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Abstract 

Research designs involving cluster randomization are becoming increasingly important in 

educational and behavioral research.  Many of these designs involve two levels of 

clustering or nesting (students within classes and classes within schools).  Researchers 

would like to compute effect size indexes based on the standardized mean difference to 

compare the results of cluster randomized studies with other studies and to combine 

information across studies in meta-analyses.  This paper addresses the problem of 

defining effect sizes in designs with two levels of clustering and computing estimates of 

those effect sizes and their standard errors from information that is likely to be reported 

in journal articles.  Five effect sizes are defined corresponding to different 

standardizations.   Estimators of each effect size index are also presented along with their 

sampling distributions (including standard errors). 
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Effect Sizes in Three Level Cluster Randomized Experiments 
 

Educational experiments or quasi-experiments used to evaluate the effects of 
educational interventions, products or technologies often involve several sites (typically 
schools).  One common design assigns entire schools to the same treatment group, with 
different schools assigned to different treatments.  This design is often called a cluster 
randomized design because schools correspond to statistical clusters.  Several analysis 
strategies for cluster randomized trials such as this are possible, including analyses of 
variance using clusters as a nested factor (see, e.g., Hopkins, 1982) and analyses 
involving hierarchical linear models (see e.g., Raudenbush and Bryk, 2002).  For general 
discussions of the design and analyses of cluster randomized experiments see 
Raudenbush and Bryk (2002), Donner and Klar (2000), Klar and Donner (2001), Murray 
(1998), or Murray, Varnell, & Blitstein (2004).   

Problems of representation of the results of cluster randomized trials (and the 
corresponding quasi-experiments) in the form of effect sizes and combining them across 
studies in meta-analyses have received less attention.  Rooney and Murray (1996) called 
attention to the problem of effect size estimation for meta-analysis involving cluster 
randomized trials.  They suggested that conventional estimates were not appropriate and 
noted that formulas for standard errors that assumed simple random sampling (rather than 
clustered sampling) were incorrect.  Donner and Klar (2002) suggested that corrections 
for the effects of clustering should be introduced in meta-analyses of cluster randomized 
experiments.  Hedges (in press) suggested definitions of several effect size parameters in 
cluster randomized experiments with one level of clustering or nesting (so called two-
level designs) and gave their sampling distributions.  Each of these papers cited above 
examined meta-analysis for studies using only one level of clustering (that is, two level 
designs).    

The admittedly limited work on the effects of clustering on estimates of effect 
size and their combination in meta-analysis appears to have had little impact on the 
practice of meta-analysis.  Laopaiboon (2003) reviewed the methods used in 25 published 
meta-analyses involving cluster randomized experiments, and found that only 3 used 
methods to account for clustering in their analysis.  All of these three were meta-analyses 
of health care studies using binary outcomes.  Of the six meta-analyses involving 
education, none used methods that addressed the impact of clustering. 

The work reported in this paper was stimulated by problems faced by the US 
Department of Education’s What Works Clearinghouse, whose mission is to evaluate, 
compare, and synthesize evidence of effectiveness of educational programs, products, 
practices, and policies.  The What Works Clearinghouse reviewers found that the 
majority of the high quality studies they were examining involved assignment of 
treatment by schools, which led to clustering that needed to be taken into account in 
computing an estimate of effect size and its uncertainty.  While some of these studies 
involved only one classroom per school, others involved multiple classrooms per school 
and thus the studies have three level designs involving a second level of clustering that 
may need to be taken into account.   

While methods have now been developed for computing effect size estimates and 
their sampling properties in two level designs (e.g., Hedges, in press), less is known 
about methods for taking into account the two levels of clustering that are present in three 
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level designs.  Three level designs are widespread in education (e.g., designs that assign 
schools with multiple classrooms within schools to treatments).  Such methods are likely 
to have wide application in education for two reasons.  The first reason is the increasing 
prevalence of educational experiments that assign treatments to schools in order to avoid 
cross contamination of different treatments within the same school.  The second reason is 
the practical fact that, since students are nested within classrooms and classrooms are 
nested within schools, it is easier to sample students by using a multistage sampling plan 
that first sampling schools and then classrooms.   

This paper has two purposes.  One is to examine the problem of defining effect 
sizes for cluster randomized experiments with two levels of clustering or nesting (so-
called three-level designs). The second is to examine how to estimate these effect sizes 
and obtain standard errors for them from statistics that are typically given in reports of 
research (that is, without a reanalysis of the raw data).   

