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Abstract 

Experiments that involve nested structures may assign treatment conditions either to 

entire groups (such as schools), or subgroups (such as classrooms) or individuals (such as 

students). A key aspect of the design of such experiments includes knowledge of the 

intraclass correlation structure. This study provides methods for constructing a test for the 

treatment effect that is more powerful than the typical test based on level-3 unit means in 

three-level cluster randomized designs (with two levels of nesting). When the intraclass 

correlation structure at the second and third level is known the proposed test provides 

higher estimates of power because it preserves the degrees of freedom associated with the 

number of level-2 and level-1 units. The advantage in power estimates is more 

pronounced when the number of level-3 units is small.  

 
 

 



Power Analysis in Three-Level Designs 

Many populations of interest in education and the social sciences have multilevel 

structure (e.g., students are nested within classrooms and classrooms are nested within schools). 

Because individuals within aggregate units are often more alike than individuals in different 

units, this nested structure produces an intraclass correlation structure that needs to be taken into 

account in both experimental design and analysis. 

Experiments that involve nested population structures, may assign treatment conditions 

either to individuals (such as students) or to entire groups (such as schools). Treatments are 

sometimes assigned to groups because the treatment is naturally administered to intact groups 

(such as a curriculum to a school or a management system to a firm), or because the assignment 

of treatments to groups is a matter of convenience (being much easier to implement than 

assignment to individuals). Designs that assign intact groups to treatments are often called cluster 

randomized, or group randomized, or hierarchcial designs (see Bloom, 2005; Donner & Klaar, 

2000; Kirk, 1995; Murray, 1998). In other situations, treatments are assigned to entire subgroups 

such as classrooms (e.g., forms of formative assessment) or to individuals (e.g., different forms 

of computerized instruction to students within classrooms and schools). Such designs are called 

randomized block designs.  

One of the most critical issues in designing experiments is to ensure that the design is 

sensitive enough to detect the intervention effects that are expected if the researchers’ hypotheses 

were correct. This is, when planning experimental studies it is essential to ensure sufficient 

statistical power of the test of the treatment effect. Previous methods for power analysis in two-

level balanced designs (e.g., students nested within schools) with one level of nesting (at the 

second level) involved the computation of the non-centrality parameter of the non-central F- or t-

distribution (see Barcikowski, 1981; Hedges & Hedberg, 2007; Raudenbush & Liu, 2000). In 
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these designs the power is a function of the non-centrality parameter and the degrees of freedom 

of the test, and higher values of these two factors correspond to higher values of statistical 

power. The non-centrality parameter in turn is a function of the nesting effect at the second level, 

which is typically expressed as an intraclass correlation, the number of level-1 and level-2 units, 

and the magnitude of the treatment effect.  

As Barcikowski (1981) and Hedges and Hedberg (2007) showed in two-level cluster 

randomized designs where for example entire groups such as schools are randomly assigned to a 

treatment and a control condition the power of the t-test has 2(m - 1) degrees of freedom 

(assuming no covariates), where m is the number of units (e.g. schools) assigned to each 

condition. When q covariates are included at the second level the degrees of freedom of the t-test 

are 2(m - 1) - q. Previous work has also demonstrated that in such designs a more powerful test 

can be constructed when the intraclass correlation structure is known (see Blair & Higgins, 

1986). Blair and Higgins showed that in two-level cluster randomized designs once can use an 

exact test with larger degrees of freedom that is more powerful than that used by Barcikowski, 

and Hedges and Hedberg. Specifically, the test provided by Blair and Higgins had 2(mn* – 1) 

degrees of freedom (assuming no covariates), where n* is the number of individuals (e.g. 

students) within each group (e.g. school). To illustrate the difference in the degrees of freedom 

consider the example where two schools are assigned to a treatment and two schools in a control 

group and each school has 50 students. The typical t-test for treatment effects carried out on 

school means (as provided in Barcikowski, and Hedges and Hedberg) would have two degrees of 

freedom, while a t-test that takes into account the observations within schools would have 198 

degrees of freedom, which results in higher power of the test for the treatment effect as Blair and 

