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Abstract 

A common mistake in analysis of cluster randomized experiments is to ignore the effect 

of clustering and analyze the data as if each treatment group were a simple random 

sample. This typically leads to an overstatement of the precision of results and anti-

conservative conclusions about precision and statistical significance of treatment effects. 

This paper gives a simple correction to the t-statistic that would be computed if clustering 

were (incorrectly) ignored in an experiment with two levels of nesting (e.g., classrooms 

and schools). The correction is a multiplicative factor depending on the number of 

clusters and subclusters, the subcluster sample size, the subcluster size, and the cluster 

and subcluster intraclass correlations ρ
S 
and ρ

C
. The corrected t-statistic has Student’s t-

distribution with reduced degrees of freedom. The corrected statistic reduces to the t-

statistic computed by ignoring clustering when ρ
S 
= ρ

C 
= 0. It reduces to the t-statistic 

computed using cluster means when ρ
S 
= 1. If ρ

S 
and ρ

C 
are between 0 and 1, the adjusted 

t-statistic lies between these two and the degrees of freedom are in between those 

corresponding to these two extremes.  
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Correcting a Significance Test for Clustering 
 in Designs With Two Levels of Nesting 

 
Experiments in educational research often assign entire intact groups (such as 

schools or classrooms) to the same treatment group, with different intact groups assigned 
to different treatments.  Because these intact groups correspond to statistical clusters, this 
design is often called a group randomized or cluster randomized design.  Several analysis 
strategies for cluster randomized trials are possible, but the simplest is to use the cluster 
as the unit of analysis.  This analysis involves computing mean scores on the outcome 
(and all other variables that may be involved in the analysis) and carrying out the 
statistical analysis as if the cluster means were the data.  If all cluster sample sizes are 
equal, this approach provides exact tests for the treatment effect, but more flexible and 
informative analyses are also available, including analyses of variance using clusters as a 
nested factor (see, e.g., Hopkins, 1982) and analyses involving hierarchical linear models 
(see e.g., Raudenbush and Bryk, 2002).  For general discussions of the design and 
analyses of cluster randomized experiments see Raudenbush and Bryk (2002), Donner 
and Klar (2000), Klar and Donner (2001), Murray (1998), or Murray, Varnell, & Blitstein 
(2004).   

A common mistake in analysis of cluster randomized experiments in education is 
to analyze the data as if it were based on a simple random sample and assignment was 
carried out at the level of individuals.  This typically leads to an overstatement of the 
precision of results and consequently to anti-conservative conclusions about precision 
and statistical significance of treatment effects (see, e.g., Murray, Hannan, and Baker, 
1996).  This analysis can also yield misleading estimates of effect sizes and incorrect 
estimates of their sampling uncertainty.  If the raw data were available, then reanalysis 
using more appropriate analytic methods is usually desirable.  

In some cases, however, the raw data is not available but one wants to be able to 
interpret the findings of a research report that improperly ignored clustering in the 
analysis.  This problem often arises in reviewing the findings of studies carried out by 
other investigators.  In particular, this problem has arisen in the work of the What Works 
Clearinghouse, a US Institute of Education Sciences funded project whose mission is to 
evaluate, compare, and synthesize evidence of effectiveness of educational programs, 
products, practices, and policies.  The What Works Clearinghouse reviewers found that 
the majority of the high quality studies they were examining involved assignment of 
treatment by schools, which led to clustering that needed to be taken into account in 
assessing the uncertainty of the treatment effect (e.g., by computing confidence intervals) 
or in testing its statistical significance.  While some of these studies sampled students 
directly within schools (at least roughly approximating a simple random sample within 
schools), most studies sampled students by first sampling classrooms within schools and 
thus there is a second level of clustering (nesting) that may need to be taken into account.  
Moreover, most of the statistical analyses in these studies did not attempt to take 
clustering into account.  In this context, it would be desirable to be able to know how the 
conclusions about treatment effects might change if both levels of clustering were taken 
into account.  

Another way to conceive the issue is in terms of survey sampling theory.  In 
experiments that assign schools to treatments, treatment effects are just differences 
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between independent treatment group means.  The variance of the treatment group means 
depends on the sampling design.  If students are sampled by first selecting schools and 
then selecting classrooms within schools and then students within classrooms, the 
sampling design is a three-stage cluster sample with schools as clusters and classrooms as 
subclusters.  Each stage of cluster sampling adds to the design effect (inflates the 
variance) of the treatment group mean.  Ignoring these design effect (which is the 
equivalent to assuming that the sampling design is a simple random sample of students 
form the total population) leads to an underestimate of the variance of the treatment 
group means and therefore an underestimate of the variance of the treatment effect. 

Designs involving two levels of clustering are widespread in education (e.g., 
designs that assign schools with multiple classrooms within schools to treatments).  
While methods are available to adjust for the effects of one level of clustering on simple 
tests of significance (e.g., Hedges, in press), less is known about methods for taking two 
levels of clustering into account.  Such methods are likely to have wide application in 
education for two reasons.  The first reason is the increasing prevalence of educational 
experiments that assign treatments to schools in order to avoid cross contamination of 
different treatments within the same school.  The second reason is the practical fact that, 
since students are nested within classrooms and classrooms are nested within schools, it 
is easier to sample students by using a multistage cluster sampling plan that first samples 
schools and then classrooms.  Such designs are therefore widely used in quasi-
experiments as well as experiments.   

Although we use the terms “schools” and “classrooms” to characterize the stages 
of clustering, this is merely a matter of convenience and readily understandable 
terminology.  The results of this paper apply equally well to any situation in which there 
is a three-stage sampling design [where individual units are sampled by first sampling 
clusters (e.g., schools) and then sampling subclusters (e.g., classrooms) within the 
clusters, and finally sampling individual units (e.g., students) within the subclusters] and 
treatments are assigned to clusters (e.g., schools).  

The purpose of this paper is to provide an analysis of the effects of two-levels of 
nesting (clustering) on significance tests and confidence intervals for treatment effects.  
First we derive the sampling distribution of the t-statistic under a clustered sampling 
model with equal cluster sample sizes.  Then we provide and evaluate some simpler 
approximate methods for adjusting significance tests for the effects of clustering.  Next 
we consider whether acceptable corrections may be obtained by adjusting for only one of 
the levels of nesting.  Then we provide a generalization for unequal cluster (and 
subcluster) sample sizes.  This research provides a simple correction that may be applied 
to a statistical test that was computed (incorrectly) ignoring the clustering of individuals 
within groups.  The correction requires that a bound on the amount of clustering (in the 
form of an upper bound on the intraclass correlation parameters) is known or that the 
intraclass correlation parameters can be imputed for sensitivity analysis.  We then derive 
confidence intervals for the mean difference based on the corrected test statistic.  Finally 
we consider the power of the corrected test. 