Although we use the terms “schools” and “classrooms” to characterize the stages 
of clustering, this is merely a matter of convenient and readily understandable 
terminology.  The results of this paper apply equally well to any situation in which there 
is a two-stage sampling design [where individual units are sampled by first sampling 
clusters (e.g., schools) and then sampling subclusters (e.g., classrooms) within the 
clusters, and finally sampling individual units (e.g., students) within the subclusters] but 
treatments are assigned to clusters (e.g., schools).  

Model and Notation 
Let Yijk

T (i = 1, …, mT;  j = 1, …, pi
T; k = 1, …, nij

T) and Yijk
C (i = 1, …, mC; j = 1, 

…, pi
C; k = 1, …, nij

C) be the kth observation in the jth classroom in the ith school in the 
treatment and control groups respectively.  Thus, in the treatment group, there are mT 
schools, the ith school has pi

T classrooms, and the jth classroom in the ith school has nij
T 

observations.  Similarly, in the control group, there are mC schools, the ith school has pi
C 

classrooms, and the jth classroom in the ith school has nij
C observations.  Thus there is a 

total of M = mT + mC schools, a total of 

1 1

T Cm mT C
i i

i i
P p p

= =
= +∑ ∑  

classrooms, and a total of  

  
1 1 1 1

T CT C
i ip pm mT C T

ij ij
i j i j

N N N n n
= = = =

= + = +∑ ∑ ∑ ∑ C

observations overall. 
 Let T

iY •• (i = 1, …, mT) and C
iY •• (i = 1, …, mC) be the means of the ith school in the 

treatment and control groups, respectively, let T
ijY • (i = 1, …, mT;  j = 1, …, k) and C

ijY • (i = 
1, …, mC;  j = 1, …, k) be the means of the jth class in the ith school in the treatment and 
control groups, respectively, and let TY••• and CY•••  be the overall means in the treatment 
and control groups, respectively.  Define the (pooled) within treatment groups variance 
SWT

2 via 
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2 2

1 1 1 1 1 12
( ) ( )

2

T CT CT Cij iji in np pm mT T C C
ijk ijk

i j k i j k
WT

Y Y Y Y
S

N

••• •••
= = = = = =

− + −

=
−

∑ ∑ ∑ ∑ ∑ ∑
,   (1) 

the pooled within-schools variance SWS
2 via 

 

2 2

1 1 1 1 1 12
( ) ( )

T CT CT Cij iji in np pm mT T C C
ijk i ijk i

i j k i j k
WS

Y Y Y Y
S

N M

•• •
= = = = = =

− + −

=
−

∑ ∑ ∑ ∑ ∑ ∑ •

,   (2) 

and the (pooled) within-classroom sample variance SWC
2 via 

2 2

1 1 1 1 1 12
( ) ( )

T CT CT Cij iji in np pm mT T C C
ijk ij ijk ij

i j k i j k
WC

Y Y Y Y
S

N P

• •
= = = = = =

− + −

=
−

∑ ∑ ∑ ∑ ∑ ∑
.   (3) 

Define the between schools but within treatment groups variance SBS
2 via 

2 2

1 12
2

T Cm mT T C C
i i

j j
BS

(Y Y ) (Y Y )
S

M

•• ••• •• •••
= =

− + −

=
−

∑ ∑
,    (4) 

and the (pooled) between classrooms but within treatment groups and schools variance 
SBC

2 via 

 

2 2

1 1 1 12
( ) ( )

T CT C
i ip pm mT T C C

ij i ij i
i j i j

BC

Y Y Y Y
S

P M

• •• • ••
= = = =

− + −

=
−

∑ ∑ ∑ ∑
.    (5) 

Suppose that observations within the jth classroom in the ith school within the 
treatment and control group groups are normally distributed about classroom means μij

T 
and μij

C with a common within-cluster variance σWC
2. That is 

2( ,T T
ijk ij WCY N μ� σ )

)

)

)

)BS

, i =1, …, mT;  j = 1, …, pi
T; k = 1, …, nij

T

and 
2( ,C C

ijk ij WCY N μ σ� , i =1, …, mC; j = 1, …, pi
C; k = 1, …, nij

C. 
Suppose further that the classroom means are random effects (for example they are 
considered a sample from a population of means) so that the class means themselves have 
a normal distribution about the school means μi●

T and μi●
C and common variance σBC

2.  
That is  

2( ,T T
ij i BCμ N μ σ•� , i = 1, …, mT; j = 1, ..., pi

T

and 
2( ,C C

ij i BCμ N μ σ•� , i = 1, …, mC; j = 1, ..., pi
C. 

