the unit’s 

sole assignment score: Zi = min(Ri

z , M i

z ) . The minimum applies only in MRD designs 

where the top right quadrant of the assignment variable plane is the control condition 

(quadrant C in Figure 1). In cases where a different segment of the surface is the control 

region (e.g. quadrant T2), sign-transformations of the assignment variables or choosing 

the maximum centered assignment score is required for creating the composite 

assignment variable. Finally, apply standard RD analytic methods (e.g. local polynomial 

regression) for estimating treatment effects by using Z as the assignment variable and 

zero as the cutoff.   

Despite these dimension-reducing transformations, the centering approach 

estimates the same causal estimand as defined in equation (3). First note that at cutoff zc 

where 0),min( =z

i

z

i MR , the population consists of two subpopulations: subjects from the 

R-frontier FR = {(r,m) : r − rc = 0,m − mc ≥ 0}
 
and subjects from the M-frontier 

FM = {(r, m) : r − rc ≥ 0, m − mc = 0} . Then, the treatment effect can be decomposed 
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further into the weighted average of frontier-specific treatment effects as defined in 

equation (4): 

]|[]|[]),(|[

)]0,0(or    )0,0(|[

]0),min(|[]0|[

MiiMRiiRMRiii

z

i

z

i

z

i

z

ii
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where weights and conditional expectations are given as before (equations (5) and (6)). 

This result implies that the causal quantity estimated by the centering approach is also 

sensitive to the scaling of assignment variables. For example, increasing the scale for 

assignment variable R moves observations for which z

i

z

i

z

i RMR =),min(  is farther away 

from the cutoff zc = 0. Thus, units assigned by the R assignment mechanism would 

receive less weight relative to observations with z

i

z

i

z

i MMR =),min( .  

The chief advantage of the centering approach is that it allows the researcher to 

collapse scores from multiple assignment rules to a single assignment variable. The 

approach also generalizes well to MRDDs with more than two assignment variables, as 

well as simplifies the analyses for estimating average treatment effects across multiple 

discontinuity frontiers. However, it does not allow the estimation of frontier-specific 

effects Rτ̂  and Mτ̂  but that can be done with one of the two approaches described next. 

Univariate approach. This approach solves the dimensionality problem by 

estimating treatment effects for each frontier separately. We estimate the treatment effect 

at the R-frontier FR by excluding all observations scoring on assignment variable M 

below the cutoff mc since the cutoff frontier FR is defined only for cmM ≥ . Then, using 

standard RDD methods like local polynomial regression (Imbens & Lemieux, 2008), we 

estimate the treatment effect at FR according to equation (1). We estimate the treatment 
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effect at the cutoff frontier FM in a similar way, except that we exclude observations 

scoring below the cutoff on assignment variable R. Also, the average treatment effect 

τMRD  may be estimated, but it requires calculation of appropriate treatment weights for 

each frontier as described for the frontier approach.   

Instrumental variable approach. Rather than excluding observations assigned to 

treatment by alternative mechanisms, we estimate frontier-specific effects by delegating 

some of these cases as “fuzzy” units. To estimate the treatment effect at the R-cutoff rc, 

we include all units below and above the cutoff, but designate units for which Ri ≥ rc  and
 

Mi < mc  as fuzzy cases (these are units in quadrant T3 in Figure 1). Thus, the instrument 

for treatment receipt is derived from the R assignment variable and cutoff alone. The 

local average treatment effect at cr  is, according to equation (2), given by the ratio of the 

difference in the new treatment and control group’s mean values and the difference in 

compliance rates at the cutoff. Nonparametric methods are typically used for estimating 

the complier average treatment effect at the cutoff (Imbens & Lemieux, 2008). 

