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Abstract

In the United States, the drug approval process of the Food and Drug Administration
(FDA) is currently the main mechanism through which the government influences the
production and dissemination of information on drug treatments. To obtain approval for a
new drug, a pharmaceutical firm provides evidence on treatment response in randomized
clinical trials that compare the new drug with an accepted treatment or a placebo. The
FDA makes a binary approval decision after reviewing these trails' empirical findings.
This paper brings welfare-economic and decision-theoretic thinking to bear on drug
approval. Considering the matter from the minimax-regret perspective suggests an
adaptive social planning process in which treatment with a new drug would vary—
instead of being either fully allowed or denied as in current practice— as empirical
evidence accumulates. The stronger the evidence on identified health outcomes, then the
more the drug could be used. The adaptive process would improve on the current one by
stimulating production of stronger information on treatment response and by reducing the
welfare losses that arise from errors in approval decisions. Manski suggests a pragmatic
version of the adaptive process that the FDA could implement.

This research was supported in part by National Science Foundation grant SES-0549544. 1 am
grateful to David Meltzer, John Pepper, Bruce Spencer, and Alex Tetenov for comments. |
have benefited from the opportunity to present this work in seminars at the University of
Chicago and the University of Southern California. An earlier version of this paper was
circulated under the title “Adaptive Minimax-Regret Treatment Choice, with Application to
Drug Approval,” NBER Working Paper W13312, August 2007.



1. Introduction

Partial knowledge of treatment response is the norm when choosing medical treatments. The various
actors in the decision process— physicians, patients, insurers, and others—essentially never have perfect
foresight. The most that decision makers can strive to know is the distribution of treatment response in
certain settings. For example, when treating a life-threatening disease, one might strive to assess the
probabilities of survival if a patient with specified characteristics were to receive alternative treatments.

The information about treatment response that is actually available to decision makers may combine
experimental data from clinical trials and observational data from clinical practice. This information is a
quasi-public good, so there is a prima facie case for some government role in its production and
dissemination. The difficult policy question is to determine what this role should be.

In the United States, the drug approval process of the Food and Drug Administration (FDA) is
presently the main mechanism through which the government influences the production and dissemination
of information on drug treatments. The drug approval process determines whether a drug can legally be sold
within the country. To obtain approval for a new drug, a pharmaceutical firm must provide to the FDA
information on treatment response through the performance of randomized clinical trials that compare the
new drug with an accepted treatment or a placebo. The FDA makes a binary (up or down) approval decision
after reviewing the empirical findings of these trials.

This paper brings welfare-economic and decision-theoretic thinking to bear on drug approval. The
result is a proposal to replace the present approval process with an adaptive process in which treatment with
a new drug would vary smoothly as empirical evidence accumulates. The stronger the evidence on health
outcomes of interest in the patient population of interest, the more that use of a new drug would occur. The
adaptive process would improve on the present one by stimulating production of stronger information on
treatment response and by reducing the welfare losses that arise from errors in approval decisions.

Section 2 provides background on the present FDA approval process. I observe that statistical
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imprecision and identification problems may generate errors in approval decisions, with identification usually
being the dominant concern. Important sources of identification problems are measurement of surrogate
outcomes, experimentation on volunteers, noncompliance and attrition, and blinded treatment assignment.

Section 3 steps away from the present FDA process and considers how a hypothetical social planner
might behave when a new drug is invented. At each point in time, the planner must choose how to allocate
the current cohort of a heterogeneous patient population between the new drug and a status quo treatment.
Over time, the planner wants to learn response to the new drug, in order to improve treatment of future
cohorts. The identification problems discussed in Section 2 imply that the planner faces a joint task of
learning and treatment choice under ambiguity.

I consider this task from the minimax-regret perspective and introduce the adaptive minimax-regret
(AMR) treatment rule. The AMR rule treats each cohort as well as possible, in the minimax-regret sense,
using the information available at the time. A generic result is that the minimax-regret treatment allocation
is fractional whenever the available information does not suffice to determine whether a new treatment is
superior or inferior to the status quo. That is, it is socially best to diversify treatment by assigning positive
fractions of the cohort to both treatments. A consequence is that performance of randomized trials arises
naturally from application of the AMR rule. The findings of these trials yield new information about
treatment response, thereby improving treatment of future cohorts.

Section 4 discusses implementation of policies that embody features of the AMR rule. I first
consider settings with centralized health care systems, where some public or private entity acts as a social
planner and makes treatment choices for its patient population. Examples include the Veterans Health
Administration (VA) in the United States, the National Health Service (NHS) in England, and private health
maintenance organizations (HMOs). Such entities could implement close approximations to the AMR rule.

I then consider the decentralized American context within which the FDA functions. Full

implementation of the AMR rule would require radical change in the American health care system, but the
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FDA could embrace important features of the rule with relatively modest revision to the present drug
approval process. I suggest a quasi-AMR process that (1) lengthens the duration of clinical trials to enable
measurement of health outcomes of real interest and (2) permits limited sales of new drugs while clinical
trials are underway, the limit varying with time as evidence accumulates.

Although this paper focuses on drug approval, the ideas developed here apply more broadly. They
apply as much to FDA approval of medical devices as drugs. The AMR rule may also be applied to less
regulated aspects of medical treatment, such as surgical procedures.

The ideas apply outside of medicine as well. Consider, for example, evaluation of educational
interventions in early childhood. The outcomes of interest may be years of schooling completed by
adulthood and job performance in adulthood. Not wanting to wait for these outcomes to unfold over time,
researchers have often used performance in the early grades of school to judge the success of innovations,
with binary implementation decisions in mind. Here, as with drug approval, it may be better to institute an
adaptive process in which the scale of implementation of an intervention varies as evidence accumulates.

The analysis in this paper makes various simplifying assumptions. Perhaps the most weighty is that
it takes the invention of a new drug as a predetermined event, without asking how the drug came to be. This
perspective is appropriate when considering a social planner whose patient population is small relative to
the potential market for new drugs. It may not be appropriate when considering such large actors as the FDA
or the NHS. The drug approval process of the FDA and the treatment rule of the NHS may affect the
innovation process that generate new drugs. It is natural to ask how implementation of the AMR rule by the
NHS or of a quasi-AMR approval process by the FDA may affect the innovation process. This is an

important question, but it may be a difficult one to answer. 1 do not address it here.
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2. Errors in FDA Drug Approval due to Identification Problems

The present FDA process for drug approval begins with preclinical laboratory and animal testing of
new compounds. Those that seem promising then go through three phases of clinical trials, in which the new
drug is compared with an accepted treatment or placebo.' Phase 1 trials, which typically take about a year
and are performed with twenty to eighty healthy volunteers, aim to determine the basic pharmacological
action of the drug and the safety of different doses. Phase 2 trials, which usually take about two years and
are performed with several hundred volunteers who are ill with a specific disease, give preliminary evidence
on the effectiveness and short-term side effects of the drug. Phase 3 trials, which usually take about three
years and are performed with several hundred to several thousand volunteers ill with the disease, give further
evidence on effectiveness and side effects. Following completion of Phase 3, the firm files a New Drug
Application and the FDA either approves or disapproves the drug.’

