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Abstract 

The current paper points out some problems with the paper by Sherman (2000) 
referenced in the title. Misunderstandings about the terms Missing at Random (MAR) 
and Missing Completely at Random (MCAR) are clarified. A necessary and sufficient 
condition to justify a complete case analysis of bivariate, binary data when interest is in 
the conditional distribution of one variable given the other is presented. The non-
existence of a test for MAR is noted. The impossibility of testing a condition that is 
sufficient to ensure unbiased estimates from an analysis of complete cases is also noted. 
Hence Sherman's proposed tests of ignorable nonresponse are falsified. 
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1. Introduction

The existence of missing data is a common problem for researchers

working with data from surveys. Individuals in the original sampling

frame may not respond to the survey at all, they may leave certain

items blank, or, in the case of panel surveys, they may respond to earlier

waves of the survey but not respond at later waves. The manner in

which missing data should be handled by the data analyst will depend

on two things: the nature of process that causes missing data and the

type of inferences that will be made from the data.

The vast majority of procedures for handling missing data assume

that the missingness process is ignorable in a particular sense. For

instance, a well known book by Little and Rubin (2002) devotes only

one of its fifteen chapters to methods that can be used when the missing

data process is not ignorable.

Rubin (1976) discussed conditions that are necessary to justify ig-

noring the missing data process. Two key conditions are crucial to

determining the ignorability of a missing data process with respect to

a particular analytical procedure. They are the ideas of missing at ran-

dom (MAR) and observed at random (OAR). Missing data generated

by a process that is both MAR and OAR is called missing completely

at random (MCAR).

There appears to be some confusion in the literature about (a) the

meaning of the terms MAR and MCAR, (b) conditions under which

it is justifiable to base an analysis on only the subset of respondents

for whom there are no missing values for any variable of interest (the
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so-called complete cases), and (c) the extent to which the assumption

that a missing data process is MAR or MCAR can be tested. Confusion

about all of the above issues is evident in the paper by Sherman (2000)

referenced in the title of this work.

Sherman (2000) discusses the case of missing values arising in the

context of bivariate categorical data. He seeks to determine when a

complete case analysis is justified. In service of this goal, Sherman de-

fines missingness processes that he describes as special cases of MCAR

or MAR missingness. Sherman then claims to characterize these miss-

ingness processes in terms of odds ratios calculable from the observed

data. On the basis of these characterizations, Sherman presents statis-

tics that he claims could be used to test whether a missing data process

is MCAR or MAR in the sense that Sherman intends.

The current paper uses a critique of the Sherman paper as a means

of demonstrating the confusion about the points listed above, and,

hopefully, as a means of clarifying some of this confusion. I assume

throughout (as does Sherman) that the primary interest is in the condi-

tional distribution of a response variable given an explanatory variable.

The paper is organized as follows.

Section 2 notes that Sherman’s understanding of the term “miss-

ing at random” differs from its original definition in Rubin (1976) and

from its common usage by statisticians. While MAR as usually de-

fined is neither necessary nor sufficient to ensure unbiased estimates

from a complete case analysis, Sherman’s MAR (which will be denoted

MARS in the following) is a sufficient but not necessary condition to
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ensure unbiased estimates from a complete case analysis. This section

also provides a necessary and sufficient condition for obtaining unbi-

ased estimates from a complete case analysis when interest is in the

conditional distribution of a response variable given an explanatory

variable. From here forward I shall term a missing data process that

is ignorable with respect to a complete case analysis a “CCI” process.

Section 3 begins by noting that it is impossible to test the MAR

hypothesis using the observed data, and it is also impossible to establish

a necessary and sufficient condition for CCI using only the observed

data. In view of these facts, it is clear that Sherman’s proposed tests of

ignorable nonresponse must fail. This section describes why Sherman’s

proposed tests fail to test a necessary and sufficient condition for any

of the following: (a) MAR, (b) MARS , (c) MCAR, (d) CCI. The final

section summarizes.