By focusing on the unrestricted cutoff frontier at cr  instead of the restricted cutoff 

frontier FR, the IV approach estimates a different causal quantity from what is implied by 

the MRDD. The IV estimates the local average treatment effect along the entire length of 

the R-cutoff, while the univariate RD approach estimates the design induced average 

treatment effect along the R-cutoff frontier FR only. However, the two causal quantities 

are identical if the average treatment effects for both subfrontiers, ),( cc mmrr ≥=  and 

),( cc mmrr <= , are identical, but the continuity of expected potential outcomes must 

hold for each subfrontier separately. In the sharp MRDD case, the IV approach implicitly 
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assumes the equivalence of the two treatment effects since all units in quadrant T3 are 

non-compliers. Hence, the treatment effect for subfrontier ),( cc mmrr <=  cannot be 

estimated because all units in T2 and T3 are treated units, forcing the IV to infer the 

treatment effect only from subfrontier ),( cc mmrr ≥=  and to assume the same effect for 

subfrontier ),( cc mmrr <= .  

 

4. SIMULATION DESIGN FOR MONTE CARLO COMPARISON OF APPROACHES 

In a series of simulation studies, we examine the performance of the frontier, 

centering, univariate, and IV approaches when we vary the following three factors: 1) 

complexity of the “true” response surface; 2) distribution and scale of the assignment 

variables; and 3) approach for analyzing a sharp MRDD.  

The first factor varies the complexity of the “true” response surface. The goal here 

is to assess how each approach performs when the “true” response surface is 

straightforward to model, versus when it is complex with heterogeneous treatment 

effects. The outcome Yi for unit i is a simulated math score based on three different 

specifications of the true response surface: 

Model 1: iiiii MRTY ε+++= 15.4 0  

Model 2:  Yi = 4T0i + .5Ri +1M i − .05T1i M i + .55T3i Ri − .025T1i Ri M i − .005T3i Ri M i + ε i  

Model 3: 
iiiiiii

iiiiiiiiii

MRTMRT

RTMTMRTTTY

ε+−−

+−+++−=

31

31310

005.025.

55.05.15.224
  

where Ri and Mi are the assignment variables, drawn from a bivariate normal distribution 

with a correlation of 0.2. Ti equals 1 if unit i receives any treatment at all and 0 if it did 

not, and as depicted in Figure 1, T1i equals 1 if unit i has an R assignment score less than 
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rc but an M assignment score greater than mc (and 0 if otherwise) and T3i equals 1 if unit i 

has an M assignment score less than mc but an R assignment score greater than rc (and 0 if 

otherwise). εi is a normally distributed error term with a mean of zero and a standard 

deviation of 2. Model 1 (“constant treatment effects model”) shows a constant treatment 

effect of 4.00, with no treatment by assignment variable interactions and level changes in 

the treatment response surface (Model 1 in Figure 4). Model 2 (“heterogeneous treatment 

effects model”) defines heterogeneous effects based on continuous potential treatment 

outcomes. In this model, effects along FR and FM are heterogeneous due to interactions 

between the treatment and assignment variables (Model 2 in Figure 4). Our third model 

(“heterogeneous but discontinuous effects model”) defines heterogeneous effects based 

on discontinuous potential treatment outcomes. The model indicates heterogeneous 

treatment effects across the cutoff frontiers, as well as level changes in the treatment 

response surface between T1 and T2 and between T2 and T3 (Model 3 in Figure 4). Level 

changes in the response surface might occur if the treatment condition for T1 and T3 vary 

greatly from the treatment condition for T2. As discussed above, we expect that this 

model will produce biased effect estimates for the IV approach.  

Given the above data-generating equations and the distribution of assignment 

variables, we first computed for each model the true treatment effects for frontiers FR and 

FM and F. These theoretical effects serve as our benchmarks for comparing the estimates 

produced by the four approaches. Since the overall treatment effect τMRD  depends on the 

scaling of assignment variables, we present two “true” effects for each model: one for the 

raw, unstandardized assignment variables and one for the standardized assignment 

variables.  
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The second factor we vary examines how differences in the distribution and scale 

of the two assignment variables in a MRD design affect the performances of the proposed 

approaches. First, we look at two assignment variables that are on the same scale with 

identical distributional shapes. Both variables R and M are normally distributed with the 

same standard deviation of 10, but have different means and cutoffs. For the R 

assignment variable, the mean is 45 and the cutoff is 40. For the M assignment variable, 

the mean is 55 and the cutoff is 60. Second, we examine a MRDD with assignment 

variables on the same scales as above, but with different standard deviations. In this 

scenario, R has a standard deviation of five and M has a standard deviation of 20. Finally, 

we look at a MRDD with assignment variables on different scales, where M has the same 

mean, distribution, and cutoff as in the first scenario, but we transformed the R 

assignment variable such that Rs = R/100. Thus, the new R cutoff is .40, the mean is .45, 

and the standard deviation is .10.   