FDA evaluation of new drugs occurs with partial knowledge of treatment response. As a
consequence, drug approval decision are susceptible to two types of errors. Type I errors occur when new
drugs that actually are inferior to accepted treatments are approved because they appear superior when
evaluated using the available information. Type II errors occur when new drugs that actually are superior

to accepted treatments are disapproved because they appear inferior when evaluated using the available

' The circumstances in which the comparison should be to an accepted treatment or placebo are a
matter of some controversy. See Rothman and Michels (1994).

* See www.fda.gov/cder/handbook/ for an FDA description of the drug approval process. Although
The FDA was created over a century ago in the Pure Food and Drug Act of 1906, the present drug approval
process is a much more recent invention. From 1906 to 1938, the agency was unable to disapprove the sale
of purported medicines. It only was able to outlaw labeling and other advertising that made unsupported
claims of treatment safety and effectiveness. The Food, Drug, and Cosmetics Act (FDCA) of 1938 gave the
FDA power to prohibit the sale of unsafe drugs, but without a requirement to assess effectiveness. The 1962
Amendments to the FDCA established the modern drug approval process, which requires pharmaceutical
firms to demonstrate that new drugs are safe and effective through a series of randomized clinical trials. See
Peltzman (1973) and Temin (1980) for further discussion.



information; see Viscusi, Harrington, and Vernon (2005, Chapter 22) for a textbook discussion. Some Type
I errors eventually are corrected after approval through the FDA’s post-market surveillance program, which
analyzes data on the outcomes experienced when the drug is used in clinical practice.” Type II errors
commonly are permanent because, after a drug is disapproved, use of the drug ceases and no further data on
treatment response are produced.

A well-recognized potential source of errors in drug approval is the statistical imprecision of
empirical findings from clinical trials with finite samples of subjects. The FDA limits the frequency of
statistical errors by requiring that sample sizes suffice to perform conventional hypothesis tests with specified
power, and by using the results of these tests to make approval decisions. There is much reason to question
the logic of using hypothesis tests as a criterion for drug approval.* Nevertheless, conventional power
calculations do in practice ensure that sample sizes are large enough to make statistical error a relatively
minor concern.

The dominant determinants of errors in drug approval are a host of identification problems.

* See www.fda.gov/cder/regulatory/applications/postmarketing/surveillancepost.htm for an FDA
description of this program. At present, the post-market surveillance program only aims to detect adverse
side effects of approved drugs, not to better assess their effectiveness in treating the conditions for which
they are intended. The data available for post-market surveillance is limited by the fact that FDA cannot
compel a firm to perform new clinical trials after a drug has been approved. This being the case, the main
instrument of post-market surveillance is the Adverse Event Reporting System, which encourages patients
and physicians to submit reports of adverse side effects related to drug administration. A recent Institute of
Medicine study makes recommendations for strengthening the post-market surveillance program. See
Committee on the Assessment of the US Drug Safety System (2006).

* Approval of a new drug normally requires one-sided rejection of the null hypothesis of zero average
treatment effect when a new drug is compared with an accepted treatment or placebo (Fisher and Moyé,
1999). This sets a high bar for approval, requiring that pharmaceutical firms demonstrate “substantial
evidence of effect” for their products (Gould, 2002).

The use of hypothesis tests in drug approval is difficult to motivate from the perspective of treatment
choice. First, there is no decision-theoretic rationale for the standard practice of handling the null and
alternative hypotheses asymmetrically, fixing the probability of a type I statistical error and seeking to
minimize the probability of a type Il error. One should instead handle the two errors symmetrically. Second,
error probabilities only measure the chance of making an approval error. They do not measure the loss in
welfare resulting from an error.
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Identification problems are the inferential difficulties that would persist even if statistical imprecision were
eliminated by letting the sample sizes in clinical trials go to infinity; see Manski (1995, 2007a) for exposition
and analysis of many such problems. The clinical trials used in the FDA drug approval process suffer from
identification problems because, even if their sample sizes were to grow without bound, these trials would

not reveal the distribution of treatment response in relevant patient populations. Some important reasons are

Measurement of Surrogate Outcomes: The clinical trials used to support New Drug Applications have
relatively short durations. When trials are not long enough to observe the health outcomes of real interest,
the practice is to measure so-called surrogate outcomes and base drug approval decisions on their values.
For example, treatments for heart disease may be evaluated using data on patient cholesterol levels and blood
pressure rather than data on heart attacks and life span. In such cases, which occur regularly, the clinical
trials used in drug approval at most reveal the distribution of surrogate outcomes in the patient population,

not the distribution of outcomes of real health interest.

Experimentation on Volunteers: Participation in experiments ordinarily cannot be mandated in democracies.
Hence, the clinical trials performed for drug approval draw subjects at random from pools of persons who
volunteer to participate. Hence, a trial at most reveals the distribution of treatment response within the sub-

population of volunteers, not within the full patient population.

Noncompliance and Attrition: Within the sample who agree to participate in a trial, some subjects may not
comply with their assigned treatments or may leave the trial early, before their outcomes can be measured.

Hence, a trial at most reveals the distribution of response to an assigned treatment within the sub-population
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of subjects who comply with treatment assignment and who do not leave the trial early.’

Blinded Treatment Assignment: Blinded treatment assignment has been the norm in clinical trials of new
drugs. Hence, a trial at most reveals the distribution of response in a setting where patients and physicians
are uncertain what treatment has been assigned. It does not reveal the distribution of response in a real

clinical setting where patients and physicians would know the assigned treatment.

Although the FDA has adopted formal procedures to limit the frequency of statistical errors in the
drug approval process, it has not adopted procedures to cope coherently with identification problems.
Instead, the approval process informally extrapolates from available trial data to the distribution of treatment

response in real clinical settings. This practice has been criticized, but it persists.

Extrapolation from Surrogate Outcomes
Health researchers have called particular attention to the difficulty of extrapolating from surrogate
outcomes to health outcomes of interest. Fleming and Demets (1996), who review the prevalent use of
surrogate outcomes in Phase 3 trials evaluating drug treatments for heart disease, cancer, HIV/AIDS,
osteoporosis, and other diseases, write (p. 605):
“Surrogate end points are rarely, if ever, adequate substitutes for the definitive clinical
outcome in phase 3 trials.”