Model and Notation 
Let Yijk

T (i = 1, …, mT;  j = 1, …, pi
T; k = 1, …, nij

T) and Yijk
C (i = 1, …, mC; j = 1, 

…, pi
C; k = 1, …, nij

C) be the kth observation in the jth classroom in the ith school in the 
treatment and control groups respectively.  Thus, in the treatment group, there are mT 
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schools, the ith school has pi
T classrooms, and the jth classroom in the ith school has nij

T 
observations.  Similarly, in the control group, there are mC schools, the ith school has pi

C 
classrooms, and the jth classroom in the ith school has nij

C observations.  Thus there is a 
total of M = mT + mC schools, a total of 

1 1

T Cm mT C
i i

i i
P p p

= =
= +∑ ∑  

classrooms, and a total of  

  
1 1 1 1

T CT C
i ip pm mT C T

ij ij
i j i j

N N N n n
= = = =

= + = +∑ ∑ ∑ ∑ C

observations overall. 
 Let T

iY •• (i = 1, …, mT) and C
iY •• (i = 1, …, mC) be the means of the ith school in the 

treatment and control groups, respectively, let T
ijY • (i = 1, …, mT;  j = 1, …, k) and C

ijY • (i = 
1, …, mC;  j = 1, …, k) be the means of the jth class in the ith school in the treatment and 
control groups, respectively, and let TY••• and CY•••  be the overall means in the treatment 
and control groups, respectively.  Define the (pooled) within treatment groups variance S2 
via 

 

2 2

1 1 1 1 1 12
( ) ( )

2

T CT CT Cij iji in np pm mT T C C
ijk ijk

i j k i j k
Y Y Y Y

S
N

••• •••
= = = = = =

− + −

=
−

∑ ∑ ∑ ∑ ∑ ∑
.   (1) 

 
Suppose that observations within the jth subcluster (classroom) in the ith cluster 

(school) within the treatment and control group groups are normally distributed about 
cluster (classroom) means μij

T and μij
C with a common within-cluster variance σWC

2. That 
is 

2~ ( , )T T
ijk ij WCY N μ σ , i =1, …, mT;  j = 1, …, pi

T; k = 1, …, nij
T

And           (2) 
2~ ( , )C C

ijk ij WCY N μ σ , i =1, …, mC; j = 1, …, pi
C; k = 1, …, nij

C. 
Suppose further that the subcluster (classroom) means are random effects (for example 
they are considered a sample from a population of means) so that the class means 
themselves have a normal distribution about the school means μi●

T and μi●
C and common 

variance σBC
2.  That is  

2~ ( , )T T
ij i BCμ N μ σ• , i = 1, …, mT; j = 1, ..., pi

T

and           (3) 
2~ ( , )C C

ij i BCμ N μ σ• , i = 1, …, mC; j = 1, ..., pi
C. 

Finally suppose that the cluster (school) means μi●
T and μi●

C are also normally distributed 
about the treatment and control group means μ●●T and μ●●C with common variance σBS

2.  
That is  

2~ ( , )T T
iμ N μ σ• •• BS , i = 1, …, mT
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and           (4) 
2~ ( , )C C

iμ N μ σ• •• BS

C

, i = 1, …, mC. 
Note that in this formulation, σBC

2 represents true variation of the population means of 
classrooms over and above the variation in sample means that would be expected from 
variation in the sampling of observations into classroom.  Similarly, σBS

2 represents the 
true variation in school means, over and above the variation in sample means that would 
be expected from variation dues to the sampling of observations into schools.   

These assumptions correspond to the usual assumptions that would be made in the 
analysis of a multi-site trial by a three-level hierarchical linear models analysis, an 
analysis of variance (with treatment as a fixed effect and schools and classrooms as 
nested random effects), or a t-test using the school means in treatment and control group 
as the unit of analysis. 
Intraclass Correlations 
 In principle there are several different within-treatment group variances in a 
design with two levels of nesting (a three level design).  We have already defined the 
within-classroom, between-classroom, and between-school, variances σWC

2, σBC
2, and σBS

2.  
There is also the total variance within treatment groups σWT

2 defined via 
 .       (5) 2 2 2 2

T BS BC W= + +σ σ σ σ
In most educational achievement data when clusters are schools and subclusters are 
classrooms, σBS

2 and σBC
2 are considerably smaller than σWC

2. Obviously, if the between 
school and classroom variances σBS

2 and σBC
2 are small, then σT

2 will be very similar to 
σWC

2. 
 In two-level models (e.g., those with schools and students as levels), the relation 
between variances associated with the two levels is characterized by an index called the 
intraclass correlation.  In three-level models, two indices are necessary to characterize the 
relationship between these variances, and they are generalizations of the intraclass 
correlation.  Define the school-level intraclass correlation ρS by 

 
2 2

2 2 2
BS BS

S
BS BC WC T

ρ =
+ +

σ
2=

σ
σ σ σ σ

.      (6) 

Similarly, define the classroom level intraclass correlation ρC by 

 
2 2

2 2 2 2
BC BC

C
BS BC WC T

ρ =
+ +

σ
=
σ

σ σ σ σ
.      (7) 

These intraclass correlations can be used to obtain one of these variances from any of the 
others, since σBS

2 = ρSσT
2, σBC

2 =  ρCσT
2, and σWC

2 = (1 – ρS – ρC)σT
2. 

Hypothesis Testing 
The object of the statistical analysis may be to test the statistical significance of 

the intervention effect, that is, to test the hypothesis of no treatment effect 
H0: μ●●T = μ●●C. 

The Test Statistic Ignoring Clustering 
Suppose that the researcher wishes to test the hypothesis and carries out the usual 

t- or F-test.  The t-test involves computing the test statistic  

 ( T CN Y Yt
S
••• •••−

=
% ) ,        (8) 
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where S is the usual pooled within treatment group standard deviation defined in (1) and 

 
T C

T C

N NN
N N

=
+

% . 

The F-test statistic from a one-way analysis of variance ignoring clustering is of course F 
= t2.  If there is no clustering (that is, if ρS = ρC = 0), the test statistic t has Student’s t-
distribution with N – 2 degrees of freedom when the null hypothesis is true.  If there is 
clustering (that is if either ρS ≠ 0 or ρC ≠ 0) the test statistic has a different sampling 
distribution—one that depends on ρS and ρC. 
 Note that this t-test (or the corresponding F-test) would not be computed if the 
analyst was properly addressing the clustered nature of the sample.  As we noted above, 
other analyses that would be appropriate include analyses that include the clusters and 
subclusters as factors nested within treatments, analyses that use a hierarchical linear 
model including subclusters and clusters as level 2 and level 3 units, or use cluster means 
as the units of analysis.  However, the objective of this paper is not to examine these 
analyses but to examine the effects of using (8) as a test statistic when the sample is a 
clustered sample. 

When there is no clustering (that is when ρS = ρC = 0), the numerator of (8) has a 
normal distribution with standard deviation σT.  In other words, when the null hypothesis 
is true 
 ( )T C

TN Y Y••• •••−% /σ  
has the standard normal distribution.  Similarly, when there is no clustering (that is when 
ρS = ρC = 0), (N – 2)S2/σT

2 is distributed as a chi-square with (N – 2) degrees of freedom 
so that S2 is distributed as σT

2 times a chi-square with (N – 2) degrees of freedom.  In 
other words S/σT is distributed as the square root of a chi-square with (N – 2) degrees of 
freedom divided by its degrees of freedom.  Note that the scale factor σT, which occurs in 
both the numerator and the denominator, cancels so that the ratio, t, is scale free.  
Because the numerator has the standard normal distribution and the denominator is the 
square root of the ratio of a chi-square with (N – 2) degrees of freedom to its degrees of 
freedom that is independent of the numerator, the ratio in (8) has (by definition) Student’s 
t-distribution with (N – 2) degrees of freedom.     