The third factor defines the four methodological procedures that we study. For the 

frontier approach, we use two parametric specifications of the regression models: the full 

model, which includes all covariates and interaction terms as defined in Model 3, and the 

constant treatment effects model, which assumes constant treatment effects across the 

response surface as in Model 1. This constant treatment effects model is equivalent to 

Berk and de Leeuw’s suggestion (1999).
1
 The goal is to assess the degree of bias when 

the treatment function is misspecified. We estimate the response surface via parametric 

regression and the conditional and marginal densities at the R- and M-cutoffs using a 

                                                 
1
 In using parametric regression, we could have estimated the overall and frontier-specific 

effects directly without integrating along the frontier. However, a semi- or nonparametric 

estimation of the response surface would require integration for estimating average 

treatment effects. 
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kernel density estimator with an Epanechnikov kernel. Finally, we numerically integrate 

the product of treatment and density functions along the cutoff frontiers to obtain the 

conditional expectation across both frontiers.  

For the centering, univariate and instrumental variable approaches, we estimate 

treatment effects using local linear kernel regression (Imbens & Lemieux, 2008). In each 

iteration of the simulation, the bandwidths are selected based on Imbens and 

Kalyanaraman’s (2010) algorithm for optimal bandwidth choice at the cutoff. While the 

centering approach only allows the estimation of the overall treatment effect τMRD , the 

univariate and instrumental variable approaches focus on the frontier-specific treatment 

effects Mτ  and Rτ . For the centering approach, we estimate treatment effects using both 

the raw and standardized scores because recent applications of the centering approach 

(e.g., Gill et al., 2007) use standardized assignment variables for estimating treatment 

effects.   

The goal of the Monte Carlo study with 500 simulated samples of size 5,000 is to 

evaluate the unbiasedness of the proposed approaches for estimating the true treatment 

effects. Due to computational reasons, we do not directly investigate variance estimators 

of the treatment effects (for each approach, standard errors may be bootstrapped). 

However, for assessing the relative efficiency of the four approaches, we report standard 

errors estimated from our simulation, which is the standard deviation of estimated 

treatment effects across the 500 iterations, sτ = (τ̂ i − τ )2

i=1

500

∑ , where τ  is the average 

of the estimated effects
 iτ̂  (the simulation standard deviation may be considered as an 

average standard error bootstrapped from the overall target population instead of the 

actual samples). To test the unbiasedness of an estimated treatment effect with respect to 
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its corresponding true effect, we use simulation standard errors sτ / 500 . Significant 

differences between estimated treatment effects and true effects (at the .05 error level) are 

indicated by asterisks in the tables (simulation standard errors are not presented in the 

tables). 

 

5. MONTE CARLO RESULTS 

5.1 Effect Estimates for MRDDs with Constant Treatment Effects 

The first line of the column panels in Table 1 presents the theoretical treatment 

effects (τM , τR , and τMRD ) according to the data-generating model (see Model 1, Figure 

4). The second line shows the theoretical treatment effect when both assignment variables 

are standardized before analyzing the MRDD. Regardless of the distribution and scale of 

the assignment variables, all the true effects are 4.00 when the raw or standardized 

assignment scores are used. This demonstrates that standardizing assignment scores does 

not affect the causal quantities estimated for the frontier-specific and overall effects 

whenever treatment effects are constant. Note, however, that weights wM and wR remain 

sensitive to the scaling and distribution of the assignment variables.  