Sculpher and Claxton (2005), who consider decisions about whether new drugs are sufficiently cost-effective

* Much medical research seeks to circumvent the issue of noncompliance through performance of
intention-to-treat analysis, which studies the outcomes associated with assigned rather than received
treatments. Noncompliance is logically impossible in intention-to-treat analysis. This form of analysis is
well-motivated if it is credible to assume that noncompliance patterns in real clinical settings will be similar
to those observed in the available trial data. If this assumption is not credible, intention-to-treat analysis can
be misleading for prediction of treatment response in real clinical settings.
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for reimbursement in collectively funded health-care systems, write (p. 441):
“Arguably the biggest challenge that reimbursement agencies have to face in terms of the
uncertainty surrounding existing evidence relates to costs and outcomes which have not
been observed directly in trials. There are two frequent manifestations of this: linking
intermediate outcomes to ultimate measures of health gain, and extrapolating costs and
benefits over a longer-term time horizon.”
The obvious solution is to perform clinical trials of sufficient length to measure the health outcomes
of real interest. However, this has been thought politically infeasible. Pasty et al. (1999) write (p. 789):
“One systematic approach is a requirement that, prior to their approval, new drug therapies
for cardiovascular risk factors should be evaluated in large, long-term clinical trials to assess
their effects on major disease end points. The use of surrogate outcomes is avoided, and the
major health outcomes are known prior to marketing. Such an approach would slow the
time to drug approval and may meet with resistance from pharmaceutical manufacturers.”
Indeed, pharmaceutical firms eager for returns on investments and patient groups wanting access to new

drugs have often advocated shortening rather than lengthening the present time to approval.®

3. Treatment Choice by A Social Planner

To simplify analysis of complex collective decision problems, economists often find it useful to

consider how a hypothetical social planner would behave. A standard exercise begins by specifying a set

%1In 1992, pressure for quicker approval decisions led to passage of the Prescription Drug User Fee
Act. This legislation shortened the time that the FDA takes to review New Drug Applications, the expedited
review being funded by user fees assessed on the firms seeking approval. The Act did not shorten the
duration of the clinical trials performed in support of New Drug Applications.
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of policy alternatives and a social welfare function. The planner is presumed to know the welfare achieved
by each policy alternative. With this knowledge, one can derive the optimal policy. The Mirrlees (1971)
study of optimal income taxation is a leading example.

In this vein, I consider how a planner might behave when a new drug is invented. However, the
informational character of this planning problem differs fundamentally from that assumed in the standard
exercise. The standard approach would be to presume complete knowledge of the distribution of patient
response to the new drug. But the essential feature of the FDA decision problem is that the agency begins
with partial knowledge of treatment response and uses the drug approval process to induce production of
information. If consideration of planner behavior is to carry lessons for drug approval in practice, we should
presume that the planner begins with partial knowledge of treatment response.

How might a planner behave with partial knowledge of treatment response? He might, in the
Bayesian manner, assert a subjective probability distribution over the unknown distribution of treatment
response and maximize subjective expected welfare. See Meltzer (2001) for applications to medical decision
making. However, a subjective probability distribution is itself a form of knowledge, and the planner may
have no good basis for asserting one. How then might he behave? I shall study adaptive application of the
minimax-regret (MR) criterion, a general principle for decision making with partial knowledge that was first
suggested by Savage (1951).

Section 3.1describes the minimax-regret criterion in general terms, gives an illustration, and explains
its adaptive extension to multi-period planning problems. Section 3.2 formalizes the criterion in the new-
drug context and derives the adaptive minimax-regret treatment allocation in a relatively simple setting.

Section 3.3 gives numerical illustrations. Section 3.4 extends the analysis to some more complex settings.
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3.1. The Adaptive Minimax-Regret Rule

First consider a one-period setting, where a planner must allocate a single cohort of patients between
two treatments. In this setting, the minimax-regret rule chooses a treatment allocation that minimizes the
maximum loss to welfare resulting from not having complete knowledge of the distribution of treatment
response. Specifically, the regret of a treatment allocation under a possible distribution of treatment
response is the difference between the maximum welfare that would be achievable given complete
knowledge and the welfare that is achieved by this allocation. Given complete knowledge, the best decision
obviously would be to choose an allocation that minimizes regret, setting it equal to zero. In the absence of
complete knowledge, the MR rule chooses a treatment allocation that minimizes maximum regret across all
possible distributions of treatment response.

This one-period planning problem has been studied previously in Manski (2005, 2007a, 2007b) and
Stoye (2007a). A general finding is that when there are two treatments and the available knowledge of
treatment response does not suffice to determine which treatment is better, the MR rule does not assign all
observationally identical persons to the same treatment. Instead, it fractionally allocates these persons across
the two treatments, the fraction receiving each treatment being determined by the available knowledge.

With its fractional treatment allocation, the minimax-regret criterion enables a planner to socially
diversify risks that are privately indivisible. A dramatic illustration occurs in this hypothetical problem of

treatment choice considered in Manski (2007a, Section 11.7).

Choosing Treatments for X-Pox: Suppose that a new viral disease called x-pox is sweeping the world.
Researchers have proposed two mutually exclusive treatments, say a and b, which reflect alternative
hypotheses, say H, and H,, about the nature of the virus. If H, (H,) is correct, all persons who receive

treatment a (b) survive and all others die. A planner knows that one of the two hypotheses is correct, but
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does not know which one. The objective is to maximize the survival rate of the population.
In this setting, the risk of death is privately indivisible. An individual receives either treatment a or
b, and this person either lives or dies. Yet society can diversify by having positive fractions of the population
receive each treatment. Consider the rule in which a fraction ¢ € [0, 1] of the population receives treatment
b and the remaining 1 - d receives treatment a. Then the fraction who survive is either  or 1 - . A planner

who uses the MR criterion would set = 0.5, implying that half of the population survives and half dies. [J

Social diversification is a central qualitative feature of minimax-regret choice between two treatments.” It
is not a general feature of Bayesian decision making. For example, in the x-pox illustration, a Bayesian
planner allocates the entire population to the treatment with the higher subjective probability of success.*
Now consider a multi-period setting, where the planner must allocate a sequence of cohorts of
patients between two treatments. In contrast to the one-period planning problem, there now is an opportunity
for learning, with the observed outcomes of treatments assigned in early periods being used to inform
treatment choice in later periods. The adaptive minimax-regret criterion applies to each cohort the minimax-
regret criterion using the knowledge of treatment response available at the time of treatment. The result is
a fractional treatment allocation whenever the available knowledge does not suffice to determine which
treatment is better. The rule is adaptive because knowledge of treatment response accumulates over time,
0 successive cohorts may receive different fractional allocations. Eventually, the planner may learn which

treatment is better. From this point on, he assigns new cohorts entirely to the better treatment.