The Impact of Clustering 
When there is clustering (either ρS ≠ 0 or ρC ≠ 0), neither the numerator nor the 

denominator of the t-statistic given in (8) has the same distribution as they do when either 
ρS = ρC = 0.  We now indicate how the distribution of the numerator and denominator are 
different when ρS ≠ 0 or ρC ≠ 0 in the balanced design where the cluster sample sizes pi

T 
and pi

C are all equal to p and the subcluster sample sizes nij
T and nij

C are all equal to n. 
 Assuming that the design is balanced, the numerator has a normal distribution 
with mean 0, but with a generally larger variance: σT

2[1 + (pn – 1)ρs + (n – 1)ρc ].  The 
factor [1 + (pn – 1)ρs + (n – 1)ρc ] is a generalization of Kish’s (1965) design effect for 
two levels of nesting.  In other words, when ρS or ρC  ≠ 0, and the null hypothesis is true 
 T( )/ 1 ( 1) ( 1T C

S CN Y Y pn )ρ n ρ••• •••− + − + −% σ  
has the standard normal distribution. 
 Assuming a balanced design, the expected value of S2 is no longer σT

2, but instead 
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  { }2 2 2 2 2 2( 1) 2( 1)2 2 1
2 2 2

S C
WC BS BC T

pn ρ n ρN pn N nE S
N N N

− + −− − ⎛ ⎞⎛ ⎞ ⎛ ⎞= + + = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠
σ σ σ σ . 

Thus the scale factor necessary to standardize S is not σT.  We show in the Appendix that 

 
2

2 2( 1) 2( 1)1
2

S C
T

hS
pn ρ n ρ

N
− + −⎛ ⎞−⎜ ⎟−⎝ ⎠

σ
 

has, to an excellent approximation, the chi-square distribution with h degrees of freedom, 
where  

[ ]2

2 2 2

2 2( 1) 2( 1)
( 2) 2 2

S C

S C S C S C

N pn ρ n ρ
h

pnNρ nNρ N ρ nNρ ρ Nρ ρ+2Nρ ρ
− − − − −

=
+ + − + +

) ( ) ) ( ,   (9) 

where N
)

= (N – 2pn), = (N – 2n), andN
(

ρ = 1 – ρS – ρC. 
Taking the partial derivative of h with respect to ρS or ρC, we see that h is a 

decreasing function of ρS and ρC.  If ρS = ρC = 0 and there is no clustering, h = (N – 2) 
and S has the nominal degrees of freedom as expected.  If ρS = 1 (so that ρC = 0) and 
there is complete clustering by school (no variability within clusters), then h = (M – 2) as 
expected (because the only variability is that between the M clusters).  If ρC = 1 (so that 
ρS = 0) and there is complete clustering by classroom (no variability within subclusters or 
between clusters), then h = (Mp – 2) as expected (because the only variability is that 
between the Mp subclusters).  If 0 < ρS < 1 and 0 < ρC < 1, then h is between (M – 2) and 
(N – 2) and its value reflects the effective degrees of freedom in S. 

These results imply that when either ρS ≠ 0 or ρC ≠ 0, S/σT is no longer distributed 
as the square root of a chi-square with (N – 2) degrees of freedom divided by its degrees 
of freedom, but 

 
2( 1) 2( 1)1

2
S C

T

S
pn ρ n ρ

N
− + −

−
−

σ
 

is distributed as the square root of a chi-square with h degrees of freedom divided by its 
degrees of freedom.  
The Sampling Distribution of the t-Statistic When Either ρS ≠ 0 or ρC ≠ 0  
 The results in the previous section imply that when either ρS ≠ 0 or ρC ≠ 0, the 
statistic 

 
( )/ 1 ( 1) ( 1) ( )

2( 1) 2( 1)1
2

T C T C
T S C

S C
T

N Y Y pn ρ n ρ N Y Yc c
Spn ρ n ρS

N

σ

σ

••• ••• ••• •••
− + − + − − t= =

− + −
−

−

% %

/
 

has the t-distribution with h degrees of freedom, where c is a constant depending on N, p, 
n, ρS, and ρC that absorbs the ratios of the scale factors in numerator and denominator, 
which given by 

[ ]
2 2( 1) 2( 1)

( 2) 1 ( 1) ( 1)
S

S C

N pn Cρ n ρc
N pn ρ n ρ
− − − − −

=
− + − + −

     (10) 

Thus the statistic 
 tA = ct          (11) 
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has the t-distribution with h degrees of freedom and can be thought of as a t-statistic 
adjusted for both for clustering effects on the mean difference and on the standard 
deviation. 
 Thus a two-sided test of the null hypothesis of equal group means consists of 
rejecting H0 if | tA | exceeds the 100α percent two-tailed critical value of the t-distribution 
with h degrees of freedom.  The one sided test rejects H0 on the positive side if tA exceeds 
the 100α percent one-tailed critical value of the t-distribution with h degrees of freedom.   
 Note that if ρS = 0 and ρC = 0 so that there is no clustering, then c = 1 and h = N – 
2.  That is, when ρS = 0 and ρC = 0, the test based on tA reduces to the usual t-test ignoring 
clustering.  When ρS = 1 and ρC = 0 and there is complete clustering by school, then c 
= 2( M ) /( N )− − 2  and h = M – 2.  That is, when ρS = 1 and ρC = 0, and the test based 
on tA reduces to a t-test computed using the cluster (school) means.  Note that when ρS = 
0 and ρC = 1, c = 2( Mp ) /( N )− − 2  and h = Mp – 2, so that the test based on tA reduces 
to a t-test computed using the subcluster (classroom) means. 
 The sampling distribution of tA is not exact, but it is based on theory that yields a 
very good approximation (see, e.g., Welch, 1949; Welch, 1956; Gaylor and Hopper 1969) 
and is widely used in other settings to construct tests in complex analyses of variance, 
such as unbalanced between-subjects designs and repeated measures designs (see, e.g., 
Geisser and Greenhouse, 1958).  Extensive simulation experiments in connection with 
two-level designs found the rejection rates of the corresponding test to be 
indistinguishable from nominal (see Hedges, in press).  Our simulation results in three 
level designs (not reported here) also confirm that rejection rates do not appear to differ 
from nominal. 
 One immediate application of the results in this paper is to study the rejection rate 
of the unadjusted t-test.  While it is well known that the unadjusted t-test has a rejection 
rate that is often much higher than nominal (see, e.g., Murray, Hannan, and Baker, 1996), 
previous studies have relied on simulation to study this test.  The sampling distribution of 
tA provides an analytic expression for the rejection rates of the unadjusted t-test under the 
cluster sampling model.  Let t(ν, α) be the level α two-sided critical value for the t-
distribution with ν degrees of freedom.  Then the usual unadjusted t-test rejects if 
|t| > t(N – 2, α).  Because tA = ct has the t-distribution with h degrees of freedom under the 
null hypothesis, the rejection rate of the unadjusted test is 
 [ ]{ }2 1 F t((   2) )c N ,α , h− − ,       (12) 
where F[x, ν] is the cumulative distribution function of the t-distribution with ν degrees of 
freedom.  Computations with this expression (not reported in this paper) are very 
consistent with the empirical rejection rates obtained in our simulations. 

Relation to Previous Work 
The properties of significance tests in designs with two-levels of nesting were 

discussed by Murray, Hannan, and Baker (1996).  In one part of their paper, they 
provided results of Monte Carlo studies of rejection rates of the naïve test that ignored 
clustering (the test based on the statistic Find with degrees of freedom ddfind in their 
notation).  The rejection rates computed using the methods in this paper agree well with 
their results.  Table 1 gives the values computed using the methods in this paper and the 
results given in Table 1 of Murray, Hannan, and Baker (1996) for Find with degrees of 
freedom ddfind.  All of these results based on this paper are within two standard errors of 
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the empirical proportion obtained in the simulation, and all but one are within one 
standard error. 

 The sampling distribution of tA derived in this paper provide some insight about 
other approaches to testing mean differences in clustered samples.  For designs with a 
single level of clustering, Kish (1965) suggested multiplying S (or, equivalently, dividing 
the t-statistic) by the square root of the design effect to remove the effect of clustering on 
the numerator of the t-statistic.  The generalization of that suggestion would be to divide 
the t-statistic by the square root of [1 + (pn – 1)ρs + (n – 1)ρc ], yielding the statistic is 

( )
1 ( 1) ( 1)

T C

K
S C

N Y Yt
S pn ρ n ρ

••• •••−
=

+ − + −

%
.       