Finally suppose that the school means μi●
T and μi●

C are also normally distributed about 
the treatment and control group means μ●●T and μ●●C with common variance σBS

2.  That is  
2( ,T T

iμ N μ σ• ••� , i = 1, …, mT

and 
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2( ,C C
iμ N μ σ• ••� )BS , i = 1, …, mC. 

Note that in this formulation, σBC
2 represents true variation of the population means of 

classrooms over and above the variation in sample means that would be expected from 
variation in the sampling of observations into classroom.  Similarly, σBS

2 represents the 
true variation in school means, over and above the variation in sample means that would 
be expected from variation dues to the sampling of observations into schools.   

These assumptions correspond to the usual assumptions that would be made in the 
analysis of a multi-site trial by a three-level hierarchical linear models analysis, an 
analysis of variance (with treatment as a fixed effect and schools and classrooms as 
nested random effects), or a t-test using the school means in treatment and control group 
as the unit of analysis. 
Intraclass Correlations 
 In principle there are several different within-treatment group variances in a three-
level design.  We have already defined the within-classroom, between-classroom, and 
between-school, variances σWC

2, σBC
2, and σBS

2.  There is also the total variance within 
treatment groups σWT

2 defined via 
 . 2 2 2 2

WT BS BC WCσ σ σ σ= + +
In most educational achievement data when clusters are schools and classrooms, σBS

2 and 
σBC

2 are considerably smaller than σWC
2. Obviously, if the between school and classroom 

variances σBS
2 and σBC

2 are small, then σWT
2 will be very similar to σWC

2. 
 In two-level models (e.g., those with schools and students as levels), the relation 
between variances associated with the two levels is characterized by an index called the 
intraclass correlation.  In three-level models, two indices are necessary to characterize the 
relationship between these variances, and they are generalizations of the intraclass 
correlation.  Define the school-level intraclass correlation ρS by 

 
2 2

2 2 2 2
BS BS

S
BS BC WC WT

ρ σ σ
σ σ σ σ

=
+ +

= .      (6) 

Similarly, define the classroom level intraclass correlation ρC by 

 
2 2

2 2 2 2
BC BC

C
BS BC WC WT

ρ σ σ
σ σ σ σ

=
+ +

= .      (7) 

These intraclass correlations can be used to obtain one of these variances from any of the 
others, since σBS

2 =  ρSσWT
2, σBC

2 =  ρCσWT
2, and σWC

2 = (1 – ρS – ρC)σWT
2. 

Effect Sizes 
The effect sizes typically used in educational and psychological research are 

standardized mean differences, defined as the ratio of a difference between treatment and 
control group means to a standard deviation (see, e.g., Hedges, 1981).  Effect sizes 
represent the magnitude of treatment effects in a metric that is intended to be 
interpretable in the same way across different studies and thus facilitates comparability 
and synthesis of experimental findings across studies.  For this reason, effect sizes have 
been mandated in reports of educational and psychological research by both the 
American Psychological Association and the American Educational Research 
Association. 
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In single level designs the notion of standardized mean difference is often 
unambiguous: There is only one possibility because there is only one within-treatment-
groups standard deviation.  In multi-site designs and multi-level designs such as cluster 
randomized trials, there are several possible standardized mean differences.  The 
possibilities in two level designs were discussed by Hedges (in press).  In this section we 
clarify the possible effect size definitions in three-level designs. 

The alternative possibilities for the standard deviation lead to different possible 
definitions for the population effect size in three-level designs.  The choice of one of 
these effect sizes should be determined on the basis of the inference of interest to the 
researcher.  If the effect size measures are to be used in meta-analysis, an important 
inference goal may be to estimate parameters that are comparable with those that can be 
estimated in other studies.  In such cases, the standard deviation may be chosen to be the 
same kind of standard deviation used in other studies to which this study will be 
compared.  We focus on three effect sizes that seem likely to be the most useful (meaning 
the most widely used), but indicate two others that may be useful in some circumstances. 
 One effect size standardizes the mean difference by the total standard deviation 
within-treatment groups.  It is of the form 

 
T C

WT
WT

μ μδ
σ
•• ••−

= .        (8) 

The effect size δWT might be of interest in a meta-analysis where the other studies have 
three-level designs involving multiple schools and classrooms or studies that sample from 
a broader population but do not include schools or classes as clusters in the sampling 
design (this would typically imply that they used an individual, rather than a cluster, 
assignment strategy).  In such cases, δWT might be the effect size that is most comparable 
with the effect sizes in other studies. 
 If σBC