The first panel of Table 1 shows the results for two assignment variables on the 

same scale with identical distributions (first panel of Table 1). The frontier approach 

results in treatment effects between 3.99 and 4.01 at the FR and FM frontiers, and 4.00 for 

the overall effect. Of the four approaches examined, the frontier approach yields the most 

precise estimates. Treatment weights produced by the frontier approaches are also 

comparable in terms of relative proportion to the theoretical weights. The centering 

approach produces an overall effect of 3.98 when raw assignment scores are used and an 
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effect of 3.94 when standardized scores are applied. The latter is significantly different 

from the theoretical effect, suggesting that it is slightly biased. Treatment standard errors 

for both centering estimates are approximately four times larger than those generated by 

the frontier approach. The univariate approach replicates treatment effects for both 

frontiers, but again, standard errors are between five (FM) and 10 times (FR) larger than 

those produced by the frontier approach. Although the instrumental variable approach 

estimates effects that are not significantly different from the theoretical true effects, they 

are less efficient. The treatment standard error is .81 for τM  and 3.64 for τR  (the standard 

errors differ considerably due to the differential strength of instruments).  

The second column panel of Table 1 shows weights and treatment effects when 

assignment variables are on the same scale but have different distributions (i.e., standard 

deviations). Except for the centering approach with unstandardized assignment variables, 

all methods replicate the theoretical treatment results. The frontier approach yields 

treatment estimates that range from 3.99 to 4.02, with treatment standard errors that are 

between .01 and .16. The centering approach yields an overall effect of 3.86 when the 

raw assignment score is used, and an effect of 4.00 when standardized scores are applied. 

The treatment effect for the raw assignment score (3.86), however, slightly 

underestimates the theoretical effect of 4.00. The univariate and IV approaches produce 

effects that are not significantly different from their theoretical effects, but they are less 

efficient than those generated by the frontier approach.  

We also examined the performance of the proposed approaches when the MRDD 

is based on two assignment variables on different scales (third column panel of Table 1). 

As before, all procedures replicate the theoretical effects of 4.00 points, except for the 
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centering approach with standardized assignment variables. Estimates obtained by the 

frontier approach are the most efficient, while the IV estimates are the least efficient. 

Overall, the frontier, univariate and IV approaches succeed in replicating the 

theoretical estimates when treatment effects are constant. The exception is the centering 

approach, which produced biased results half the time. The significant, but small bias, is a 

result of pooling units from multiple cutoff frontiers into a single composite variable. 

This is because of two reasons (given non-constant response surfaces for potential 

outcomes): First, pooling units from different frontiers increases the heterogeneity of the 

outcome at the pooled cutoff, requiring a larger bandwidth for nonparametric estimates. 

The larger bandwidth, however, might introduce bias in a local polynomial regression 

due to mis-specification of the functional form. Second, pooling increases the complexity 

of the functional form around the cutoff. Even in the simple case with linear response 

surfaces and a constant treatment effect (Model 1), pooling produces a nonlinear relation 

between the composite assignment variable and the outcome due to differential 

distributions of frontier-specific units in the neighborhood of the single cutoff. Modeling 

a quadratic or cubic polynomial in the local regression would mitigate the bias, but it 

would also reduce the efficiency of the estimates. This result highlights the sensitivity of 

the centering approach to mis-specification in the response function, even when 

nonparametric regression methods are used. The univariate and IV approaches, which 

also use local linear regression for estimating effects, do not exhibit the same bias 

because the local linearity assumption holds for these procedures.  
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5.2 Estimates for MRDDs with Heterogeneous Treatment Effects  

Table 2 presents results for a MRDD with heterogeneous treatment effects across 

the treatment response surface (see Model 2, Figure 4). When the assignment variables 

are on the same scale with similar distributions, the effect for FM and FR are 9.74 and 

3.70, and for the overall effect, it is 8.11 points (first two lines of the first panel in Table 

2). Note that the overall effect is the same regardless of whether the standardized or raw 

assignment scores were used, even when treatment effects are heterogeneous. When the 

MRDD consists of two assignment variables on the same scale but have different 

distributions, theoretical treatment estimates are 7.59 points for FM and 3.36 points for 