However because this statistic is does not correct for the fact that the scale factor 
necessary to standardize SWT is not σT, the sampling distribution of tK is not a t-
distribution but a constant times a t-distribution with h degrees of freedom, namely 

 
2( 1) 2( 1)1

2

A
K

S C

tt
pn ρ n ρ

N

=
− + −

−
−

.      (13) 

If ρS ≠ 0 or ρC ≠ 0 the denominator of (13) is less than one, so tK > tA.  However note that 
the denominator of (13) will be quite close to 1 unless m is small and ρS is large.  For 
example, if ρS = 0.25, ρC = 0.15, n = 30, p = 3 and m = 2, the denominator of (13) is about 
0.925, but if n = 30, p = 3, and m = 10, the denominator is 0.986.  Therefore the sampling 
distribution of tK is approximately a t-distribution with h degrees of freedom.   
 One might wish to avoid the computation of h by using a simpler approximation 
for the degrees of freedom that is used to obtain a critical value for the test using tK.  
Obvious possibilities for degrees of freedom include the degrees of freedom based on the 
number of individuals, namely  (N – 2); degrees of freedom based on the number of 
schools, namely (M – 2); and the effective degrees of freedom reduced by the design 
effect, namely (N – 2)/ [1 + (pn – 1)ρs + (n – 1)ρc ].  Table 2 shows the actual rejection 
rates for two-sided tests at the α = 0.05 significance level for the naïve test that ignores 
clustering and for tests using the statistic tK with critical values based on (N – 2), (M – 2), 
and (N – 2)/ [1 + (pn – 1)ρs + (n – 1)ρc ] degrees of freedom for plausible situations.  
The eighth column of the table, which gives the results of the naïve test ignoring 
clustering, shows that the effects of two levels of clustering can be profound.  It shows 
that the actual rejection rates for the 5 percent test under the null hypothesis are as large 
as 70 percent.  Note that the test based on statistic tK using (N – 2) degrees of freedom is 
liberal, rejecting more often than its nominal rate of 5 percent, particularly when the 
number M of clusters is small.  The test based on statistic tK using (M – 2) degrees of 
freedom is conservative, rejecting less often than its nominal rate of 5 percent, and is very 
conservative when the number M of clusters is small.  In contrast, the test based on 
statistic tK using (N – 2)/ [1 + (pn – 1)ρs + (n – 1)ρc ] degrees of freedom is sometimes 
slightly liberal, sometimes slightly conservative, but generally has a level very close to 
the nominal 5 percent. 

Unequal Cluster Sample Sizes 
 When cluster sample sizes are unequal, the expression for the sampling 
distribution of the t-test statistic from clustered samples and is considerably more 
complex. In this section we give the sampling distribution of the usual t-statistic and a 
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statistic that is adjusted for the effects of clustering when cluster sample sizes are not 
equal.  These expressions may be of use when cluster sample sizes are unequal and are 
reported explicitly.  They also give some insight about what single “compromise” value 
of p or n might give most accurate results when substituted into the equal sample size 
formulas for rough approximations. 
 The expressions are quite complex when subcluster sample sizes are unequal.  
Consequently we provide expressions for the adjusted t-statistic and its degrees of 
freedom when the subcluster sizes are equal, but the cluster sizes are unequal.  Then we 
give expressions when the subcluster sample sizes are unequal.  
Unequal Cluster (School) Sample Sizes but Equal Subcluster (Classroom) Sizes 

In this section we consider the case when the subcluster (classroom) sample sizes 
are equal or nearly so, but clusters differ in the number of subclusters (e.g., schools have 
different numbers of classrooms).  That is we assume that the subcluster sample sizes nij

T 
and nij

C are all equal to n, but the number of treatment and control group clusters (mT and 
mC) may differ and the number of subclusters within each  treatment and control group 
clusters (pi

T and pi
C) may also differ. 

This situation is of interest for several reasons.  First, as a practical matter, 
schools that are sampled in research studies have different numbers of classrooms, but the 
classroom sample sizes are equal or approximately equal (see, e.g., Ridgeway, et al., 
2000).  Second, the adjustment to the t-statistic and the degrees of freedom depend much 
more on cluster (school) sample sizes than on subcluster (classroom) sample sizes.  
Therefore adjustment for unequal classroom sample sizes is a second order correction to 
both test statistic and degrees of freedom, so treating the subcluster sample sizes as equal 
when they are not quite equal has relatively little effect.  Third, the subcluster sample 
sizes are much less likely to be reported than the cluster sample sizes, so these 
expressions are more likely to be of practical use.  Finally, the expressions for the 
adjustment and the degrees of freedom are much simpler when subcluster sample sizes 
are equal. 
 When the number of clusters is unequal, the adjusted t-statistic that is a 
generalization of (11) becomes  
 tAU = cUt         (14) 
where the adjustment constant cU is given by 
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where 
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C       (16) 

and 
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i i
i i

U T C

N n p N n p
p

N N N N
= == +
∑ ∑

% .      (17) 

Note that if all the pi
T and pi

C are equal to p, then Up = p, Up% = p, and expression (15) for 
cU reduces to expression (10) for c.   
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The statistic tAU has Student’s t-distribution with h degrees of freedom, where hU 
is given by 

[ ]2

2 2 2

2 2( 1) 2( 1)
( 2) 2 2

U S C
U

S C U S C U S C

N p n ρ n ρ
h

Aρ nNρ N ρ nN ρ ρ N ρ ρ+2Nρ ρ
− − − − −

=
+ + − + +

( ) ) (   (18) 

where UN
)

= ( 2 )nUN p− N
(

, = (N – 2n), and ρ = 1 – ρS – ρC and the auxiliary constant A is 
defined via A = AT + AC and  
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Note that when the pi
T and pi

C are all equal to p, then Up = p, A = pn(N – 2pn), 
expression (18) for hU reduces to expression (9) for h.   
Unequal Subcluster (Classroom) Sample Sizes 

The exact expression for the degrees of freedom h is quite complex when 
subcluster (classroom) sample sizes are unequal.  The complexity of the expression is not 
unexpected.  The denominator of h is the variance of a linear combination of three 
correlated variance component estimates, and the variances and covariances of these 
variance component estimates are themselves quite complex in unbalanced designs with 
two nested factors (see e.g., Searle, 1971, pp. 475 - 477).   To obtain reasonably compact 
expressions, it is useful to definite several auxiliary constants, which are given in Table 3.   
 When the sample size in the subclusters is unequal, the adjusted t-statistic that is a 
generalization of (11) becomes  
 tAU = cUt 
where the adjustment constant cU is given by 

 1 3

1 3
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( 2) 1 ( 1) ( 1)

S
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where k1 = k1
T + k1

C, k3 = k3
T + k3
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and the auxiliary constants k1
T , k1

C, k3
T , and k3

C are defined in Table 2.  Note that if all 
the pi

T and pi
C are equal to p and if all the nij

T and nij
C are equal to n, then k1 = pn and k3 = 

n, and expression (20) for cU reduces to expression (10) for c.   
When the null hypothesis is true, the statistic tAU has Student’s t-distribution with 

h degrees of freedom, where hU is given by 
[ ]2

1 3
2 2 2

2 2( 1) 2( 1)
( 2) 2 2

S C
U

S C S C S C

N k ρ k ρ
h

N ρ Bρ Cρ Dρ ρ Eρ ρ+2Fρ ρ
− − − − −

=
− + + + +

   (21) 

where ρ = 1 – ρS – ρC , and B = BT + BC, C = CT + CC, D = DT + DC, E = ET + EC, and F 
= FT + FC are defined below.  In the definition below, the T and C superscripts denoting 
the Treatment and Control groups are omitted for simplicity.  Thus, the definition below 
gives the value of the constants B, C, D, E, and F within each treatment group (BT, CT, 
etc.) in terms of auxiliary constants k1 to k9 given in Table 2: 