Higgins (1986) showed.  
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This holds for three-level cluster randomized designs as well. Consider a three-level 

design where nesting occurs at the second and third levels (e.g., classrooms and schools) and the 

three-level units (e.g., schools) are randomly assigned to treatment and control conditions. The 

exact t-test for the treatment effect carried on level-3 (school) means assuming one treatment and 

one control group and no covariates has 2(m – 1) degrees of freedom, and 2(m – 1) - q degrees of 

freedom when q covariates are included at the third level (see Konstantopoulos, in press). As in 

two-level cluster randomized designs a test with larger degrees of freedom can also be 

constructed. This test is more powerful because it preserves the degrees of freedom that are 

associated with subgroups (e.g., classrooms) and individual observations (e.g., students within 

classrooms). This is also an exact test that examines the same hypothesis about the treatment 

effect, and has the same non-centrality parameter as that presented by Konstantopoulos (in 

press). The only difference between the two tests is in the degrees of freedom. Both tests are 

useful for a priori power computations during the design phase of the experiment. 

A Three-level Cluster Randomized Design with Two Levels of Nesting 

For simplicity, in the following sections I discuss balanced three-level cluster randomized 

designs with two levels of nesting (at the second and third level) where there is one treatment 

and one control group. That is, level-3 units are randomly assigned to one treatment and one 

control group. I focus on the power of treatment contrasts, not omnibus (multiple-degree of 

freedom) treatment effects, because in my experience, multilevel designs are chosen to ensure 

the power of particular treatment contrasts. Even when several treatments are being compared, 

there is typically one contrast that is most important and the design is chosen to ensure adequate 

sensitivity for that contrast. I represent the number of level-3 units within each condition by m, 

the number of level-2 units within each level-3 unit by p, and the number of level-1 units within 
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each level-2 unit by n. Then, the sample size for the treatment and the control group is 

 and the total sample size is t cN N mp= = n 2t cN N N mpn= + = .  

The Analytic Model 

In this design, level-3 units are nested within treatment conditions, and level-2 and level-

1 units are nested within level-3 units and treatment conditions (see Kirk, 1995). I assume that 

both level-2 and level-3 units are random effects and for simplicity I assume that no covariates 

are included in the model. Then, a structural model for a student outcome , the lth student in 

the kth classroom in the jth school in the ith treatment can be described as  

ijklY

( )( ) ( )ijkl i i j ij k ijk lY α β γ ε= + + + ,        (1) 

where αi is the (fixed) effect of the ith treatment (i = 1,2), ( )i jβ  is the random effect of school j (j 

= 1,…,m) within treatment i, ( )ij kγ  is the random effect of classroom k (k = 1,…,p) within school 

j within treatment i, and (ijk l)ε  is the error term of student l (l = 1,…,n) within classroom k, within 

school j, within treatment i. I assume that the student, classroom, and school-level random effects 

have variances 2 2,e ,σ τ  and 2ω  respectively. I also assume that the random effects at different 

levels are orthogonal to each other.  

Nesting Effects 

Consider a three-level design that follows a three-stage cluster sampling (see Cochran, 

1977). The nesting effect in such designs occurs at the second and third level (e.g., classrooms 

and schools) and can be defined via two intraclass correlations. The total variance in the outcome 

is decomposed into three components: the within level-2 and between level-1 units variance, 2
eσ , 

the between level-2 and within level-3 units variance, 2τ , and the between level-3 units variance, 

 6



Power Analysis in Three-Level Designs 

2ω . Then, the total variance in the outcome is defined as 2 2 2
e

2σ σ τ ω= + + . Hence, in such 

three-level designs two intraclass correlations are defined:  

2

2 2

τρ
σ

=            (2) 

at the second level and 

2

3 2

ωρ
σ

=            (3) 

at the third level (and the subscripts 2 and 3 indicate the second and third level respectively).  