2. MCAR, MAR, MARS, and a necessary and sufficient

condition for ignorability

Crucial to understanding when a missing data process may be ig-

norable are the concepts of missing at random (MAR), observed at

random (OAR) and missing completely at random (MCAR). Before

defining these terms it is useful to have in mind the distinction be-

tween the latent data and the observed data. Assume that the data

can be arranged into a “units” by “variables” matrix in the usual fash-

ion. The latent data, denoted ZL, is the data that would have been

observed had there been no missing data. Let the ijth element of the

matrix M be defined by Mij = 1 if data is missing for the jth variable
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measured on the ith unit and Mij = 0 otherwise. M is referred to as

the missing data matrix. Then the observed data, ZO, is defined by

ZO
ij = ZL

ij if Mij = 0 and ZO
ij = ∗ if Mij = 1. The symbol “*” is

used as a placeholder to indicate missing data.

Let ZL
obs = the entries in ZL such that ZL = ZO and ZL

mis = the

entries in ZL for which ZO = ∗ . We characterize the random matrix

M by its conditional distribution given the latent data and index this

distribution by a parameter vector φ. Then the data are missing at

random if

(MAR) P (M|ZL, φ) = P (M|ZL
obs, φ) for all ZL

mis, φ.

The data are observed at random if

(OAR) P (M|ZL, φ) = P (M|ZL
mis, φ) for all ZL

obs, φ.

The data are missing completely at random if both MAR and OAR

hold, which implies that

(MCAR) P (M|ZL, φ) = P (M|φ) for all ZL, φ.

In the above equations, P (.) denotes a generic probability distribution

over its argument(s).

The definitions given in the preceding paragraph are derived from

Rubin (1976) and conform with the usual understanding of these terms

in the statistics literature (see, e.g., Allison, 2002 or Little and Rubin,

2002). Sherman provides somewhat different definitions of MCAR and
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MAR. Sherman describes MCAR as occurring when “the joint distribu-

tion of the complete units is equal to the joint distribution of the sample

(p.362).” He defines MAR as the situation where, “the conditional dis-

tribution of the response variable given the explanatory variables for

the complete data is the same as the corresponding conditional distri-

bution for the full data (p.365).” Note that the definition of MAR given

in equation (MAR) makes no reference to “explanatory” or “response”

variables. Hence, Sherman’s understanding of MAR differs from the

usual understanding of that term, and I use the notation MARS to

refer to Sherman’s version of MAR from here forward. On the other

hand, Sherman’s description of MCAR is equivalent to the definition

given in the equation labeled (MCAR).

Sherman defines particular types of MCAR and MARS missingness

within the context of a hypothetical survey of U.S. citizens where the

researcher is interested in the relationship between race (black or non

black) and turnout (voter or nonvoter). It is assumed that values of

race, turnout or both may be missing. Adapting the notation intro-

duced above to this specific example, the missing data vector for sub-

ject i may be written Mi = (Mi1,Mi2), with Mi1 indexing missingness

on race and Mi2 indexing missingness on turnout. The observed data

vector for subject i is given by ZO
i = (RO

i , T
O
i ) with RO

i ∈ (B,B, ∗R)

and TOi ∈ (V, V , ∗T ). The latent data vector for subject i is given by

ZL
i = (RL

i , T
L
i ) with RL

i ∈ (B,B) and TLi ∈ (V, V ). Matrices repre-

senting the observed and latent data may be constructed by stacking

the relevant row vectors.
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Sherman defines the MCAR(item) condition to hold if and only if:

(1) The Mijare independent for i = 1, . . . , n; j = 1, 2 .

(2) For j = 1, 2 The Mij are identically distributed for i = 1, . . . , n.

Note that MCAR(item) is a special case of MCAR as defined in equa-

tion (MCAR) since

P (Mi1,Mi2|RL
i , T

L
i )

= P (Mi1|RL
i , T

L
i )P (Mi2|RL

i , T
L
i ) by (1)

= P (Mi1)P (Mi2) by (2)

= P (Mi1,Mi2). by (1)

Hence, P (M|RL, TL) = P (M) as required by MCAR. The first equality

given above is justified because the true values of race and turnout are

constant for each value of i. Thus, the independence of Mi1 and Mi2

for each i implies conditional independence of Mi1 and Mi2 given RL

and TL.

Sherman defines the condition MCAR(unit) to hold if and only if:

(1) Mi1 = Mi2, i = 1, . . . , n.