B = [k1(N + k1) – 2k9/N], 

C = {2k3[N(k12 – k3)2 + k3(N – k12)2] + 2(N – k3)2(2k7 + Nk3 – 2k5) 

– 4(N – k3)(k12 – k3)(k7 + Nk3 – k5) + 4(N – k3)(N – k12)(k5 – k7  – k4/N) 

      + 4(N – k12)(k12 – k3)k4/N}/{(N – k12)2}, 

D = [k3(N + k1) – 2k8/N],                                                                                                                           

E = [N – k1] 

F = [N – k3]. 
Note that when the pi

T and pi
C are all equal to p, and all the the nij

T and nij
T  are equal to n 

then expression (21) for hU reduces to expression (9) for h.   
Confidence Intervals 

 Confidence intervals based on the standard error of the mean difference and using 
the critical values used in the test based on t assuming simple random sampling will not 
be accurate when either ρS ≠ 0 and p > 1 or ρC ≠ 0 and n > 1.  That is, the actual 
probability content of these confidence intervals will usually be smaller than nominal (the 
confidence intervals will be too short).  The corrected t-statistic tA can be used to obtain 
confidence intervals that will have the correct probability content.   
 A 100(1 – α) percent confidence interval for the treatment effect μ●●T – μ●●C is 
given by 
      t( ) t( )••• ••• •• •• ••• •••− − ≤ − ≤ − +T C T C T C(Y Y ) α,h S / c N μ μ (Y Y ) α,h S / c N% % ,    (22) 
where c is the constant defined in (10) if the cluster and subcluster sample sizes, 
respectively are equal or the constant cU defined in (15) or (20) if they are unequal and 
t(α;ν) is the 100α percent two-sided critical value of the t-distribution with ν degrees of 
freedom (e.g., if α = 0.05 and ν = 120, then t(α, ν) = 1.98). 

Example 
 An evaluation of the connected mathematics curriculum reported by Ridgway, et 
al. (2002) compared the achievement of pT = 2 classrooms of 6th grade students who used 
connected mathematics in each of mT = 9 schools with that of pC = 1 classroom in each of 
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mC  = 9 schools in a comparison group that did not use connected mathematics.  In this 
quasi-experimental design the clusters were schools and the subclusters were classrooms.  
The class sizes were not identical but the average class size in the treatment group was 
NT/mT = 338/18 = 18.8 and NC/mC = 162/18 = 18 in the control group.  The exact sizes of 
all the classes were not reported, but here we treat the subcluster sizes as if they were 
equal and choose n = 18 as a slightly conservative sample size. The mean difference 
between treatment and control groups is TY••• – CY••• = -1.5, the pooled within-groups 
standard deviation SWT  = 2.436.  This evaluation involved sites in all regions of the 
country and it was intended to be nationally representative.  Ridgeway et al. did not give 
an estimate of the intraclass correlation based on their sample.  Hedges and Hedberg 
(2007) provide an estimate of the school level grade 6 intraclass correlation in 
mathematics achievement for the nation as a whole (based on a national probability 
sample) of 0.264.  Therefore for this example we assume that the intraclass correlation at 
the school level is ρS = 0.264 and that the classroom level intraclass correlation is about 
two thirds as large, namely ρC = 0.176. 

The analysis carried out by the investigators ignored clustering.  Comparing the 
mean of all of the students in the treatment group with the mean of all of the students in 
the control group using a conventional t-test leads to an unadjusted t value of t = 6.399, 
which is highly statistically significant compared with a critical value based on (N – 2) = 
500 – 2 = 498 degrees of freedom or 486 – 2 = 484 degrees of freedom using our slightly 
conservative assumption that classrooms had an equal sample size of n = 18.   

To determine what impact clustering may have had on the statistical significance 
of these findings we compute the adjusted t-test.  We start by computing Up  using (16) 
and Up% from (17) we obtain Up = 1.5 and Up% = 1.33.  Inserting these values into the 
expression (15) for cU yields cU = 0.309 and a t-statistic adjusted for clustering of tAU = 
1.976, which is much smaller than the unadjusted t-statistic. To compute the degrees of 
freedom for the adjusted test, we first compute the auxiliary constant A using (19) and 
obtain A = 12,960, then we insert this value of A along with N

)
= 432 and = 450 into 

(18) to obtain h
N
(

U = 96.02.  Comparing the value of the adjusted statistic, tAU = 1.976, with 
Student’s t-distribution with h = 96.02 degrees of freedom, we see that the two-tailed p-
value is p = 0.051.  Thus a conventional interpretation would be that the result is not quite 
statistically significant at the 5 percent level.  A 95 per cent confidence interval for μ●●T – 
μ●●C computed from (22) is given by 

-3.007 ≤ μ●●T – μ●●C ≤ 0.007, 
which has width 3.014, and as expected from the outcome of the significance test, 
contains zero.  Comparing this to the confidence interval that would be computed 
ignoring clustering, (-1.96 to -1.04) which has width 0.92, we see that the confidence 
interval which ignores clustering is considerably (and erroneously) narrower than that 
using tA, which takes clustering into account. 
 This example illustrates that a finding that implies treatment effects that may 
seem very reliably different from zero when the analysis ignores clustering may be 
equivocal when clustering is taken into account.  The adjustment used in this example 
involves assumptions about intraclass correlations that may not be exactly correct.  It 
should be viewed more as a sensitivity analysis than as a sharp estimate of actual 
significance values.  (For example, if the value of ρS was decreased to ρS = 0.25, the 
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adjusted t-test would yield a p-value less than 0.05.)  However the assumptions made in 
this example are likely to be more plausible than the assumption that ρS = ρC = 0 that 
corresponds to the idea that clustering can be safely ignored. 
 This example also illustrates that when the sampling design in an experiment 
involves a three stage sample with two levels of clustering (nesting), such as sampling 
students by first selecting schools, then classrooms within schools, then students within 
classrooms, it is important to include all of the levels of nesting in adjustments for 
clustering.  If we had ignored the clustering at the classroom level (or equivalently 
assumed that ρC = 0) and continued to assume that ρS = 0.264, then we would have 
calculated a value of cU = 0.371 and an adjusted t-statistic of tAU = 2.372 with h = 165.87 
degrees of freedom and a p-value of p = 0.019.  Thus we would have concluded that that 
the treatment effect was still reliably different from zero, even after adjusting for 
clustering at the school level. 