” The situation is more subtle when there are more than two treatments. Then the MR criterion
typically yields a fractional treatment allocation, but in some circumstances it assigns everyone to the same
treatment. See Stoye (2007a).

® A Bayesian planner does select a fractional treatment allocation if social welfare is a strictly
concave function of the population survival rate. Let A denote the planner’s subjective probability that
hypothesis H, is correct. Let s(8) denote the survival rate with allocation 8. If social welfare is log[s(d)],
it can be shown that a Bayesian planner sets & = A. See Keeney (1980) for further Bayesian analysis of
“catastrophe” problems similar to the x-pox example.
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The adaptive minimax-regret criterion shares a broad familial relationship with the idea of adaptive
clinical trials, but it differs in important respects. Adaptive trials sequentially draw subjects into traditional
finite-sample trials and use a frequentist or Bayesian statistical criterion to make the allocation of new
subjects across treatments a function of the outcomes observed to date for subjects drawn earlier. The
objective, as stated in Tamura et al. (1994, p. 768), is to “use the observed response data to adapt the
allocation probabilities, so that more patients will hopefully receive the better treatment.”

The adaptive minimax-regret criterion shares the broad objective of using observed treatment
responses to inform subsequent treatment choices. However, the AMR criterion is intended for application
within the entire patient population rather than only within the sample drawn into a traditional clinical trial.
Morever, the AMR criterion is intended to cope with identification problems. In contrast, proposals for

adaptive trials have been concerned only with statistical imprecision.

3.2. Allocating a Sequence of Cohorts to a Status Quo Treatment and an Innovation

Basic Concepts, Notation, and Assumptions

I now formalize the above discussion. To begin, there are two treatments for a condition, labeled
aand b. Treatment a is the status quo, a pre-existing accepted treatment whose properties are known from
historical experience. Treatment b is an innovation, whose properties are not known initially. In particular,
the innovation may be a new drug treatment.

A cohort of patients appears each period and requires treatment. The periods are labeledn =0, 1,
....,N. Here n =0 is the first period in which the innovation is available. In each period n > 0, the set of
feasible treatments is T = {a, b}.

Each member j of cohort n, denoted J,, has a response function y,(*): T - Y mapping treatments t

€ T into outcomes y;(t) € Y. Subscripting y;(*) by j indicates that treatment response may vary across the
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members of the cohort. Whereas the members of cohort n are assigned treatments in period n, their outcomes

unfold over the subsequent K periods. In particular, y;(t) might have the time-additive form

K
(D Yj(t) = ) Yi(),
k=1
where y, (t) is the component of the outcome that is realized k periods after person j receives treatment.

For example, the treatments may be alternative cancer therapies and the outcome may be life span.
Then a period may be a year, with K being a specified horizon of interest. Here y;(t) = 1 if person j would,
in the event of receiving treatment t, be alive k years after treatment, and y, (t) = 0 otherwise.

Let P[y()] denote the distribution of treatment response across a cohort. Observe that I do not index
P by n. Thus, all cohorts share the same distribution of treatment response. This assumption enables social
learning. I assume that the planner observes outcomes as they unfold. Hence, he can use data on outcomes
in early cohorts to inform treatment choice for later cohorts.

I maintain two further simplifying assumptions. First, the members of the population are
observationally identical. In practice, persons may have observable covariates, and a planner may be able
to differentially treat persons with different covariates. In such cases, the present analysis can be applied
separately to each sub-population of observationally identical persons.

Second, each cohort J is large in the formal sense of being atomless; that is, P(j) =0 for all j € J ,
This idealization implies that whenever the planner implements a fractional treatment allocation, the sub-
population of persons who are assigned each treatment is infinite. This formally eliminates statistical

imprecision as an issue in inference on treatment response.

The Treatment Choice Problem

The planner’s problem is to allocate each cohort between the two treatments. A treatment rule is a
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vector d = (8,,n=0, ..., N) that randomly assigns a fraction §, of cohort n to treatment b and the remaining
1 - §, to treatment a. The feasible treatment rules are the elements of the hyper-rectangle [0, 1]V,

Let u(t) = u[y(t), t] denote the net contribution to social welfare that occurs when a person receives
treatment t and realizes outcome y(t). I assume that the planner wants to choose a treatment rule that
maximizes mean welfare summed across cohorts. Let a = E[u(a)] and B = E[u(b)] be the mean welfare that
would result if all members of a cohort were to receive treatment a or b respectively. The quantities a and
B are not indexed by n because, by assumption, the distribution of treatment response is the same for all

cohorts. The social welfare achieved by rule 6 is

N N
(2) WE) = YB3, +a(l-5)=N+DhHa+ B-a) )35,

n=0 n=0

W(+) is an ordinary consequentialist social welfare function that aggregates individual contributions
to welfare in an additive manner. A notable special case occurs when the function u(-) expresses private
preferences. Then W(') is the utilitarian social welfare function that weights all cohorts equally. A slightly
broader definition of W(+) would permit the social welfare function to differentially weight cohorts that vary
in size or to express time discounting. The present analysis extends easily to such cases.

The optimal treatment rule is obvious if (a, B) are known. The planner should choose 6, = 1 for all
nif > aand§, =0 if B <a. All values of § yield the same welfare if f = a. The problem of interest is
treatment choice when (a, ) is only partially known. In particular, I shall consider situations in which a is
known but B is not.

It is often reasonable to suppose that a is known from historical experience. All members of cohorts
n < 0 received the status quo treatment. Hence, a planner can learn o empirically if he is able to observe the

outcomes experienced by cohort ~K or an earlier cohort.
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The innovation having been introduced at period 0, empirical evidence cannot reveal the value of
B before period K. When the planner treats a cohort n < K, he can only observe the components of the
outcomes experienced to date by members of earlier cohorts who were assigned the innovation. Thus, at n
=0, the planner has no empirical evidence. Atn= 1 he can observe first-period outcomes for those members
of cohort 0 who were assigned the innovation. At n = 2, he can observe second-period outcomes for
members of cohort 0 who were assigned the innovation, as well as first-period outcomes for members of

cohort 1. And so on.

Minimax-Regret Treatment Choice in a One-Period Planning Problem
First consider a one-period planning problem; thus, N = 0. If the planner assigns a fraction §, of

cohort 0 to the innovation and the remainder to the status quo, social welfare is

() W@, = a + (B - a)d,

The problem is to choose 9, in the absence of empirical evidence on J.

Application of the MR criterion requires only that the planner be able to place  within some
bounded interval [fB;, B,;]. Such an interval always exists when the outcome is itself bounded. Then, if the
planner knows nothing about the innovation, he can set ;, and 3, equal to the smallest and largest logically
possible outcome values. Or [f;, B, ] may be a subset of the logically possible outcomes, excluding values
the planner deems infeasible.