FR, for both the raw and standardized effects (second panel). However, while the frontier-

specific effects do not depend on scaling, the overall treatment effect does. When raw 

assignment scores are used, the overall theoretical effect is 5.54, but when standardized 

scores are used, the theoretical effect is 6.79 points. The differences in these two effects 

show that standardizing the assignment variables changes the relative proportion of the 

treatment weights when a MRDD with heterogeneous effects has two assignment 

variables with different distributions. Standardizing changes the weight ratio of frontiers 

FM and FR from 51.5:48.5 to 80.9:19.1 (Table 2 shows the weights in percentage terms 

that sum to 100). Finally, for a MRDD with assignment variables on different scales and 

with heterogeneous treatment effects (third column panel of Table 2), the true overall 

treatment effect also depends on the scaling due to the differences in weight ratios. 

Table 2 shows that all four methods generally perform as expected when effects 

are heterogeneous along the cutoff frontiers. The frontier approach produces unbiased 

effects when the response function is correctly specified (full model), with the only 
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exception being an estimate for FM (first panel of Table 2). However, this exception is 

caused by the slight bias in the frontier weights, which is mostly likely due to chance 

because the frontier approach produces no other significant differences whenever the 

model is correctly specified. When the treatment functions are incorrectly modeled, the 

frontier approach performs poorly in reproducing the theoretical effects. The constant 

treatment effects model—which assumes constant effects across the treatment response 

surface—yields estimates that are significantly different from their benchmark effects 

(for raw assignment variables). This is true regardless of whether the assignment 

variables are on the same scale and distributions, on the same scales with different 

distributions, or when the assignment scores are on different scales. While the centering 

approach produces biased results in two of the six estimates (for the same reason as 

discussed above), the univariate and IV approaches produce unbiased effect estimates in 

every case. Also note that the centering approach with standardized assignment variables 

estimates the corresponding true effect for standardized scores (which differs from the 

true effect for raw scores). 

 

5.3 Estimates for MRDDs with Heterogeneous Treatment Effects but Discontinuous 

Potential Treatment Outcomes 

Table 3 presents results for MRDDs with heterogeneous treatment effects but 

with discontinuous potential treatment outcomes (see Model 3, Figure 4). When the 

assignment variables are on the same scale with identical distributions, the true treatment 

effect for FM is 8.61 points, and for FR, it is 1.70 points, making the overall effect across 

both frontiers 6.74 points (first column panel). These effects are identical for when the 
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raw and standardized assignment scores are used, showing again that when the 

assignment variables are on the same scale with identical distributions, standardizing 

does not change the relative proportions of the treatment weights. If the two assignment 

variables differ in their distributions, the true overall treatment effect for the raw 

assignment variables is 4.59 points but 6.44 points when assignment variables are 

standardized. The difference between the raw and standardized theoretical effect is 

reflected in the frontier weights, 51.5 and 48.5 for FM and FR, respectively, when raw 

scores are used, and 80.9 and 19.1 when standardized scores are applied. Similarly, for 

assignment variables on different scales, the overall effect depends on the scaling: 8.59 

for the raw scores and 6.82 for the standardized scores (third panel of Table 3).  

Simulation results presented in Table 3 show that when effects are heterogeneous 

but with discontinuities in potential treatment outcomes, the IV approach fails to generate 

unbiased effect estimates for either frontier. The biases are large and significantly 

different from the theoretical benchmarks. The centering approach continues to produce 

mixed results, with small biases for a third of the estimates. The frontier approach 

generally performs well if the treatment function is correctly specified, and the univariate 

approach does well when the bandwidths and the degree of the polynomial are correctly 

specified for local nonparametric estimates.  

 

6. DISCUSSION 

What do results presented in this paper imply for practice? The obvious question 

for most researchers is, “Which approach should I use for estimating treatment effects in 

a MRDD?” In comparing the relative benefits and limitations of the four approaches, our 
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recommendation is to start with analyzing each frontier of the MRDD separately by using 

the univariate approach. Results from our simulation study indicate that the 

nonparametric univariate approach performed well in estimating frontier-specific effects, 

with no significant differences between the estimated and theoretical effects for FM and 

FR, given a reasonable choice of the local polynomials degree and bandwidths.  