Power Considerations 
 In evaluating any statistical test, it is useful to know its power relative to 
alternative tests that might be used.  The corrected t-test presented in this paper is likely 
to be used in situations where there is no obvious alternative (that is in situations where 
only a data summary such as a t-statistic computed ignoring clustering is available).  Yet 
it is still useful to know something about the power of this test compared with that of the 
alternatives that could be used if more data were available.   
 Two alternatives that require more information than the test given here, but which 
may be computed without complete reanalysis of the data, are a t-test performed on 
cluster (school) means (that is using the school as the unit of analysis) and a generalized 
least squares (GLS) analysis computed using known values of ρS and ρC to parameterize 
the error covariance matrix.   Blair and Higgins (1986) give the two level version of the 
test based on GLS, but its extension to three levels is straightforward.   These two tests 
provide useful standards of comparison because the test based on cluster (school) means 
is the most powerful exact test when both ρS  and ρC are unknown, while the test based on 
generalized least squares is the most powerful exact test when both ρS and ρC are known.   
 When the null hypothesis is false (and the design is balanced), the test statistic 
used in all three analyses (the one based on the results in this paper, and the two 
alternatives requiring more data) have noncentral t-distributions with the same 
noncentrality parameter, 

 1
1 1 1

T C

T S

N μ - μλ
σ pn n
•• ••=

+ − + −

% ( )
( ) ( ) Cρ ρ

,    (23) 

but different degrees of freedom [(N – 2), h, or (M – 2), respectively].  Because the power 
is an increasing function of degrees of freedom for a fixed noncentrality parameter the 
relative power of these three tests is therefore determined by the degrees of freedom.  
Because the analysis based on generalized least squares has (N – 2) degrees of freedom 
and (N – 2) ≥ h ≥ (M – 2), it will provide the most powerful test if ρ is known and the raw 
data are available.  Because the analysis based on school means has (M – 2) degrees of 
freedom and (M – 2) ≤ h ≤ (N – 2), it should always provide the least powerful of the 
three tests.  Because the test based on tA has h degrees of freedom, it should have power 
in between the other two tests.  However, because the dependence of the power function 
on degrees of freedom for a fixed noncentrality parameter) is slight when degrees of 
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freedom are 30 or more, the difference in the power of these three tests need not be 
substantial.   

Table 4 gives the power of each of the three tests in some illustrative situations 
when μ●●T – μ●●C = 1.0σT, and the last column is the ratio of the power of the test 
proposed here to that of the test based on generalized least squares.  This table illustrates 
that when the number of clusters is small, the adjusted t-test is considerably more 
powerful than the test using cluster means as the unit of analysis, but the power 
advantage decreases as the number of clusters increases.  However it is important to 
remember that the test based on cluster means is the most powerful test if ρS and ρC are 
unknown.  That is, the power advantage of the GLS test and the adjusted t-test depends 
on having known values of ρS and ρC.  While the adjusted t-test is slightly less powerful 
than the GLS test, it is very nearly as powerful.   

Conclusions 
 Cluster randomized trials are important in education and the social and policy 
sciences, but these trials are often improperly analyzed by ignoring the effects of 
clustering on significance tests.  It is obviously desirable that these trials should be 
analyzed using more appropriate statistical methods (such as multilevel statistical 
methods).  However, when conclusions must be drawn from published reports (using t- or 
F-tests that ignore clustering), corrected significance levels and confidence intervals can 
be obtained if the intraclass correlations are known or plausible values can be imputed.  
Such procedures provide reasonably accurate significance levels and are suitable for 
bounds on the results.   
 The theory given in this paper can also be used to study alternative suggestions 
for adjusting t-tests for clustering.  Such analyses show that a test based on Kish’s 
statistic tK gives quite conservative results when critical values are obtained using degrees 
of freedom based strictly on the number of clusters.  A test based on tK has rejection rates 
that are generally close to nominal (but not always strictly conservative) when critical 
values are obtained using degrees of freedom adjusted for the design effect involving 
both levels of clustering.   

When using the adjustments to test statistics given in this paper, it is important to 
adjust for both levels of clustering.  Ignoring one of the levels of nesting (clustering) in 
computing the adjusted t-statistic or tK can result in substantial inflation of significance 
levels.   
 This paper considered only the simplest analyses for treatment effects under a 
sampling model with two levels of nesting.  Educational experiments sometimes involve 
the use of covariates at one or more levels of the design to increase precision.  The 
generalization of the methods used in this paper to more complex designs and more 
complex analyses would be desirable to provide methods for dealing with such cases. 
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 Appendix 
 
Derivations with the Equal Cluster and Subcluster Sample Sizes 
 Under the model the sampling distribution of the numerator of (8) is normal with 
mean ( T CN )μ - μ•• ••

% and variance σW
2 + pnσBS

2 + nσBC
2

 = σT
2[1 + (pn – 1)ρS + (n – 1)ρC].  

The square of the denominator of (8), can be written as 

 2

2
SSBS SSBC SSWCS

N
+ +

=
−

,       (24) 

where SSBS is the pooled sum of squares between cluster (school) means within 
treatment groups, SSBC is the pooled sum of squares between subcluster (classroom) 
means within schools and treatment groups, and SSWC is the pooled sum of squares 
within subclusters (classrooms).  Therefore SSWC/σWC

2 has the chi-squared distribution 
with (N – Mp) degrees of freedom, where M = mT + mC.  Similarly 

 2
WC BC

SSBC
n 2σ σ+

         (25) 

has the chi-squared distribution with (Mp – M) degrees of freedom and  

 2 2
WC BC BS

SSBS
n pn 2σ σ σ+ +

        (26) 

has the chi-squared distribution with (M – 2) degrees of freedom. 
 Thus S2 is a linear combination of independent chi-squares.  To obtain the 
sampling distribution of S2, we use a result of Box (1954), which gives the sampling 
distribution of quadratic forms in normal variables in terms of the first two cumulants of 
the quadratic form. Theorem 3.1 in Box (1954) implies that S2 is distributed to an 
excellent approximation as a constant g times chi-square with h degrees of freedom, 
where g and h are given by 
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where E{X} and V{X} are the expected value and the variance of X.  Therefore we have 
that S2/gh = S2/E{S2} is distributed as a chi-square with h degrees of freedom divided by 
h. 
 By the definition of the noncentral t-distribution (see, e.g., Johnson and Kotz, 
1970), it follows that  
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has the noncentral t-distribution with h degrees of freedom and noncentrality parameter 
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where c is given by  
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and h is given by (28).  When μT – μC = 0 (and therefore λ = 0), the distribution is a 
central t-distribution with h degrees of freedom.   
 It follows from (24), and standard theory for expected mean squares in 
hierarchical designs (see, e.g., Kirk, 1995) that 
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where N
)

= (N – 2pn), = (N – 2n), andN
(

ρ = 1 – ρS – ρC.  Inserting these values for the 
mean and variance of S2 into (27) and (28), using the fact that ρSσT

2 = σBS
2, ρCσT

2 = σBC
2 

and (1 – ρS – ρC)σT
2 = σWC

2, and simplifying gives the values we obtain for c given in (10) 
and h given in (9). 
Unequal Cluster Sample Sizes 
 When cluster sample sizes are unequal but samples sizes in subclasses are equal, 
expressions for the expressions for the constant c and degrees of freedom h are more 
complex.  A direct argument leads to 
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where Up%  is defined in (17).  Therefore the sampling distribution of the numerator of (8) 

is normal with mean T CN μ - μ•• ••
% ( )and variance σW

2 + σn% B
2 = σT

2[1 + ( Up n%  – 1)ρS +(n -
1)ρC].   
 The expected value and variance of S2 can be calculated from the analysis of 
variance between clusters, between subclusters, and within clusters within the treatment 
groups.  When cluster sample sizes are unequal, the sums of squares are still independent, 
and the within cluster sum of squares has a chi-square distribution, but if ρS ≠ 1, the 
between cluster sum of squares does not have a chi-square distribution.  However 
because S2 is a quadratic form, Box’s theorem can be used to obtain the distribution of S2.   

To obtain the expected value and variance of S2, use the fact that  
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2

T C T C TSSBS SSBS SSBC SSBC SSWC SSWCS
N
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where SSBST, SSBCT and SSBST, SSWCT and SSBSC, SSBCC and SSWCC are the sums of 
squares between schools, between classes, and within classes in the treatment and control 
groups, respectively.  When subcluster sample sizes are equal, it is easiest to do this in 
two steps.  Start by computing the sum of squares within schools in the treatment and 
control groups via SSWST = SSBCT + SSWCT and SSWSC = SSBCC + SSWCC.  Because the 
classroom sample sizes are equal, this computation is straightforward and follows exactly 
from results for the two-level model given in Hedges (2007).  Then S2 can be written as 
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 2
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. 