The General Linear Model 

Following Graybill (1976) and Blair and Higgins (1986) the model presented above in 

equation 1 can be expressed as a general linear model in matrix notation as 

= +y Xβ ε ,          (4) 

where y is a  vector (N is the total number of observations), X is a  (assuming one 

treatment and one control group) design matrix for the regression coefficients, 

1N × 2N ×

β  is a 2 1×  

vector of the regression coefficients that need to be estimated (e.g., treatment and control means), 

and ε  is a  vector of the residuals that follows a multivariate normal distribution with a 

mean of zero and a variance matrix , that is . The matrix V is positive 

definite and known, since its elements are either intraclass correlations (which are assumed 

known) or ones and zeroes, and 

1N ×

2σ V 2( , )σ0 V∼e N

2σ  is the total variance of an individual observation given by 

2 2
e

2 2σ τ= + ω+ .   σ

 The matrix V has the same structure as the matrix V* which is block diagonal 

{ }*
2m= ⊗V I V* j  with 2m blocks (the total number of level-3 units in the sample), where I is the 
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identity matrix, 
j
, 

k
, 

j

T
n , nj, nk are the number 

of level-1 units in level-3 unit j and level-2 unit k respectively, and 

* 2 2 2
j kj e n p nσ τ= + ⊗ +V I I J Jn k k

T
n n=J 1 1ω n j jn n=J 1 1

⊗  is the Kronecker product. 

The diagonal elements of  are *V var( )iy 2 2 2
e

2σ σ τ ω= = +

cov( ,y y

+ , the non-diagonal elements for 

level-1 units in the same level-2 and level-3 unit are 2)i j
2τ ω= + , and the non-diagonal 

elements for level-1 units in different level-2 units, but in the same level-3 unit are 

2cov( , )i jy y ω= . The non-diagonal elements of  can be expressed in terms of the intraclass 

correlations 

*V

2 3,ρ ρ 2 and the total variance σ , since 2 2
3σ ρ ω= , and 2 2

2 3( ) 2σ ρ ρ τ ω+ = + . 

Factoring out the total variance 2σ  from matrix V* produces matrix V with ones in the diagonal, 

zeros in the non-diagonal elements between level-3 unit blocks, 3ρ  in the non-diagonal elements 

for level-1 units in the same level-3 unit but different level-2 units, and 2 3ρ ρ+  in the non-

diagonal elements for level-1 units in the same level-2 and level-3 units. If the intraclass 

correlations are known, then matrix V is known.  

Consider a simple case where there are two schools, each school has two classrooms, and 

each classroom has two students. Then * 2/j j=V V σ  is  

2 3 3 3

2 3 3 3

3 3 2

3 3 2 3

1
1

1

ρ ρ ρ ρ
ρ ρ ρ ρ

3

1

j ρ ρ ρ
ρ ρ ρ ρ

+⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥+
⎢ ⎥

+⎣ ⎦

j

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

V 0

0 V

[0

ρ

,0,0,0]

=V

j
=V

, 

and V is 

 

where 0 is a 2x2 matrix of zeros namely =0  expressed as a row vector. In this simple 

case when no covariates are included the matrix X is  
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1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

T ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

X , 

and  

 . 1

2

β
β

β
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Finally, the vectors y (the outcome) and e (the residuals of y) are 

 [ ] [ ]1 6 1y ,..., y , e ,..., eT T= =y e 6 . 

Following Graybill when matrix V is known the total variance is estimated as  

 l 2 1 1 1 1 11 ( ( )
2

T T

N
σ − − − − −= −

−
)Ty V V X X V X X V y .     (5) 

Estimation 

In balanced three-level cluster randomized designs the estimate of the treatment effect is 

the difference in the means between the treatment and the control group namely 1 2Y Y−... ...  