The researcher can then assess whether treatment effects are constant across both 

cutoff frontiers, and if so, use the frontier or centering approach to estimate an overall 

effect τMRD . In general, the frontier approach performs well in estimating τMRD when the 

treatment functions are correctly specified. It also has the advantage of improved 

statistical efficiency for both the overall and frontier-specific effects. However, because 

the true functional from of the response surface is hardly ever known in practice, 

researchers may consider using the centering approach for estimating τMRD  to avoid the 

complication of modeling a multi-dimensional response surface. The issue here is that the 

centering approach may be prone to small biases due to wider bandwidths and more 

complex functional forms caused by pooling units from different cutoff frontiers. 

However, the bias might be mitigated by using difference scores as the outcome 

whenever pretests are available to reduce the complexity of the functional form and 

heterogeneity of the dependent variable.  

In general, we recommend against using the IV approach for estimating frontier-

specific effects τM  and τR . Although it yields unbiased estimates when its analytic 

assumptions are met, simulation results indicate that the IV approach has reduced 

statistical precision as compared to the other three methods. The approach also yields 

biased results when there are discontinuities along the extended cutoff frontiers in the 
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potential treatment outcomes. A theoretical concern with the IV approach is that the 

causal quantity implied by the MRDD differs from the causal quantity estimated by the 

instrumental variable. Taken together, the IV approach offers no comparative advantages 

over the other three proposed methods examined in this paper.  

A second practical consideration is whether to use standardized or raw assignment 

scores for the centering and frontier approaches. Theory and simulation results indicate 

that the weighted average treatment ( MRDτ ) is sensitive to the scaling of the assignment 

variables. When assignment variables are transformed (e.g. into standardized values), the 

causal quantity of the overall effect changes. For example, consider two possible 

assignment variables, household income and age. Here, treatment weights depend heavily 

on the units of measurement for each assignment variable, where a measure of income in 

thousands of dollars instead of dollars would drastically increase the weight of the 

“income frontier” in the overall treatment effect. Standardizing the income and age 

variables, such that both have a standard deviation of one, does not solve the scaling issue 

because the procedure fails to provide a substantive interpretation of the overall effect. 

Standardizing is only one possibility for transforming assignment scores into a common 

metric—another option is to use rank order scores. But all these methods result in 

different weights for the treatment frontiers and, thus, different causal quantities.  

A second concern with standardizing assignment variables is that the procedure is 

sensitive to distribution properties that would have strong effects on the standard 

deviation used for scaling. For example, the presence of extreme observations for one 

assignment variable would result in a down-weighting of the treatment effect for the 

corresponding frontier (due to the large standard deviation). The only case when scaling 
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is not an issue for estimating τMRD is when the average treatment effects for both frontiers 

are identical. However, we believe this scenario to be rare in practice. In any case, τM  

and τR  provide at least informative upper and lower bounds for the overall treatment 

effect. 

In this paper, we have assumed that units are assigned to a single treatment 

condition via two assignment variables and cutoffs, but this need not be the case. Units 

may be assigned to one treatment condition for missing the R cutoff, another if they miss 

the M cutoff, and both if they miss the R and M cutoffs together. This type of MRD 

design raises several practical considerations for the researcher. First, although the 

frontier and univariate assignment variable approaches can estimate unbiased frontier-

specific effects (τM and τR ), the IV approach may yield biased results due to violations in 

the continuity assumption because variations in treatment conditions may introduce 

discontinuities in potential treatment outcomes. Second, a MRDD with multiple treatment 

conditions raises questions about whether estimating an overall effect is appropriate and 

substantively interpretable given that it averages estimates across two unique treatments. 

Third, treatment contrasts in a MRD design are limited to comparisons along the cutoff 

frontiers. There may be cases, however, when the desired treatment contrast is to 

compare outcomes from units that received the “strongest” treatment dosage with those 

that received no treatment at all. In our example, units in quadrant T2 might receive a 

stronger dosage of treatment because they missed both the R and M cutoffs (Figure 1). 