(2) Mi1, i = 1, . . . , n, are independent and identically distributed

Note that MCAR(unit) is a special case of MCAR since

P (Mi1,Mi2|RL
i , T

L
i ) = P (Mi1|RL

i , T
L
i ) by (1)

= P (Mi1) by (2)

= P (Mi1,Mi2). by (1)
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Sherman defines the MARS(item) condition to hold if and only if:

(1) Mij, i = 1, . . . , n, j = 1, 2 are independent.

(2) Mi2, i = 1, . . . , n are identically distributed.

(3) Mi1, i = 1, . . . , n are identically distributed within race cate-

gory.

Sherman defines the condition MARS(unit) to hold if and only if:

(1) Mi1 = Mi2, i = 1, . . . , n.

(2) Mi1, i = 1, . . . , n, are independent, and, within race categories,

identically distributed.

Unlike Sherman’s MCAR conditions, which are, in fact, implied

by MCAR, Sherman’s MARS conditions are not implied by MAR,

nor do they imply MAR. For instance, a missingness process where

P (Mi = (1, 0)|RL
i , T

L
i = V ) 6= P (Mi = (1, 0)|RL

i , T
L
i = V ) is consistent

with MAR (since turnout is observed when Mi = (1, 0)) . However,

such a missingness process is not consistent with either MARS(item) or

MARS(unit) (unless the correlation between TLi and RL
i is one). On the

other hand, both MARS(item) and MARS(unit) allow the probability

of a missing value for the race variable to depend on the potentially

unobserved value of race, which is a violation of MAR.

Sherman’s “item” and “unit” types of MCAR and MARS can be re-

garded as endpoints of a continuum between the case where Corr(Mi1,Mi2) =

0 (the “item” type) and the case where Corr(Mi1,Mi2) = 1 (the “unit”

type). In fact, it seems unlikely that either of these extremes would

ever hold in practice. One would expect that individuals for whom

the value of one variable is missing would also be more likely to be
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missing the value of another variable (hence Corr(Mi1,Mi2) > 0). On

the other hand, it will likely be the case that some individuals will

have data values recorded for some variables but not for others (hence

Corr(Mi1,Mi2) < 1). Of course, the case where Corr(Mi1,Mi2) < 0

is also possible, but this possibility seems unlikely. The next subsec-

tion will show that the correlation between the individual missingness

indicators is immaterial for the purposes of determining if CCI holds.

2.1. Complete Case Ignorability. The differences between MARS and

MAR are worthy of note, but the larger question of how these assump-

tions about the missingness process relate to complete case ignorability

remains. It appears to be widely acknowledged that in order to ensure

unbiased estimates in an analysis based on only complete cases, the

MCAR condition must hold (Peugh and Enders, 2004; Schafer and

Graham, 2002) . While this point is in general true, if interest is only

in the conditional distribution of a response variable given an explana-

tory variable, the following, weaker, condition is sufficient.

Theorem 1. A necessary and sufficient condition for complete case

ignorability with respect to the conditional distribution of TL given RL

is given by

(1) P (Mi = (0, 0)|RL
i , T

L
i ) = P (Mi = (0, 0)|RL

i ).

In words, equation (1) states that the probability of a complete

case may depend on the unobserved value of the independent variable,

but it may not depend on the value of the dependent variable, regard-

less of whether the value of the dependent variable is observed or not.
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A proof of the above theorem may be found in Allison (2002, p. 87).

In fact, Allison shows that the result given in theorem 1 holds more

generally for any regression of a dependent variable Y on a set of in-

dependent variables X1, . . . , Xq. That is, complete case ignorability

holds provided that the probability of a complete case conditional on

the independent variables doesn’t depend on the latent value of the de-

pendent variable (but this probability may depend on the latent values

of the independent variables).

One immediate consequence of theorem 1 is the following.

Corollary 1. MAR is neither a necessary nor a sufficient condition

for CCI.

Proof. Suppose that P (Mi = (0, 0)|RL
i , T

L
i = V ) 6= P (Mi = (0, 0)|RL

i , T
L
i =

V ). A missingness process of this sort is consistent with MAR, but

not with CCI. Thus MAR is not sufficient for CCI. Now suppose that

P (Mi = (1, 0)|RL
i = B, TLi ) 6= P (Mi = (1, 0)|RL

i = B, TLi ). A miss-

ingness process of this sort is consistent with CCI but not with MAR.