(assuming no covariates). The standard error of the estimate of the treatment effect is defined as  

( ) ( ) ( )2 2 2
1 2 2 3

2 2 1 1 1eSE Y Y pn n n pn
mpn mpn

ω τ σ σ ρ ρ− = + + = + − + −... ... . (6)  

Hypothesis Testing 

 The objective is to examine the statistical significance of the treatment effect, which 

means to test the hypothesis 

H0: 1 2α α=  or 1 2 0α α− =  

where iα  is the mean of the treatment or control group.  

Suppose that the researcher wants to test the hypothesis and carries out the usual t-test.  

This involves computing the test statistic 
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( )1 22
mpn Y Y

t
S

−
=

... ...
,      

where ...iY  is the mean of the ith treatment group and S is the estimated standard error of the 

mean difference. When the null hypothesis is false, the test statistic t has the non-central t-

distribution with a non-centrality parameter λ . The non-centrality parameter is defined as the 

expected value of the estimate of the treatment effect divided by the square root of the variance 

of the estimate of the treatment effect, namely  

( ) ( )2 3

1
2 1 1 1

mpnλ
n pn

δ
ρ ρ

=
+ − + −

.      (7)  

(see Konstantopoulos, in press). The degrees of freedom of the t-test based in the level-3 unit 

means are 2(m – 1).  The power of the one-tailed t-test at level α is p1 = 1 – Η[c(α, 2(m-1), 2(m-

1), λ], where c(α, ν) is the level α one-tailed critical value of the t-distribution with ν degrees of 

freedom [e.g., c(0.05,20) = 1.72], and Η(x, ν, λ) is the cumulative distribution function of the 

non-central t-distribution with ν degrees of freedom and non-centrality parameter λ. The power 

of the two-tailed t-test at level α is p2 = 1 – Η [c(α/2, 2(m-1)), 2(m-1), λ] + Η [-c(α/2, 2(m-1)), 

2(m-1), λ]. The test of the treatment effect and statistical power can also be computed using the 

F-statistic that has a non-central F-distribution with 1 degree of freedom in the numerator and 

2(m – 1) degrees of freedom in the denominator and non-centrality parameter 2λ .   

 However, when the intraclass correlation structure is known a more powerful F- or t-test 

can be constructed. The non-centrality parameter of the t-test is the same as that reported in 

equation 7 above. However, this test has larger degrees of freedom, since σ  in equation 6 above 

is estimated by lσ  in equation 5. Because the degrees of freedom associated with lσ  are N – 2, 
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the degrees of freedom of this t-test are 2(mpn -1) assuming one treatment and one control and 

no covariates (see also Blair & Higgins, 1986). The power of the one-tailed t-test at level α is  

p1 = 1 – Η[c(α, 2(mpn-1)), 2(mpn-1), λ],       (8) 

and the power of the two-tailed t-test at level α is  

p2 = 1 – Η [c(α/2, 2(mpn-1)), 2(mpn-1), λ] + Η [-c(α/2, 2(mpn-1)), 2(mpn-1), λ].  (9) 

Equivalently, the F-statistic has a non-central F-distribution with 1 degree of freedom in the 

numerator and 2(mpn – 1) degrees of freedom in the denominator and a non-centrality parameter 

2λ . Specifically the numerator mean square (treatment) of the F-statistic assuming no covariates 

is  

( ) ( ) ( )2
1 2

2 3

2 1
1 1 1

mpnMST Y Y
n pnρ ρ

= −
+ − + − ... ...

/ / , 

and has 1 degree of freedom.   

To compute the denominator mean square (error) of the F-statistic, one needs first to 

compute the necessary sums of squares of all three sources of variation: the within level-2 unit 

(classroom) sums of squares (SSwc), the between level-2 unit sums of squares (SSbc), and the 

between level-3 unit (schools) sums of squares (SSbs). The within level-2 unit sums of squares 

assuming no covariates are   

2

1 1 1
( 1)

pm

wc ijk
i j k

SS n S
= = =

= − ∑∑∑  

where 

( )2

.
1

/( 1)
n

ijk ijkl ijk
l

S Y Y n
=

= −∑ −

)

. 