Because SSBST and SSBSC are functions of the school means in the treatment and control 
groups, and they are independent of SSWST and SSWSC, the mean and variance of S2 
follow exactly from the results for the unequal sample size case for the two-level model 
given in Hedges (2007) with clusters of size npi

T or npi
C, respectively. 

 When the subcluster sample sizes are unequal, we compute S2 as 

 2
2

T CSST SSTS
N
+

=
−

, 

where SSTT and SSTC are the sums of squares about the treatment and control group 
means, respectively.  Each treatment group can be viewed as a design with two nested 
factors.  The mean and variance of SSTT and SSTC are calculated separately from results 
on the estimation of variance components in unbalanced designs with two nested factors 
(see, e.g., Searle, 1971, pages 474 – 477).  Specifically, for either group, 
 2 2

3 1ˆ ˆ( 1) ( ) ( )WC BC BSSST N N k N k 2ˆσ σ σ= − + − + − . 

Using results on the variances and covariances of 2 2 2ˆ ˆ ˆ, ,  and WC BC BSσ σ σ (see, e.g., Searle, 
1971, pages 474 – 477), the mean and variance of S2 are obtained from the mean and 
variance of SSTT and SSTC.  Inserting these values for the mean and variance of S2 into 
(29) and (28), and simplifying gives the values we obtain for cU given in (20) and hU 
given in (21). 
 
 



Correcting a significance test for two levels of nesting    20 

References 
Barcikowski, R. S. (1981). Statistical power with group mean as the unit of analysis. 

Journal of Educational Statistics, 6, 267-285. 
Blair, R. C. & Higgins, J. J. (1986). Comment on “Statistical power with group mean as 

the unit of analysis.” Journal of Educational Statistics, 11, 161-169. 
Blitstein, J. L., Hannan, P. J., Murray, D. M., & Shadish, W. R. (2005). Increasing 

degrees of freedom in existing group randomized trials through the use of external 
estimates of intraclass correlation: The df* approach. Evaluation Review, 29, 241-
267. 

Blitstein, J. L., Murray, D. M., Hannan, P. J., & Shadish, W. R. (2005). Increasing 
degrees of freedom in future group randomized trials through the use of external 
estimates of intraclass correlation: The df* approach. Evaluation Review, 29, 268-
286. 

Box, G. E. P. (1954). Some theorems on quadratic forms applied to the study of analysis 
of variance problems, I. Effect of inequality of variance in the one-way 
classification. Annals of Mathematical Statistics, 25, 290-302. 

Donner, A. & Klar, N. (2000). Design and analysis of cluster randomization trials in 
health research. London: Arnold. 

Donner, A. & Koval, J.J. (1982). Design considerations in the estimation of intraclass 
correlations. Annals of Human Genetics, 46, 271-277. 

Gaylord, D. W. & Hopper, F. N. (1969). Estimating degrees of freedom for linear 
combinations of mean squares by Satterthwaite’s formula. Technometrics, 11, 
691-706. 

Geisser, S. & Greenhouse, S. W. (1958).  An extension of Box’s results on the use of the 
F distribution in multivariate analysis. Annals of Mathematical Statistics, 29, 885-
891. 

Guilliford, M. C., Ukoumunne, O. C., & Chinn, S. (1999). Components of variance and 
intraclass correlations for the design of community-based surveys and 
intervention studies. Data from the Health Survey for England 1994. American 
Journal of Epidemiology, 149, 876-883. 

Hannan, P. J., Murray, D. M., Jacobs, D. R., & McGovern, P. G. (1994). Parameters to 
aid in the design and analysis of community trials: Intraclass correlations from the 
Minnesota heart health program. Epidemiology, 5, 88-95. 

Hedges, L. V. & Hedberg, E. C. (2007). Intraclass correlation values for planning group 
randomized experiments in education. Educational Evaluation and Policy 
Analysis, 29, 60-87. 

Hedges, L. V. (2007). Correcting a significance test for clustering. Journal of 
Educational and Behavioral Statistics, 32, 151-179. 

Hopkins, K. D. (1982). The unit of analysis: Group means versus individual observations. 
American Educational Research Journal, 19, 5-18. 

Johnson, N. L. & Kotz, S. (1970). Distributions in statistics-Continuous univariate 
distributions-2.  New York: John Wiley. 

Kirk, R. (1995). Experimental design. Belmont, CA: Brooks Cole. 
Klar, N. & Donner, A. (2001). Current and future challenges in the design and analysis of 

cluster randomization trials. Statistics in Medicine, 20, 3729-3740. 
Kish, L. (1965). Survey sampling. New York: John Wiley. 



Correcting a significance test for two levels of nesting    21 

 
Murray, D. M. (1998). Design and analysis of group-randomized trials. New York: 

Oxford University Press. 
Murray, D. M. & Blitstein, J. L. (2003). Methods to reduce the impact of intraclass 

correlation in group-randomized trials, Evaluation Review, 27, 79-103. 
Murray, D. M., Hannan, P. J., & Baker, W. L. (1996). A Monte Carlo study of alternative 

responses to intraclass correlation in community trials. Evaluation Review, 20, 
313-337. 

Murray, D. M., Varnell, S. P., & Blitstein, J. L. (2004). Design and analysis of group-
randomized trials: A review of recent methodological developments. American 
Journal of Public Health, 94, 423-432. 

Raudenbush, S. W. & Bryk, A. S. (2002). Hierarchical linear models. Thousand Oaks, 
CA: Sage Publications. 

Ridgeway, J. E., Zawgewski, J. S., Hoover, M. N., & Lambdin, D. V. (2002). Student 
attainment in connected mathematics curriculum. Pages 193-224 in S. L. Senk & 
D. R. Thompson (Eds.) Standards-based school mathematics curricula: What are 
they? What do students learn? Mahwah, NJ: Erlbaum. 

Searle, S. R., Casella, G., & McCulloch, C. E. (1992). Variance components. New York: 
John Wiley. 

Skinner, C. J., Holt, D. & Smith, T. M. F. (1989). The analysis of complex surveys. New 
York: Wiley. 

Verma, V. & Lee, T. (1996). An analysis of sampling errors for demographic and health 
surveys.  International Statistical Review, 64, 265-294. 

Welch, B. L. (1949). Further notes on Mrs. Aspin’s tables and on certain approximations 
to the tabled function. Biometrika, 36, 293-296. 

Welch, B. L. (1956). On linear combinations of several variances. Journal of the 
American Statistical Association, 51, 132-148. 