Thus MAR is not necessary for CCI. �

It is interesting to compare Sherman’s MARS conditions to the

necessary and sufficient condition for ignorability given in theorem 1.

I assume that the independence of Mi for i = 1, . . . , n is guaranteed

by the sampling process and so is trivially true. Conditional on this

assumption, the first condition in the definitions of MARS(unit) and

MARS(item) has to do with the correlation between Mi1 and Mi2 and
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the remaining conditions relate to the marginal distributions of Mi1

and Mi2.

The condition on Corr(Mi1,Mi2) distinguishes between “unit” and

“item” types of missingness, but is irrelevant from the perspective of

CCI. In the case of MARS(unit), given the condition on Corr(Mi1,Mi2),

the additional condition given by Sherman is necessary and sufficient

for CCI. On the other hand, given Corr(Mi1,Mi2) = 0, the other two

conditions that Sherman gives to define MARS(item) are sufficient for

CCI but not necessary. Condition (2) can be weakened to allow miss-

ingness on turnout to depend on race.

3. A test of the ignorability condition?

Nicoletti (2006) has pointed out that it is impossible to test the

MAR condition using only the observed data. An application of Bayes

rule to equation (MAR) shows that an equivalent characterization of

MAR is given by

(2) P (ZL
mis|ZL

obs,M) = P (ZL
mis|ZL

obs)⇔ (MAR).

This characterization makes immediately clear why MAR cannot be

tested: MAR is an assumption purely about the distribution of missing

data. Since the missing data is not observed, this assumption cannot be

tested. On the other hand, OAR may be characterized by the equation

(3) P (ZL
obs|ZL

mis,M) = P (ZL
obs|ZL

mis)⇔ (OAR).
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Since OAR is an assumption about the observed data, it can be tested

against the data obtained. Since MCAR is the conjunction of OAR

and MAR it is possible to test a necessary condition for MCAR, but

not possible to test a sufficient condition for MCAR. To summarize,

MCAR may be falsified by the observed data but not verified, and

MAR cannot be either falsified or verified from the observed data.

Since the complete case ignorability condition given in theorem 1 makes

assumptions about both the observed and the missing data, it can be

falsified, but not verified, from the observed data.

The MAR assumption is essential to justify the use of virtually

all of the most common modern methods for handling missing data

(Little and Rubin, 2002; Schafer and Graham, 2002), and complete case

analysis is perhaps the most widely used method for handling missing

data. So it is unsurprising that authors would attempt to devise tests

to justify maintaining the MAR assumption, or to justify the use of

a complete case analysis. Sherman’s paper is not the only example.

Other examples include Park and Davis (1993) and Donaldson and

Moinpour (2005). Unfortunately, these tests, like Sherman’s, fail to

achieve their goal.

Sherman claims that necessary and sufficient conditions for MCAR(item)

and MARS(item) may be derived using only the joint distribution of

the fully observed random variables RO
i and TOi . The following sub-

section shows that the conditions on the joint distribution of RO
i and

TOi that Sherman claims are necessary and sufficient for MARS(item)

(respectively MCAR(item)) are in fact necessary but not sufficient.
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Turnout

Race MT V V
MR p00 p01 p02

B p10 p11 p12

B p20 p21 p22

Table 1. Notation for joint probabilities defining the
distribution of observed race and turnout outcomes

3.1. Sherman’s proposed characterizations of MCAR(item) and

MARS(item). Consider the joint distribution of RO
i and TOi defined

by the probabilities given in Table 1. Sherman defines

Θ =
p00(p11 + p12 + p21 + p22)

(p01 + p02)(p10 + p20)
, R12 =

p10(p21 + p22)

(p11 + p12)p20

, C12 =
p10(p21 + p22)

p02(p11 + p21)

and makes the following claims:

(A) MCAR(item) holds if and only if Θ = 1, R12 = 1, and C12 = 1.

(B) MAR(item) holds if and only if Θ = 1 and R12 = 1.