The expected value of SSwc is  

2
2 3( ) 2 ( 1) (1wcE SS mp n σ ρ ρ= − − − . 
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Similarly, the within level-3 unit between level-2 units sums of squares assuming no covariates 

are 

2

1 1
( 1)

m

bc ij
i j

SS n p S
= =

= − ∑∑  

where 

( )2

. ..
1

/( 1)
p

ij ijk ij
k

S Y Y p
=

= −∑ −

)

. 

The expected value of SSbc is  

2
2 3( ) 2 ( 1) (1 ( 1)bcE SS m p nσ ρ ρ= − + − − . 

Finally, the between level-3 units sums of squares assuming no covariates are 

2

1
( 1)bs i

i
SS np m S

=

= − ∑  

where 

( )2

.. ...
1

/( 1)
m

i ij i
j

S Y Y m
=

= −∑ − . 

The expected value of SSbs is  

2
2 3( ) 2( 1) (1 ( 1) ( 1) )bsE SS m n pnσ ρ ρ= − + − + − . 

The sums of square error using information from all three sources of variation is 

2 3 2 3 2 31 1 ( 1) 1 ( 1) ( 1)
wc bc bsSS SS SSSSE

n n pnρ ρ ρ ρ ρ
⎛ ⎞

= + +⎜ ⎟− − − − − − − − −⎝ ⎠ρ
 

and it follows that the denominator mean square (error) of the F-statistic assuming no covariates 

is 

2 3 2 3 2 3

/( 2)
2 1 1 ( 1) 1 ( 1) ( 1)

wc bc bsSS SS SSSSEMSE N
N n n pnρ ρ ρ ρ ρ ρ

⎛ ⎞
= = + + −⎜ ⎟− − − − − − − − − −⎝ ⎠

. (10) 
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Notice that the degrees of freedom of the mean square error above are the sum of the degrees of 

freedom of all three different sums of squares which is 2mpn - 2mp + 2mp - 2m + 2m - 2 = 2(mpn 

- 1).  This indicates that the F-statistic has 1 and 2(mpn -1) degrees of freedom and the t-statistic 

has 2(mpn -1) degrees of freedom. Note that although the numerator mean square (treatment) is 

unchanged, the denominator mean square error can take different forms. That is, the denominator 

mean square error can use information from one or more of the three sources of variation. Hence, 

different F- or t-tests can be constructed that will have different degrees of freedom (due to the 

denominator mean square error used each time) and hence will provide different estimates of 

power. For example, the exact F-test in three-level cluster randomized designs with two levels of 

nesting carried out on level-3 unit means uses the denominator mean square error  

2 3

/ 2( 1) / 2( 1)
1 ( 1) ( 1)

bs
s s

SSMSE SSE m m
n pnρ ρ

⎛ ⎞
= − = ⎜ − − − −⎝ ⎠

−⎟    (11) 

assuming no covariates and one treatment and one control group. The F-statistic has 1 and 2(m -

1) degrees of freedom and the t-statistic has 2(m -1) degrees of freedom (see Konstantopoulos, in 

press). Since the non-centrality parameter is unchanged the F- or t-statistic that uses equation 10 

to compute the denominator mean square error is more powerful than the statistic that uses 

equation 11. In addition, the F- or t-tests that use other combinations of sums of squares to 

compute the denominator mean square error will always have smaller power (due to smaller 

degrees of freedom) than that computed using equation 9.   