The MR rule is a function of a, ,, and . It assumes nothing about the position of § within the
interval [B,, B,]. This contrasts with Bayesian planning, which requires assertion of a subjective probability
distribution on the interval of feasible values.

By definition, regret is the difference between the maximum achievable welfare and the welfare
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achieved with a specified treatment rule. The maximum achievable welfare is max (a, ). Hence, the regret
of allocation 9§, is max (a, f) - [a + (f - a)d,]. Regret depends on the unknown value of f. The MR rule
computes maximum regret over all feasible values of B and chooses a treatment allocation to minimize

maximum regret. Thus, the MR criterion is

4) min max  max (a, B) - [a+ (B - a)d,].
3,€[0,1] B e [P Byl

It is easy to see that the MR decision, denoted 8,,, is Oyz = 0 if By, <a and 8, = 1 if B, > a. In the
former (latter) case, the planner knows that the innovation is worse (better) than the status quo. Our concern
is with situations where the planner does not know which treatment is better; that is, where B, < a < B,.

Manski (2007a, Section 11.3) shows that the MR decision then is

(5) dur = By~ /By - Bo)-

The proof is simple, so I reproduce it here.

Proof: Maximum regret across the feasible values of f is

max (o~ )3y 1B <a] + (B~ a)l - &) 1[Bp>a] = max [(a- B)d, (By — )1 - )]
B e [BL Bul

Thus, the MR rule solves the optimization problem

min  max [(a - B)8,, (By - a)(1 - )]
3y € [0, 1]
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The quantity (a - B,)9, is increasing in J,, whereas (B, - a)(1 - §,) is decreasing in §,. The MR allocation

is obtained by choosing §, to equalize these two quantities. This gives (5). O

Observe that the MR rule yields a fractional allocation when B, <a <. The fraction of the cohort
assigned to the innovation depends on the location of a within the interval [B;, B,], with J,,; increasing
linearly from 0 to 1 as a decreases from B, to ;. This behavior is sensible. As a decreases from B to B,
the potential gain from choosing the innovation rises and the potential loss falls.

The value of maximum regret achieved by the MR decision depends on the values of a, 3, and .
The proof of (5) shows that the maximum regret of 8, is (B, — a)(a — B.)/(By — B.). Ceteris paribus, this
expression increases with B, and decreases with ;. Thus, maximum regret increases with the extent of
ambiguity about the value of f.

Observe that leading alternatives to the MR rule, including the maximin rule and Bayes rules,
generically do not deliver fractional treatment allocations when applied to this treatment-choice problem.
The maximin criterion chooses an allocation that maximizes welfare when [ take its lowest feasible value.
Thus, the maximin criterion is
(6) max min  [o+ (B - a)d,].

810,11 B e [Py Bul
Solution of this problem yields 3, = 0 if B, <a and 5, =1 if B, > a.

A Bayesian planner places a subjective probability distribution on the interval [f,, B,;], computes the

subjective mean value of social welfare, and chooses a treatment allocation that maximizes this subjective

mean. Thus, the planner solves the optimization problem

(7 max o+ [E(B) - a]d,,
8, € [0, 1]
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where m is the subjective distribution on 3 and E () = [Bdn is its subjective mean. Solution of this problem

yields 8, =0 if E (B) <o and §,= 1 if E,(B) > a. ’

The Multi-Period Extension

Now let N> 0. Extending the notation introduced above, suppose that at period n, the planner knows
that f lies in a bounded interval [B, ,, By,]- This interval typically will shrink with n, as empirical evidence
accumulates on the outcomes experienced by members of earlier cohorts who were treated with the
innovation. Section 3.3 gives illustrations.

The adaptive minimax-regret rule applies the MR rule to each successive cohort, using the

knowledge of B available at the time. Thus, the AMR decision at each n is

() 8AMR(n) = (Bus = 0/(PBuy — Br) if B, < o< By,
=0 if By, <o,
=1 if B, > a.

Given allocation 0,y ,,, maximum regret for cohort n is max[0, (B, - o)(a - B.,)/(By, - B.,)] and mean
welfare is o + (B - 0)d, g Maximum regret is computed using the information available at the time of
treatment. Mean welfare depends on the value of B, which is not known before period K.

The AMR rule achieves the dual objectives of social learning and diversification. Inspection of (8)

’ Manski and Tetenov (2007, Proposition 5) show that a Bayesian planner may make a fractional
treatment allocation if the social welfare function is changed to fJa. + ( - ®)9,], where f(+) is monotone and
continuously differentiable. Then the Bayes problem is

max [fla+ (B - a)d,]dx.
8, € [0, 1]

Solutions to this problem are in the interior of the unit interval if E (B) > a.and [f(B)dn < f(a). In particular,
this occurs if the function f(-) is sufficiently concave.
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shows that the necessary and sufficient condition for learning to occur is B, > a. This condition is sufficient
for learning because it implies that the planner assigns a positive fraction of cohort 0 to the innovation. Thus,
performance of a randomized trial at n = 0 is an inherent consequence of the AMR rule when B, > a.

The condition B, > a is necessary for learning because, if B, < a, the planner assigns no one to the
innovation and, hence, never learns its outcomes. The absence of learning has no consequence for welfare
in this case. The planner knows from the beginning that the innovation cannot be better than the status quo
treatment. Hence, there is no need for a randomized trial.

The AMR rule diversifies each cohort’s treatment allocation in a manner that reflects the available
knowledge of treatment response. As empirical evidence accumulates and the interval [B, ,, By, ] shrinks, the
value of 6, varies accordingly. Eventually, observation of outcomes under the innovation reveals
whether 3 is larger or smaller than a. From that point on, diversification is no longer warranted and the AMR

rule assigns all persons to the better treatment.

Normative Properties of the AMR Rule

The AMR rule has normative appeal for the information that it produces and, with one caveat, for
the manner in which it allocates treatments.

The informational appeal is clear. The evidence on treatment response produced under the AMR
rule is much stronger than the evidence now produced in clinical trials performed for FDA drug approval.

Consequently, treatment decisions under the AMR rule are less prone to error. Important reasons include

Measurement of Outcomes of Real Health Interest. As outcomes of real interest unfold over time, they are
observed and used to inform subsequent treatment decisions. In contrast, the FDA currently bases approval

decision on surrogate outcomes measured in clinical trials of short duration.
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Randomization of the Full Patient Population: The patients assigned to the innovation are randomly drawn
from the full patient population. In contrast, present clinical trials randomly draw subjects from a sub-

population of volunteers.

Unblinded Treatment Assignment: Treatment assignment is unblinded. In contrast, present clinical trials
make blinded assignments, which diminish the information that physicians and patients have relative to real

clinical settings.