Sherman’s proofs that

(1) MCAR(item) ⇒ Θ = 1, R12 = 1, and C12 = 1; and that

(2) MAR(item) ⇒ Θ = 1 and R12 = 1

are correct. However his proofs that

(i) Θ = 1, R12 = 1, and C12 = 1⇒ MCAR(item), and that

(ii) Θ = 1 and R12 = 1⇒ MAR(item)

are flawed. The claims in (i) and (ii) above can be falsified through a

counterexample.

For simplicity of exposition suppose for the argument below that

sample proportions estimate population probabilities without error.

Now consider the 3 x 3 table of data given in table 2. It is easy to verify

14
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Turnout

Race MT V V
MR 20 20 20
B 15 15 15
B 15 15 15

Table 2. Hypothetical observed data

Turnout

Race V V

B 55 20
B 20 55

Table 3. Hypothetical latent data

that this table satisfies the conditions Θ = 1, R12 = 1 and C12 = 1.

Suppose that if we had been able to observe race and turnout for the

entire sample we would have observed the 2x2 table for the complete

data given in table 3. Note that the numbers in table 3 are perfectly

consistent with those in table 2. However, it is clear that a complete

case analysis of the table of incomplete data would give erroneous re-

sults. Such an analysis would conclude that there is no association

between race and voting turnout. Yet an examination of the 2 x 2 ta-

ble of the hypothetical complete data makes clear that there is in fact a

strong association between race and voting turnout, with blacks much

more likely to turnout. The 3 x 3 table summarizing the observed data

simply doesn’t contain enough information to show whether or not the

MCAR(item) or MARS(item) conditions hold.

Sherman’s proofs of his claims that Θ = 1, R12 = 1, and C12 = 1⇒

MCAR(item) and that R12 = 1 and C12 = 1⇒ MCAR(item) note that

the MCAR(item) and MARS(item) conditions place certain constraints

15
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on the values pij for i, j = 0, 1, 2. For instance, he notes that both

MCAR(item) and MARS(item) require P (MR,MT ) = P (MR)P (MT ).

Sherman shows that Θ = 1 and R12 = 1⇒ p00 = (p00 +p01 +p02)(p00 +

p10 + p20) as required. Yet MARS (item) and MCAR(item) place addi-

tional constraints on the data that Sherman does not consider, and the

information in the table of incomplete data is not sufficient to determine

if these constraints are met or not. For instance, both MARS (item)

and MCAR(item) require that

(4) P (Mi1 = 1|RL
i = B, V L

i = V) = P (Mi1 = 1|RL
i = B, V L

i = V)

Writing

P (Mi1 = 1|RL
i = B, V L

i = V) =
P (RL

i = B, V L
i = V|Mi1 = 1)P (Mi1 = 1)

P (RL
i = B, V L

i = V)
.

it should be clear that it is impossible to know from the incomplete data

whether or not (4) holds since we cannot know P (RL
i = B, V L

i = V)

when race is missing.

One flaw in Sherman’s logic is that he appears to have confused

ZO and ZL. For instance, he describes R12 as the ratio of the odds

that turnout is observed rather than not observed given that the race

outcome is B to the odds that turnout is observed rather than not

observed given that the race outcome is B (p.366). Thus, he implies

that

(5) R12 =
odds(Mi2 = 0|RL

i = B)

odds(Mi2 = 0|RL
i = B)

.
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In fact,

(6) R12 =
odds(Mi2 = 0|RO

i = B)

odds(Mi2 = 0|RO
i = B)

.

However, even if we could interpret R12 as characterized by equation

(5), R12 = 1 and Θ = 1 would not be a sufficient condition for

MARS(item). For instance, there is nothing to guarantee that con-

dition (3) in the definition of MARS(item) is met. Similar statements

could be made about MCAR(item). Even if C12 could be interpreted as

Sherman intends, R12 = 1, C12 = 1 and Θ = 1 would not be sufficient

for MCAR(item).

3.2. Sherman’s proposed characterizations of MCAR(unit) and

MARS(unit). Sherman claims to be able characterize of MCAR(unit)

and MARS(unit) in the context of standard panel surveys using only

observable quantities. He suggests that these characterizations can be

used to test for ignorable attrition. Sherman considers the hypothet-

ical example of married women followed over two time periods with

observations at each period taken on their work status, employed (E)

or unemployed (U), and their husband’s income, high(H) or low (L).