2 + σWC
2 ≠ 0 (and hence ρS ≠ 1), a second effect size can be defined that 

standardizes the mean difference by the standard deviation within-schools.  It is of the 
form 

 
2 2 1

T C
WT

WS
SBC WC

δμ μδ
ρ

•• ••−
= =

−+σ σ
.      (9) 

The effect size δWS might be of interest in a situation where most of the studies of interest 
had two level designs involving multiple schools.  In such studies δWS may (implicitly or 
explicitly) be the effect size estimated and hence be most comparable with the effect size 
estimates of the other studies. 
 If σWC ≠ 0 (and hence ρS + ρC ≠ 1), a third effect size can be defined that 
standardizes the mean difference by the within-classroom standard deviation.  It has the 
form 

 
1

1 1

T C
WS SWT

WC
WC S C S C

δ ρδμ μδ
ρ ρ ρ

•• •• −−
= = =

− − − −σ ρ
.    (10) 

The effect size δWC might be of interest, for example, in a meta-analysis where the other 
studies to which the current study is compared are typically studies with a single school.  
In such studies δWC may (implicitly) be the effect size estimated and hence δWC might be 
the effect size most comparable with the effect size estimates in other studies. 
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 Two other effect sizes that standardize the mean difference by between classroom 
and between school standard deviations may be of interest (although less frequently).  If 
σBS ≠ 0 (and hence ρS ≠ 0), a fourth possible effect size would be 

 
T C

WT
BS

BS S

δμ μδ
ρ

•• ••−
= =

σ
.       (11) 

The effect size δBS may also be of interest in a meta-analysis where the studies being 
compared are typically multi-level studies that have been analyzed by using school means 
as the unit of analysis. This effect size is less likely to be of general interest, but it might 
be of interest in cases where the outcome variable on which the treatment effect is 
defined is conceptually at the level of schools and the individual observations are of 
interest only because the average defines an aggregate property.   

For example, Bryk and Schneider (2000) study the level of school trust as an 
important predictor of school functioning.  Trust level in a school is measured as an 
aggregate of reported trust scores of individual students or teachers, but only the school 
means are meaningful as measures of trust as a property of the school.  Thus an 
intervention that was targeted at increasing school trust might well measure trust in a 
school as the mean of trust scores across students, and evaluate the treatment effect as the 
difference in means between all students in schools assigned to the treatment group and 
those in schools assigned to the control group.  In this case, only σBS represents a standard 
deviation of a meaningful aggregate (school average trust), while σBC and σWC do not, and 
therefore only δBS seems conceptually meaningful as an effect size. 

If σBC ≠ 0 (and hence ρC ≠ 0), a fifth possible effect size would be 

 
T C

WT
BC

BC C

δμ μδ
ρ

•• ••−
= =

σ
.       (12) 

The effect size δBC may also be of interest in a meta-analysis where the studies being 
compared are typically multi-level studies that have been analyzed by using classroom 
means as the unit of analysis or the outcome is conceptually defined as a classroom-level 
property. This effect size might be of interest in cases where the outcome variable on 
which the treatment effect is defined conceptually at the level of classrooms and the 
individual observations are of interest only because the classroom average defines an 
aggregate property.   

For example, consider classroom climate as an important determinant of 
instructional effectiveness (see, e.g., Dunkin and Biddle, 1974).  Classroom climate is 
measured as an aggregate of reports by students, but only classroom means are 
meaningful as measures of classroom climate.  An intervention that was intended to 
improve classroom climate might well measure the intervention effect via the difference 
between the means of classrooms assigned to the intervention group and those assigned 
to the control group.  In this case both σBC and σBS represent standard deviations of a 
meaningful aggregate score (while σWC does not).  Therefore either δBS or δBC would be 
conceptually meaningful effect sizes, but δBC might be preferred if many studies were 
carried out within single schools. 

Because ρS and ρC will often be rather small, δWS and δWC will often be similar in 
magnitude to δWT.  For the same reason, δBS and δBC will typically be much larger (in the 
same population) than δWS, δWC, or δWT.  Note also that if all of the effect sizes are defined 
(that is, if 0 < ρS < 1, 0 < ρC < 1, and ρS + ρC < 1), any one of these effect sizes may be 
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obtained algebraically from any of the others, provided ρC and ρS are known.  In 
particular, equations (8) through (11) can be solved for δWT in terms of any of the other 
effect sizes, ρS, and ρC.  These same equations, in turn can be used to define any of the 
five effect sizes in terms of δWT.   