The AMR treatment allocation has clear appeal to each successive cohort. Each period, the
minimax-regret rule is applied using the knowledge available at the time. In this sense, adaptive
implementation of the MR rule treats each cohort as well as possible given the available knowledge. It does
not ask the members of one cohort to sacrifice its own welfare for the benefit of other cohorts.

The caveat is that the AMR allocation may not be best from the perspective of a planner who wants
to maximize welfare aggregated across cohorts. The AMR rule may not minimize maximum regret in terms
of the multi-period objective function (2). Minimization of maximum regret in multi-period decision
problems is a subtle matter that requires joint consideration of all of cohorts rather than sequential
consideration of them one at a time. The nature of the multi-period minimax-regret treatment allocation is

an open question.

3.3. Numerical Illustrations

This section illustrates the AMR rule. Ipresenttwo hypothetical treatment-choice problems. In each

case the presumed outcome of interest unfolds over multiple periods. As empirical evidence accumulates,

the AMR treatment allocation changes accordingly.



21
Treating a Life-Threatening Disease

When treating a life-threatening disease, the outcome of interest may be the number of years that a
patient survives within some time horizon. For this illustration, I let the horizon be five years and I define
y(t) to be the number of years that a patient lives during the five years following receipt of treatment t, where
t is the status quo or the innovation. Thus, y(t) has the time-additive form (1), with y; (t) = 1 if patient j is
alive k years after treatment, y, (t) = 0 otherwise, and K = 5.

The outcome gradually becomes observable as time passes. At the time of treatment, y,(t) can take
any of the values [0, 1,2, 3,4, 5]. A year later, one can observe whether patient j is still alive and hence can
determine whether y,(t) = 0 or y(t) > 1. And so on until year five, when the outcome is fully observable.

Table 1 presents hypothetical data on annual death rates following treatment by the status quo and
the innovation. The entries show that 20 (10) percent of the patients who receive the status quo (innovation)
die within the first year after treatment. In each of the subsequent years, the death rates are 5 and 2 percent
respectively. Overall, the entries imply that the mean numbers of years lived after treatment are o = 3.5 and
B =4.3. The former value is known at the outset from historical experience. The latter gradually becomes
observable.

Assume that the planner measures welfare by a patient’s length of life; thus, u(t) =y(t). Also assume
that the planner has no initial knowledge of f. That is, he does not know whether the innovation will be
disastrous, with all patients dying in the first year following treatment, or entirely successful, with all patients
living five years or more. Then the initial bound on B is [B,,, By,] = [0, 5]. Applying equation (8), the initial
AMR treatment allocation is §, = 0.30.

In year 1 the planner observes that, of the patients in cohort 0 assigned to the innovation, 10 percent
died in the first year following treatment. This enables him to deduce that P[y(b) > 1]=0.90. The planner
uses this information to tighten the bound on f§ to [B,,, By, ] = [0.90, 4.50]. It follows that 5, = 0.28.

In each subsequent year the planner observes another annual death rate, tightens the bound on 3, and
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computes the treatment allocation accordingly. The result is that 3, =0.35, 6, =0.50, and 5, =0.98. In year
5 he knows that the innovation is better than the status quo, and so sets &, = 1.
The final two columns of Table 1 gives the maximum regret and mean life span of each cohort, both
computed using the AMR treatment allocation. The regret values are 1.5, 0. 72, 0.60, 0.43, 0.02, and 0. The

mean life spans are 3.74, 3.72, 3.78, 3.90, 4.28, and 4.30.

Treating a Chronic Disease of Aging

When treating a chronic disease of aging, the outcome of interest may be quality adjusted life years
(QALYs) within a specified time horizon. For this illustration, let the horizon be twenty years and let y(t) be
the number of QALY's experienced during the twenty years following receipt of treatment t, where t is the
status quo or the innovation. Thus, y(t) is time-additive, with y,(t) € [0, 1], and K = 20.

The welfare of a treatment is its benefit minus its cost. Let the status quo be a no-program setting
with zero cost and let the innovation cost $5000 per person. The benefit of a treatment is the benefit of one
QALY multiplied by the number of QALY's that a person experiences. I consider two values for the social
benefit of one QALY, $10,000 and $20,000. Then u(a) = v-y(a) and u(b) = v-y(b) - 5000, where v = 10,000
or 20,000. Moreover, a = v-E[y(a)] and B = v-E[y(b)] - 5000.

Table 2 presents hypothetical data on mean QALY following each treatment. Two columns show
Ely(t)] foreachk =1, ..., K and each value of t. The entries describe a situation in which the innovation
never does harm relative to the status quo and raises the mean in in some years. Overall, the entries imply that
the mean numbers of QALY's experienced during the twenty-year horizon are E[y(a)] = 13.28 and E[y(b)] =
13.57. It follows that if v = 10,000, then a = 132,800 and § = 130,700; hence, the status quo is the better
treatment. If v=20,000, then o = 265,600 and § = 266,400; hence, the innovation is the better treatment in
this case.

The value of E[y(a)] is known at the outset from historical experience, but E[y(b)] becomes
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observable only gradually. To compute the AMR treatment allocation, I suppose the planner initially knows
that treatment b never yields a result lower than E[y,(a)] and that it may raise it by a maximum of 0.10.
Consider, for example, the first and twelfth years after treatment. The table shows that E[y,(a)] = 0.98 and
Ely,,(a)] = 0.80. Hence, the corresponding values under the innovation are initially known to lie in the
intervals [0.98, 1] and [0.80, 0.90]. These bounds generate the bounds on E[y(b)] shown in Table 2.

The final columns of Table 2 show the AMR treatment allocations. The patterns for the two values
of v are quite different. If v=10,000, then 5, = 0.65 in years 0 through 4, 5, slowly decreases to 0.59 in year
10, then quickly rises to 0.74 at year 12, and finally falls to zero in year 18, when it becomes known that the
status quo is better than the innovation. If v =20,000, then 9, stays close to 0.83 through year 10 and then
rises to one in year 12, when it becomes known that the innovation is better than the status quo.

Due to space constraints, Table 2 does not give the maximum regret and mean welfare of each cohort.

However, these quantities are easy to compute, as shown in Section 3.2.

3.4. Extensions of the Analysis

The planning problem analyzed in Section 3.2 is simple in various respects. It assumes that the
planner knows a at the outset and knows P eventually. The only inferential problem is that outcomes unfold
over time, so K periods must pass to learn 3 fully.

This section extends the analysis to situations in which the planner faces joint and possibly persistent
ambiguity about (a, ). Ialso discuss treatment choice when the patient population is small enough to make

statistical precision an issue when studying treatment response.