However, the MRDD does not include these observations in the calculation of treatment 

effects because they are not located at FM or FR. A researcher may choose to redefine 

observations in T2 as the treatment units, and those in the remaining three quadrants as the 
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comparison cases. However, this treatment contrast would involve comparing outcomes 

for units that missed both the R and M cutoffs (treatment cases) with those that missed 

only one cutoff (comparison cases). Again, this may not be the desired treatment contrast 

because treatment units are compared to those that have received at least some treatment 

because they missed either the M or R cutoffs. This predicament highlights one of the 

main design disadvantages of the MRDD, and one that researchers should be aware of as 

they interpret their treatment effects.  

As with all Monte Carlo simulations, our study is limited by the fact that we 

cannot address every scenario that researchers are likely to encounter in analyzing 

MRDDs. First, we only examined the performance of the four approaches in the context 

of the sharp MRD design, where we assumed no instances of treatment misallocation. 

However, in many applications of MRDD, treatment crossover and no-show are likely to 

occur. Traditionally, fuzziness around the RD cutoff is addressed by using the assignment 

mechanism as an instrument for treatment receipt. This method extends to the MRD 

design for the univariate and centering approaches, where the treatment assignment 

mechanism again serves as an instrument for treatment receipt to estimate the local 

average treatment effect among compliers at the treatment frontier. Because of 

dimensionality issues, using an instrumental variable to address non-compliance for the 

frontier approach seems to be more challenging. A second limitation is that our study 

focuses on estimating treatment effects for MRDDs with only two assignment variables. 

Although the univariate, frontier, and centering approaches generalize well to MRDDs 

with more than two assignment variables, further work is needed for examining whether 

there are special analytic issues and requirements for analyzing MRDDs with more 
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complex assignment mechanisms (e.g., with exemption rules like those in No Child Left 

Behind). Finally, our simulation does not examine how variation in the correlation of the 

assignment variables would affect the performance of the four proposed methods. In 

particular, one might be concerned about the efficiency of treatment effect estimates 

generated by the univariate approach when the correlation between the two assignment 

variables are high, as would be the case in many education MRDDs where reading and 

math test scores are used as assignment variables.  

 

7. CONCLUSION 

This study defines causal estimands estimated by a multivariate regression-

discontinuity design, and assesses the contexts and conditions under which four proposed 

approaches yield unbiased effect estimates. Results showed that the frontier, centering, 

univariate, and IV approaches succeed in producing unbiased treatment effects when their 

design and analytic assumptions are met. The IV approach, however, had stringent 

analytic requirements for yielding unbiased treatment effects, and produced inefficient 

results in our simulation study. The centering approach also yielded mixed results, but 

with small biases that are due to its increased sensitivity to bandwidth and functional 

form choices in local polynomial regressions. Finally, we found that the estimated causal 

quantity for the overall effect τMRD depended strongly on the scaling of the assignment 

variables, raising questions about the interpretability of τMRD when assignment variables 

are measured on different scales. Estimates for the frontier-specific effects, however, are 

not sensitive to the scaling and distribution properties of the assignment variables and 

provide lower and upper boundaries for the overall treatment effect. 
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APPENDIX A 

Proof of decomposition. Let g(r, m) = y1(r,m) − y0 (r,m)  be the difference in 

potential treatment and control outcomes and ),( mrf  the joint density of R and M. Then, 

using line integration along frontier F, with ds being an infinitesimal segment along the 

frontier F, the expected treatment effect given F can be decomposed into the weighted 

average of conditional expectations: 
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Since either R or M but never both assignment variables change simultaneously along the 

cutoff frontier, we can rewrite the line integrals defining weights and conditional 

expectations in terms of regular integrals along each of the assignment variables. We 

rewrite the treatment weights as 
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To simplify estimation of treatment weights and conditional expectations, it is 

useful to replace the bivariate density f by the product of the univariate conditional and 

marginal densities, MMR fff ⋅= |  and f = fM |R ⋅ fR , such that the treatment weights are 

given by  

wR =

fM |R (m | r = rc )dm ⋅ fR(r = rc )
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Figure 1. MRDD with two assignment variables R and M 
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