Estimates of Effect Sizes: Equal Sample Sizes 
 In this section we present estimates of the effect sizes and their approximate 
sampling distributions when all of the schools have the same number, p, of classrooms, 
that is when pi

T = p, i = 1, …, mT and pi
C = p, i = 1, …, mC , and all the classroom sample 

sizes are equal to n, that is when nij
T = n, i = 1, …, mT; j = 1, …, p and nij

C = n, i = 1, …, 
mC; j = 1, …, p  In this case NT = npmT , NC = npmC , and N = NT + NC = np(mT + mC) = 
nM.  Derivations and the details of the small sample distribution of the effect size 
estimators are given in the Appendix. 

We present results explicitly for the case of equal school and classroom sample 
sizes for two reasons.  The first reason is that most designs attempt to achieve equal 
sample sizes but specific (realized) school and classroom sample sizes are rarely reported, 
so that the equal sample size formulas will be of most practical use.  The second reason is 
that the results become considerably more complicated when sample sizes are unequal—
sufficiently complicated that it is difficult to obtain much insight from examining the 
formulas in the unequal sample size case.  
Estimation of δWC 

We start with estimation of δWC, which is the most straightforward.  If ρS + ρC ≠ 1, 
then δWC is defined and the estimate 

 
T C

WC
WC

Y Yd
S

••• •••−
=         (13) 

is a consistent estimator of δWC.  The estimator dWC is approximately normally distributed 
about δWC with variance 

 
21 ( 1) ( 1){ }

(1 ) 2( )
S C WC

WC
S C

pn ρ n ρ δV d
mpn ρ ρ N Mp

+ − + −
= +

− − −%
,    (14) 

where  

 
T C

T C
m mm

m m
=

+
% . 

An estimate vWC of the variance of dWC can be computed by substituting the consistent 
estimate dWC for δWC in equation (14) above. 
 The leading term of the variance in equation (14) arises from uncertainty in the 
mean difference.  Note that it is [1 + (pn – 1)ρS + (n – 1)ρC]/(1 – ρS  – ρC)] as large as 
would be expected if there were no clustering in the sample (that is if ρS = ρC = 0).  Thus 
[1 + (pn – 1)ρS + (n – 1)ρC]/(1 – ρS  – ρC)] is a kind of variance inflation factor for the 
variance of the effect size estimate dWC. 
 Note that if either ρS = 0 or ρC = 0, there is no clustering at one level and the three-
level design logically reduces to a two-level design.  If ρS = 0, the expression (13) for dWC 
and expression (14) for its variance reduce to those given in equations (7) and (8) in 
Hedges (in press) for the corresponding effect size estimate (called there dW) and its 
variance in a two-level design with clusters of size n and intraclass correlation ρ = ρC.  
Similarly, if ρC = 0, expressions (13) and (14) reduce to the estimate given in equation (7) 
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and its variance given in equation (8) of Hedges (in press) with cluster size np and 
intraclass correlation ρ = ρS.  If ρS =  ρC = 0 so that there is no clustering by classroom or 
by school, the design is logically equivalent to a one-level design.  In this case the 
expression (13) for dWC and expression (14) for its variance reduce to the usual 
expressions for the standardized mean difference and its variance (see, e.g., Hedges, 
1981). 
Estimation of δWS

If  ρS ≠  1,then δWS is defined and an estimate of δWS can also be obtained from the 
mean difference and SWS if the intraclass correlations ρS and ρC are known or can be 
imputed.  A direct argument shows that a consistent estimator of δWS is 

 ( )
( )( )

1
1 1

1
T C

C
WS

WS S

n ρY Yd
S ρ np

••• •••⎛ ⎞ −−
= −⎜ ⎟⎜ ⎟ − −⎝ ⎠

.     (15) 

The estimate dWS is normally distributed in large samples with variance 

{ } ( )

( ) ( ) ( )