He assumes that all women are measured at the first period, but some

drop out prior to the second period. Work status is viewed as the

response variable and income as an explanatory variable. Let table 4

denote the joint distribution of income and work status for the first

period for all women. Let table 5 represent the joint distribution of

income and work status during the first period for only those women

who did not drop out prior to the second period. Sherman claims that:

17
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All Women
work status

Income E U
L π11 π12

H π21 π22

Table 4. Notation for probabilities relating to all women

Women who didn’t drop out
work status

Income E U
L p11 p12

H p21 p22

Table 5. Notation for probabilities relating to women
in study for both time periods

(i) MCAR(unit) holds if and only if πij = pij for all i and j .

(ii) MAR(unit) holds if and only if πi1pi2

πi2pi1
= 1 for i = 1, 2.

It is not obvious how to evaluate Sherman’s claims regarding MARS(unit)

and MCAR(unit). For one, the definition Sherman gives for MARS(unit)

is ambiguous in the context of the example he describes. Condition

(2) of MARS(unit) requires that the missing data indicator (Mi1) be

identically distributed within categories of the independent variable.

However, in the context of a panel survey, it is unclear if Sherman in-

tends this definition to apply to categories measured at the first wave

of the study or the second wave of the study.

One thing that is clear is that the condition πij = pij for all i

and j is not sufficient to show that attrition is ignorable (and since

πij = pij for all i and j implies πi1pi2

πi2pi1
= 1 for i = 1, 2 this second

condition is also not sufficient). The condition πij = pij for all i and

j ensures that the joint distribution of variables measured at the first

18



CHRISTOPHER H. RHOADS

wave is the same for those who drop out prior to the second period as

it is for those who do not drop out. However, this condition implies

nothing about the distribution of variables measured at the second

wave. Hence, any complete case analysis that involves inference about

population quantities that relate to second wave variables (for instance,

an analysis of time trends) could well be incorrect even when πij = pij

for all i and j

3.3. Use of Sherman’s test. Tests such as those proposed in Sher-

man (2000) give applied researchers the false impression that the ig-

norability of the missing data mechanism is a testable proposition. In-

deed, some researchers seem to have been misled by the tests given in

Sherman. Boehmke (2003) implies that Sherman’s test can determine

whether observations are randomly missing. Barabas (2004) utilizes

Sherman’s tests to justify certain claims about the missingness process

in the data he analyzes. Barabas concludes on the basis of Sherman’s

test for unit missingness that attrition is ignorable in a two wave panel

survey. Barabas also analyzed “item nonresponse” within each wave

of the survey and concluded on the basis of Sherman’s test that there

were “violations of the missing at random assumption” and that “item

nonresponse was nonrandom for certain questions”. Given the above

discussion of Sherman’s tests there is reason to doubt Barabas’ claims

about the missing data in his study. Attrition in this study may or

may not have been ignorable. Item nonresponse may or may not have

been generated by a missing at random process. The data provides no

answers to these questions.
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4. Summary

This paper has attempted to clarify (a) the meaning of the terms

MAR and MCAR, (b) necessary and sufficient conditions for a com-

plete case analysis when interest is in the conditional distribution of a

response variable given an independent variable, and (c) the testability

of the MAR and MCAR assumptions. The paper by Sherman (2000)

demonstrates confusion about all of the topics just listed.

This paper notes that Sherman’s definition of MAR differs from

the usually accepted definition. A condition which is necessary and

sufficient to justify a complete case analysis with respect to conditional

distributions computed from bivariate categorical data is presented.

Sherman’s claim to have discovered a test of certain types of MCAR

and MAR missingness is falsified. In fact, as noted in Nicoletti (2006),

it is impossible to test a sufficient condition for MAR, for MCAR, or

for complete case ignorability using only the observed data.

Researchers should recognize that the justification for maintaining

a MAR or MCAR hypothesis must come from some prior knowledge

unrelated to the data at hand, rather than from the data itself. If

such assumptions cannot be justified, the probability distributions in

question are only partially identified. Researchers should then consider

an approach that explicitly recognizes the partial identification prob-

lem, such as the non-parametric bounds approach described in Manski

(2003).
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