Including Covariates 

The three-level model discussed in the previous sections can be modified to include q 

level-3 covariates, w level-2 covariates, and r level-1 covariates. I assume that the covariates at 

levels 1 and 2 are centered around their means respectively (group-mean centering). This ensures 

that predictors explain variation in the outcome only at the level at which they are introduced. 
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When covariates are included in the model the level-1 (student), level-2 (classroom), and level-3 

(school) variances are defined as 2 2 2, ,Re R Rσ τ ω  respectively, and 2 2 2
RT Re R R

2= + +σ σ τ ω  (and R 

indicates residual variances because of the adjustment for the effect of covariates). Two 

parameters (analogous to the unadjusted level-2 and level-3 intraclass correlations) summarize 

the associations between these residual variances:  The adjusted level-2 intraclass correlation 

2

2 2
R

A
RT

τρ
σ

=            

and the adjusted level-3 intraclass correlation 

2

3 2
R

A
RT

ωρ
σ

= , 

where the subscripts A and R indicate adjustment due to covariates and residual variance. Then, 

the estimate of the treatment effect is the difference between the covariate adjusted treatment and 

the control group means namely 1A AY Y− 2... ... . The standard error of the estimate of the treatment 

effect is now defined as  

( ) ( ) ( )2 2 2
1 2 2 3

2 2 1 1 1A A R R Re RT ASE Y Y pn n n pn
mpn mpn Aω τ σ σ ρ ρ− = + + = + − + −... ... . 

The objective is to examine the statistical significance of the treatment effect net of the possible 

effects of covariates, which means to test the hypothesis 

H0: 1 2A = Aα α  or 1 2 0A A− =α α  

This involves computing the test statistic 

( )1 22 A A

A
A

mpn Y Y
t

S

−
=

... ...
,      
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where ...AiY  is the adjusted mean of the ith treatment group and SA is the estimated covariate 

adjusted standard error of the covariate adjusted mean difference. When the null hypothesis is 

false, the test statistic tA has the non-central t-distribution with a non-centrality parameter  

( ) ( )1 2 1 2 3 1

1
2A

mpn

3

λ .
n pn

δ
η η η ρ η η ρ

=
+ − + −

     (12)  

where  

2 2 2 2 2
3 2 1R R Re/ , / , / 2

eη ω ω η τ τ η σ σ= = = .       

The η’s indicate the proportion of the variances at each level of the hierarchy that is still 

unexplained (percentage of residual variation). For example when 1η = 0.25, this indicates that 

the variance at the student level decreased by 75 percent due to the inclusion of covariates such 

as pre-treatment measures. The degrees of freedom of the t-test are 2(mpn – 1) – q – w – r. The 

power of the one-tailed t-test at level α is  

p1 = 1 – Η[c(α, 2(mpn-1)-q-w-r), 2(mpn-1)-q-w-r, λA],     (13) 

and the power of the two-tailed t-test at level α is  

p2 = 1 – Η [c(α/2, 2(mpn-1)-q-w-r), 2(mpn-1)-q-w-r, λA] +  

Η [-c(α/2, 2(mpn-1)-q-w-r), 2(mpn-1)-q-w-r, λA].      (14) 

Equivalently, the F-statistic has a non-central F-distribution with 1 degree of freedom in the 

numerator and 2(mpn – 1) - q – w - r degrees of freedom in the denominator and non-centrality 

parameter 2
Aλ .  In two-level designs (e.g. students nested within schools) when r and q covariates 

are included at the first and second level respectively, the degrees of freedom of the t-test are 

2(mn* - 1) – q – r,  where n* = pn.  
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Computational Example 

This section provides power comparisons between two t-tests: the t-test carried out on 

level-3 unit means (with 2(m-1) – q degrees of freedom) and the t-test outlined in this paper 

(with 2(mpn-1) – q – w – r degrees of freedom). The power computations are presented in Table 

1. I compute power (assuming one treatment and one control group) for two-tailed t-tests at the 

0.05 significance level for an effect size δ = 0.5, assuming no covariates are included in the 

model, and values of the intraclass correlations at the second level ρ2 = 0.07, and at the third 

level ρ3 = 0.10. To select plausible values of intraclass correlations I consulted Hedges & 

Hedberg (2007) and Nye, Konstantopoulos, and Hedges (2004).   