Correcting a significance test for two levels of nesting    22 

Table 1 
 

           
Theoretical 

Results  Empirical Results 

m p Na ρs ρc  
Rejection Rate 

From Equation 12

Empirical 
Rejection 

Rate Empirical SEb

2 2 200 0.0008 0.0002 0.055 0.059 0.004
2 2 200 0.0400 0.0100 0.277 0.282 0.008

          
2 8 800 0.0008 0.0002 0.069 0.069 0.004
2 8 800 0.0400 0.0100 0.522 0.516 0.009

          
8 2 800 0.0008 0.0002 0.055 0.062 0.004
8 2 800 0.0400 0.0100 0.274 0.276 0.008

 
Note: Empirical results are from the first three rows of Table 1 in Murray, Hannan, and 

Baker (1996). 
a. n = 25 in this table 
b. 1 3200( ) /SE p p= −



Table 2 
The actual significance level of four nominal significance level α = 0.05 significance tests: the naïve test (ignoring clustering) and tests 
using tK computed from critical values based on (N – 2), (N – 2)/DEFa, and (M – 2) degrees of freedom 
 
               Naïve Test  tK with N – 2 df  tK with (N – 2)/DEF df  tK with M – 2 df

m p n N  DEFa h N – 2 Actual p tA/tK Actual p (N – 2) /DEF Actual p M – 2 Actual p
ρS = 0.25 ρC = 0.15                

2 2 30 240  20.1 40.1  238 0.690 0.9250 0.076 11.8 0.048 2 <.001
5 2 30 600  20.1 84.7  598 0.673 0.9709 0.060 29.8 0.050 8 0.028

10 2 30 1200  20.1 163.8  1198 0.667 0.9856 0.055 59.6 0.050 18 0.040
20 2 30 2400  20.1 323.2  2398 0.665 0.9928 0.052 119.3 0.050 38 0.045

                   
2 3 30 360  27.6 50.0  358 0.731 0.9285 0.074 13.0 0.048 2 <.001
5 3 30 900  27.6 103.0  898 0.718 0.9721 0.059 32.5 0.050 8 0.027

10 3 30 1800  27.6 198.0  1798 0.713 0.9862 0.055 65.1 0.050 18 0.040
20 3 30 3600  27.6 389.3  3598 0.711 0.9931 0.052 130.4 0.050 38 0.045

                   
2 5 30 600  42.6 62.3  598 0.781 0.9313 0.072 14.0 0.050 2 <.001
5 5 30 1500  42.6 124.5  1498 0.771 0.9732 0.059 35.2 0.050 8 0.027

10 5 30 3000  42.6 237.4  2998 0.767 0.9867 0.054 70.4 0.050 18 0.039
20 5 30 6000  42.6 465.2  5998 0.766 0.9934 0.052 140.8 0.050 38 0.045

ρS = 0.25 ρC = 0.25                
2 2 30 240  23 27.4  238 0.714 0.9184 0.082 10.3 0.051 2 0.001
5 2 30 600  23 61.2  598 0.695 0.9684 0.062 26.0 0.051 8 0.029

10 2 30 1200  23 120.1  1198 0.689 0.9843 0.056 52.1 0.051 18 0.041
20 2 30 2400  23 238.4  2398 0.686 0.9922 0.053 104.3 0.050 38 0.046
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2 3 30 360  30.5 36.3  358 0.747 0.9241 0.077 11.7 0.049 2 <.001
5 3 30 900  30.5 78.7  898 0.732 0.9705 0.061 29.4 0.051 8 0.028

10 3 30 1800  30.5 153.2  1798 0.727 0.9854 0.055 59.0 0.050 18 0.040
20 3 30 3600  30.5 303.0  3598 0.725 0.9927 0.053 118.0 0.050 38 0.045

                   
2 5 30 600  45.5 48.8  598 0.789 0.9287 0.074 13.1 0.050 2 <.001
5 5 30 1500  45.5 101.9  1498 0.779 0.9722 0.059 32.9 0.050 8 0.027

10 5 30 3000  45.5 196.3  2998 0.775 0.9862 0.055 65.9 0.050 18 0.040
20 5 30 6000  45.5 386.4  5998 0.773 0.9931 0.052 131.8 0.050 38 0.045

ρS = 0.15 ρC = 0.25                
2 2 30 240  17.1 45.5  238 0.660 0.9455 0.069 13.9 0.047 2 <.001
5 2 30 600  17.1 99.9  598 0.645 0.9787 0.057 35.0 0.049 8 0.026

10 2 30 1200  17.1 194.3  1198 0.640 0.9894 0.054 70.1 0.050 18 0.039
20 2 30 2400  17.1 384.1  2398 0.638 0.9947 0.052 140.2 0.050 38 0.045

                   
2 3 30 360  21.6 63.4  358 0.692 0.9510 0.066 16.6 0.048 2 <.001
5 3 30 900  21.6 137.0  898 0.681 0.9807 0.056 41.6 0.050 8 0.025

10 3 30 1800  21.6 264.9  1798 0.677 0.9904 0.053 83.2 0.050 18 0.038
20 3 30 3600  21.6 522.1  3598 0.675 0.9952 0.052 166.6 0.050 38 0.044

                   
2 5 30 600  30.6 92.7  598 0.737 0.9553 0.064 19.5 0.049 2 <.001
5 5 30 1500  30.6 194.6  1498 0.729 0.9824 0.055 49.0 0.050 8 0.025

10 5 30 3000  30.6 373.1  2998 0.726 0.9912 0.053 98.0 0.050 18 0.038
20 5 30 6000   30.6 732.2  5998 0.724 0.9956 0.051 196.0 0.050 38 0.044

a. DEF is Kish’s design effect, DEF = [1 + (pn – 1)ρs + (n – 1)ρc ]. 



Table 3 
Auxiliary constants for computing the adjusted test statistic and its degrees of freedom 
when subcluster sample sizes are unequal 
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Note: The superscripts T and C for treatment and control group are omitted, but each of 
these constants must be computed within each treatment group to obtain the ki

T used in 
(20) and (21). 
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Table 4 
Power of the Adjusted t-test Based on tA, GLS, and the Test Based on Cluster Means, 
along with the Ratio of the Power of the Adjusted Test to that Based on GLS when  
μ●●T – μ●●C = 1.0σT
 

      GLS Test  Test based on tA  
Test Based on 
Cluster means   Power

m p N Power df Power df Power df  Ratio
ρS = 0.25, ρC = 0.15         

2 2 160 0.399 158  0.388 41.9  0.176 2  0.97
2 3 240 0.432 238  0.422 50.9  0.188 2  0.98
2 5 400 0.462 398  0.453 62.3  0.198 2  0.98
3 2 240 0.552 238  0.541 54.5  0.363 4  0.98
3 3 360 0.592 358  0.582 66.0  0.391 4  0.98
3 5 600 0.628 598  0.619 80.2  0.417 4  0.99
5 2 400 0.772 398  0.764 83.3  0.662 8  0.99
5 3 600 0.809 598  0.803 101.0  0.702 8  0.99
5 5 1000 0.840 998  0.835 122.2  0.736 8  0.99

ρS = 0.25, ρC = 0.25         
2 2 160 0.358 158  0.344 32.1  0.161 2  0.96
2 3 240 0.399 238  0.386 39.9  0.176 2  0.97
2 5 400 0.439 398  0.427 51.2  0.190 2  0.97
3 2 240 0.500 238  0.485 41.6  0.327 4  0.97
3 3 360 0.552 358  0.539 52.2  0.362 4  0.98
3 5 600 0.600 598  0.589 66.7  0.396 4  0.98
5 2 400 0.717 398  0.706 63.3  0.606 8  0.98
5 3 600 0.771 598  0.762 80.0  0.660 8  0.99
5 5 1000 0.816 998  0.809 102.2  0.709 8  0.99

ρS = 0.15, ρC = 0.25         
2 2 160 0.454 158  0.445 50.8  0.197 2  0.98
2 3 240 0.524 238  0.515 66.7  0.222 2  0.98
2 5 400 0.594 398  0.587 93.6  0.250 2  0.99
3 2 240 0.620 238  0.611 66.0  0.412 4  0.99
3 3 360 0.697 358  0.690 88.1  0.472 4  0.99
3 5 600 0.769 598  0.763 123.7  0.535 4  0.99
5 2 400 0.834 398  0.828 100.2  0.730 8  0.99
5 3 600 0.893 598  0.889 134.9  0.801 8  1.00
5 5 1000 0.936 998  0.934 189.7  0.861 8   1.00

Note: n = 20. 