Joint Ambiguity About (a, f5)

Let us drop the assumption that o is known. Instead suppose that, in period n, (a, B) is known to lie
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in some set of feasible pairs [(a, B,), s € S,]. Here S, indexes the set of feasible states of nature in period n.
Let S,(a) and S,(b) be the subsets of S, on which treatments a and b are superior. That is, let S (a)
={seS,:0,>p,}and S, (b) = {s€S,: B, >a}. Manski(2007a, Complement 11A) proves that the AMR rule
assigns all patients to the status quo (innovation) if it is superior to the innovation (status quo) in all feasible

states of nature and the rule makes a fractional treatment allocation otherwise. The result is

9) Bsurem = O if B,<a, allseSs,
=1 if B,>a, allseS,

max (B, - o)
s €S, (b)
= otherwise.
max (o, - B,) + max (B, - o)
se S, (a) s € S,(b)

This general result simplifies considerably when the set of feasible values of (a, ) has the rectangular

form [(o, B,), s € S,] = [ay,, oy.] % [BL.s Bual, Where [a, , o] and [B,,, By,] are intervals of feasible values

for a and B. Then (9) reduces to

(10) 6AMR(n) =0 it By, <o,
=1 it B, > ay,
BUn - O'Ln
= otherwise.

(("Un - BLn) + (BUn - aLn)

Result (10) further reduces to (8) when a is fully known; that is, when o, , = o, = a.

n

Incomplete Observation of Treatment Qutcomes

Letus drop the assumption that the planner fully observes treatment outcomes and, hence, fully knows
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(a, B) after K periods. In practice some outcome data may be missing or mismeasured, or perhaps only
surrogate outcomes may be observable. Whatever the data problem may be, in period n the available
empirical evidence combined with assumptions the planner finds credible will yield some set [(a, B,), s € S, ]
of feasible values for (a, B); see Manski (2007a) for exposition of the form of this set when the data are
incomplete in various ways.

Incomplete data create no problem for application of the AMR rule, whose form continues to be given
by (9). The rule is applicable even if the planner never accumulates enough empirical evidence to know

which treatment is superior. In this event, the AMR treatment allocation is fractional in all periods.

Small Populations

I have assumed an atomless patient population, in order to keep attention focused on the identification
problems that create most errors in drug approval. This idealization approximates well the actual environment
for treatment of widespread conditions such as diabetes, heart disease, and various cancers. However,
statistical imprecision in empirical findings on treatment response may be a non-negligible cause of errors
when the patient population is small.

In a one-period planning problem with no identification problems, a planner with clinical trial data
can apply findings on finite-sample minimax-regret treatment choice developed in Manski (2004, 2005),
Manski and Tetenov (2007), Stoye (2006), and Schlag (2007). Manski (2007b) and Stoye (2007b) consider
one-period planning problems with certain identification problems.

Multi-period planning problems are more complex. In multi-period problems, there is a tension at
each point in time between achievement of two desirable objectives. One is to choose a treatment allocation
that minimizes the maximum regret of the current cohort, given the information currently available. The other
is to produce as much new information on treatment response as possible, in order to improve the treatment

of future cohorts. These objectives do not conflict in large patient populations because even a small fractional
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allocation to the innovation produces a large treatment group. They may conflict in small populations.
Cheng, Su, and Berry (2003) study the tension between the two objectives in multi-period planning
problems with no identification problems. They approach the problem from the Bayesian perspective rather
than that of minimax-regret. As this paper is written, the interaction of identification problems with statistical

imprecision in multi-period planning problems is entirely an open question.

4. Revising Drug Approval Policy in Practice

In this concluding section, I discuss the potential for implementing policies that embody features of
the AMR rule. Section 4.1 addresses settings with centralized health care systems. Section 4.2 suggests a

quasi-AMR drug approval process that could be implemented by the FDA.

4.1. Centralized Health Care Systems

Close approximations to the AMR rule could be implemented in centralized health care systems where
government agencies directly assign treatments. Examples include the Veterans Health Administration in the
United States and the National Health Service in England. Implementation could also occur in employer-
based and other private systems where health maintenance organizations directly provide medical care.

The VA, NHS, and HMOs could only implement approximate versions of the AMR rule because these
social planners do not have fixed patient populations as assumed in Section 3. Patients who are unhappy with
the care provided by the VA, NHS, or HMOs can opt-out and seek medical care elsewhere. However, strong

financial disincentives typically limit opting-out to the relatively wealthy.
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The Ethics of Fractional Treatment Rules

I have written that approximate AMR rules “could” be implemented in centralized health care
systems. An important open question is whether the relevant social planners and patient populations would
accept the idea of fractional treatment allocation. A possible objection is that fractional rules violate the
ethical principle calling for “equal treatment of equals.” Fractional rules are consistent with this principle in
the ex ante sense that observationally identical people have the same probability of receiving a particular
treatment. They violate it in the ex post sense that observationally identical persons ultimately receive
different treatments.

There is precedent for societies to implement major policies that use fractional treatment rules.
American examples include random drug testing and airport screening, calls for jury service, and the Green
Card and Vietnam draft lotteries. In addition, present-day randomized clinical trials implement fractional
rules. The norm has been to randomize volunteers, but the FDA recently approved a set of studies in which
critically ill patients are randomized without consent; see Stein (2007).

Fractional treatment allocations derived from the AMR rule are consistent with prevailing standards
of medical ethics. Medical ethics permit randomized clinical trials only under conditions of equipoise; that
is, when partial knowledge of treatment response prevents a determination that one treatment is superior to

another. These are exactly the circumstances in which the AMR rule yields a fractional allocation.

4.2. Quasi-AMR Drug Approval by the FDA

As indicated in Section 4.1, AMR treatment rules could be implemented by some parts of the
American health care system without change in the FDA drug approval process. The VA, the Military Health
System, other public agencies, and many private HMOs could institute such rules right now, considering

innovations to be drugs that are newly approved by the FDA.
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Implementation of AMR rules after FDA approval of new drugs should reduce the impact of Type
I errors in drug approval, both by diversifying treatment choice and by producing new information on
treatment response. However, it would not reduce Type Il errors. At present, the VA, HMOs and other
American health care providers can only choose among the drugs that are approved by the FDA.

Two policy changes could reduce the incidence and impact of Type Il errors. First, the federal
government could amend the Food, Drug, and Cosmetics Act to enable specified health care providers to treat
their patient populations with drugs that have not received FDA approval. In return for exemption from the
FDA approval process, these providers could be required to apply appropriate adaptive treatment rules.

Second, the FDA could replace its present binary approval process with an adaptive partial approval
process. The permitted use of a new drug now has a sharp discontinuity at the date of the FDA approval
decision. Beforehand, a typically tiny fraction of the patient population receives the new drug in clinical
trials. Afterwards, use of the drug is unconstrained if approval is granted and zero if approval is not granted.
An adaptive approval process would eliminate this discontinuity and instead permit use of a new drug to vary
smoothly as empirical evidence accumulates.