Table 1 shows that the proposed test statistic has large power advantages when the 

number of level-3 units (schools) is small, compared to the test statistic carried out on level-3 

unit means. For example, when two schools are assigned to a treatment and a control condition 

the power of the proposed test statistic is consistently twice as large. As the number of level-3 

units (schools) increases however, the difference in power between the two tests decreases, and 

when the number of level-3 units becomes infinitely large the two tests provide identical 

estimates of power. Nonetheless, in practice this test is always more powerful since typically 

randomized experiments include a relatively small number of level-3 units. This replicates the 

results presented by Blair and Higgins for two-level designs.  

Conclusion 

 Three-level designs are increasingly common in educational research. Experiments that 

involve multiple schools with multiple classrooms in each school are inherently three-level 

designs with two levels of nesting (assuming a three-stage sampling scheme). The present study 

proposed a more powerful test for treatment effects in three-level cluster randomized designs 
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where nesting occurs at two levels (e.g., classrooms and schools). This test statistic is more 

powerful than the typical test based on level-3 unit means because it preserves the degrees of 

freedom that are associated with level-2 and level-1 units. The proposed test assumes that the 

nesting effects (expressed as intraclass correlations) are known, which does not always hold. In 

education however, when the outcome is achievement, there is evidence from a large-scale 

randomized experiment (Project STAR) that the school-level intraclass correlation is on average 

0.16 and the classroom-level intraclass correlation is on average 0.11 (see Nye et al., 2004). 

Analyses using NAEP data have provided comparable estimates. The increased use of three-level 

models in educational research should help with providing additional estimates of intraclass 

correlations. Note that the knowledge of the intraclass correlations is also necessary for the 

typical test based on level-3 unit means. Nonetheless, when educated guesses of the intraclass 

correlations are available the proposed test provides higher estimates of power, especially when 

the number of level-3 units is smaller.  
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Table 1. Power comparisons between a t-test based on means and the proposed t-test

Number of 
Level-3 Units 

Number of 
Level-2 Units 

Number of 
Level-1 Units 

Power/       
Means

Power/       
Observations

df/           
Means

df/           
Observations

2 2 10 0.11 0.22 2 78
2 2 20 0.12 0.24 2 158
2 2 30 0.12 0.25 2 238
2 4 10 0.13 0.27 2 158
2 4 20 0.14 0.29 2 318
2 4 30 0.14 0.29 2 478
2 6 10 0.14 0.29 2 238
2 6 20 0.14 0.30 2 478
2 6 30 0.14 0.31 2 718
4 2 10 0.30 0.39 6 158
4 2 20 0.33 0.43 6 318
4 2 30 0.34 0.45 6 478
4 4 10 0.36 0.47 6 318
4 4 20 0.38 0.51 6 638
4 4 30 0.39 0.52 6 958
4 6 10 0.39 0.51 6 478
4 6 20 0.41 0.54 6 958
4 6 30 0.41 0.54 6 1438
6 2 10 0.46 0.54 10 238
6 2 20 0.51 0.59 10 478
6 2 30 0.53 0.61 10 718
6 4 10 0.56 0.64 10 478
6 4 20 0.59 0.68 10 958
6 4 30 0.60 0.69 10 1438
6 6 10 0.60 0.68 10 718
6 6 20 0.62 0.71 10 1438
6 6 30 0.63 0.72 10 2158
8 2 10 0.60 0.66 14 318
8 2 20 0.65 0.72 14 638
8 2 30 0.67 0.74 14 958
8 4 10 0.71 0.77 14 638
8 4 20 0.74 0.80 14 1278
8 4 30 0.75 0.81 14 1918
8 6 10 0.75 0.81 14 958
8 6 20 0.77 0.83 14 1918
8 6 30 0.78 0.83 14 2878

 