Although full FDA implementation of the AMR rule would require radical change in the American
health care system, the agency could embrace some important features of the rule with relatively modest

revision to the present drug approval process. I sketch below such a quasi-AMR process.

Adaptive Partial Approval through Limited-Term Sales Licenses

The revised drug approval process would begin, as at present, with a pharmaceutical firm performing
preclinical testing followed by Phase 1 and 2 trials. It seems prudent to retain these preliminary stages of the
approval process in close to their current form. The changes would appear in the subsequent Phase 3 trials
and in the FDA decision process. First, the duration of Phase 3 trials would be lengthened sufficiently to

measure health outcomes of real interest, not just surrogate outcomes. Second, the present binary approval
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decision following a Phase 3 trial would be replaced by an adaptive process that monitors the trial while in
progress and that periodically grants limited-term sales licenses.

A limited-term sales license would permit a firm to sell no more than a specified quantity of the new
drug over a specified time period. To enforce the upper bound requires a means to monitor sales of a new
drug. This is most straightforward if the FDA places only an overall upper bound on sales, rather than distinct
bounds on sales to patient groups with different characteristics. If only an overall upper bound is imposed,
then it suffices to monitor gross sales in pharmacies. If group-specific bounds are imposed, it is necessary
to monitor the distribution of sales.

The duration of the license would depend on the schedule for reporting new findings in the trial. For
example, if the firm reports updated outcome data to the FDA annually, then the licensing decision could be
updated annually as well. On each iteration of the decision, the maximum quantity of drug that the firm is
permitted to sell would be set by the FDA with the assistance of an expert advisory board, similar to those
now used in drug approval. This is where the AMR rule comes in. To give the licensing decision
transparency and coherence, the FDA could be mandated to compute the AMR treatment allocation with a
specified social welfare function. The role of the expert advisory board would be to use the available
empirical evidence to determine the set [(a,, B,), s € S,] of feasible values for (a, ).

When the lengthened Phase 3 trial is complete and the outcomes of health interest have been observed,
the FDA would make a longer-term approval decision. If the drug is deemed safe and effective, the firm
would be permitted to sell it with no quantity restriction. Further use would be prohibited otherwise. As in
the current environment, the FDA would retain the right to rescind approval should new evidence warrant.
Post-market surveillance would be necessary because lengthening Phase 3 trials to measure health outcomes
of interest may not suffice to determine with certainty whether the innovation is superior to the status quo.
As with present Phase 3 trials, the lengthened trials would only reveal treatment response for volunteer

subjects who comply with treatment and do not attrit from the trial. Moreover, unless the FDA changes its
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norms on blinding treatment assignment, the trials would not reveal treatment response in real clinical settings

where patients and physicians know the assigned treatments.

A Pragmatic Compromise

The quasi-AMR approval process suggested here would not achieve all of the benefits of the AMR
rule. The AMR rule calls for randomly allocating the entire patient population between the status quo
treatment and the innovation. Randomization optimally diversifies the treatment of each cohort from the
minimax-regret perspective, and it produces as much information as possible about treatment response.

The quasi-AMR process would only randomize the sample of persons who volunteer for Phase 3
trials, as at present. The FDA would influence treatment allocation in the full patient population only through
the upper bound it sets on sales. Subject to this bound, treatment allocation would be determined by the
decentralized pricing decisions of the pharmaceutical firm, coverage decisions of insurers, and treatment
decisions of physicians and patients.

Thus, the new process would diversify treatment allocation, but not necessarily in the optimal manner.
It would produce observational data on treatment response in the full patient population that is not available
in the present approval process. However, these data would not be as informative as data produced by
randomizing treatments.

The rationale for these compromises is pragmatism. The quasi-AMR process would preserve the
decentralized health care system that many Americans prize. While Phase 3 trials are underway, it would give
the general patient population some access to new drugs and it would give firms some revenue from the sale
of new drugs. I conjecture that these features of the new process will make it acceptable to lengthen the

duration of Phase 3 trials to enable observation of health outcomes of real interest.
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Variations on the Theme

Granting limited-term sales licenses is not the only way that the FDA could implement a quasi-AMR
rule. The agency could empower a subset of physicians to prescribe the drug. It could restrict treatment to
patients with specified characteristics. Or it could tax sales, the tax rate being set to induce the desired usage.

These other mechanisms are less direct than granting sales licenses, but they may merit consideration.
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Table 1: Treating a Life-Threatening Disease

cohort death rate in k" year after bound on 3 AMR maximum mean life
or year treatment for allocation regret of span
(nor k) cohort n for cohort n AMR achieved by
allocation for cohort n
cohort n
Status Quo Innovation
0 [0, 5] 0.30 1.05 3.74
1 0.20 0.10 [0.90, 4.50] 0.28 0.72 3.72
2 0.05 0.02 [1.78, 4.42] 0.35 0.60 3.78
3 0.05 0.02 [2.64, 4.36] 0.50 0.43 3.90
4 0.05 0.02 [3.48, 4.32] 0.98 0.02 4.28
5 0.05 0.02 [4.30, 4.30] 1 0 4.30
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Table 2: Treating a Chronic Disease of Aging

year mean QALY in k" year after bound on E[y(b)] AMR allocation for cohort n,
(nork) treatment for cohort n by social benefit of one QALY
Status Quo Innovation $10,000 $20,000
0 [13.28, 14.70] 0.65 0.82
1 0.98 0.99 [13.29, 14.69] 0.65 0.83
2 0.98 0.99 [13.30, 14.68] 0.65 0.83
3 0.98 0.99 [13.31, 14.67] 0.65 0.84
4 0.98 0.98 [13.31, 14.65] 0.65 0.84
5 0.98 0.98 [13.31, 14.63] 0.64 0.83
6 0.98 0.98 [13.31, 14.61] 0.64 0.83
7 0.95 0.96 [13.32, 14.57] 0.63 0.83
8 0.95 0.96 [13.33, 14.53] 0.62 0.83
9 0.90 0.92 [13.35, 14.45] 0.61 0.84
10 0.90 0.92 [13.37, 14.37] 0.59 0.84
11 0.80 0.90 [13.47, 14.37] 0.66 0.93
12 0.80 0.90 [13.57, 14.37] 0.74 1
13 0.50 0.50 [13.57, 14.27] 0.70 1
14 0.50 0.50 [13.57, 14.17] 0.65 1
15 0.40 0.40 [13.57, 14.07] 0.58 1
16 0.40 0.40 [13.57, 13.97] 0.48 1
17 0.10 0.10 [13.57, 13.87] 0.30 1
18 0.10 0.10 [13.57, 13.77] 0 1
19 0.05 0.05 [13.57, 13.67] 0 1
20 0.05 0.05 [13.57, 13.57] 0 1