2

22

1 ( 1) ( 1)
1

( 1) 2 1 1

2 1 1 1 ( 1) (1

S C
WS

S

2 2
2 C C
WS

S C

pn ρ n ρV d
mpn ρ

pn ρ n( p )ρρ n ( p )ρδ
M pn ρ pn n ρ ρ

+ − + −
=

−

⎛ ⎞
⎜ ⎟− + − + −

+ ⎜ ⎟⎡ ⎤− − − − − −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

%

)S

 , (16) 

where ρ = (1 – ρS – ρC).  An estimate vWS of the variance of dWS can be computed by 
substituting the consistent estimate dWS for δWS in equation (16) above. 
 The leading term of the variance in equation (16) arises from uncertainty in the 
mean difference.  Note that it is [1 + (pn – 1)ρS + (n – 1)ρC]/(1 – ρS)] as large as would be 
expected if there were no clustering in the sample (that is if ρS = ρC = 0).  Thus the term 
[1 + (pn – 1)ρS + (n – 1)ρC]/(1 – ρS  )] is a kind of variance inflation factor for the 
variance of the effect size estimate dWS. 
 Note that if ρC = 0 so that there is no clustering effect by classrooms, the three 
level design is logically equivalent to a two-level design.  In this case, the expression (15) 
for dWS and expression (16) for its variance reduce to those given in equations (7) and (8) 
in Hedges (in press) for the corresponding effect size estimate (called there dW) and its 
variance in a two-level design with clusters of size pn and intraclass correlation ρ = ρS.  If 
ρS = ρC = 0 so that there is no clustering by classroom or by school, the design is logically 
equivalent to a one-level design.  In this case the expression (15) for dWS and expression 
(16) for its variance reduce to those for the standardized mean difference and its variance 
in a one-level design (see, e.g., Hedges, 1981). 
Estimation of δWT

An estimate of δWT can also be obtained from the mean difference and SWT if the 
intraclass correlations ρS and ρC are known or can be imputed.  A direct argument shows 
that a consistent estimator of δWT is 

 2( 1) 2( 1)1
2

T C
S

WT
WT

pn ρ nY Yd
S N

Cρ••• •••⎛ ⎞ − + −−
= −⎜ ⎟⎜ ⎟ −⎝ ⎠

.    (17) 

 
The estimate dWT is normally distributed in large samples with variance 
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{ }

[ ]
2 2 2

S C

1 ( 1) ( 1)

( 2) 2 2
2( 2) ( 2) 2( 1) 2( 1)

S C
WT

2 S C S C S C
WT

pn ρ n ρV d
mpn

pnNρ nNρ N ρ nNρ ρ Nρ ρ+2Nρ ρδ
N N pn ρ n ρ

+ − + −
=

⎛ ⎞+ + − + +
+ ⎜ ⎟⎜ ⎟− − − − − −⎝ ⎠

%
) ( ) ) ( , (18)  

where N
)

= (N – 2pn), = (N – 2n), andN
(

ρ = 1 – ρS – ρC.  An estimate vWT of the variance 
of dWT can be computed by substituting the consistent estimate dWT for δWT in equation 
(18) above. 
 The leading term of the variance in equation (18) arises from uncertainty in the 
mean difference.  Note that this leading term is [1 + (np – 1)ρS + (n – 1)ρC] as large as 
would be expected if there were no clustering in the sample (that is if ρS = ρC = 0).  The 
term [1 + (np – 1)ρS + (n – 1)ρC] is a generalization to two stages of clustering of the 
variance inflation factor mentioned by Donner (1981) for the variance of means in 
clustered samples (with one stage of clustering) and also corresponds to a variance 
inflation factor for the effect size estimate dWT. 
 Note that if ρC = 0 so that there is no clustering by classrooms, or if ρS = 0 so that 
there is no clustering by schools, the three-level design is logically equivalent to a two-
level design.  If ρS = 0, the expression (17) for dWT and expression (18) for its variance 
reduce to those given in equations (15) and (16) in Hedges (in press) for the 
corresponding effect size estimate and its variance in a two-level design with clusters of 
size n and intraclass correlation ρ = ρC.  Similarly, if ρC = 0, expressions (17) and (18) 
reduce to the estimate given in equation (15) and its variance given in equation (16) of 
Hedges (in press) for the corresponding effect size in a two-level design with cluster size 
np and intraclass correlation ρ = ρS.   
Estimation of δBC

If ρC ≠ 0 (so that δBC is defined), SBC may be used, along with the intraclass 
correlations ρS and ρC, to obtain an estimate of δBC.  A direct argument shows that  

 1 ( 1)T C
S

BC
BC C

Cρ n ρY Yd
S nρ

••• ••• − + −−
=      (19) 

is a consistent estimate of δBC.  This estimate is normally distributed in large samples 
with variance 

 
21 ( 1) [1 ( 1) ]{ }

2 ( 1)
S C S C

BC
C C

BCρ n ρ ρ + n ρ δV d
mpnρ M p nρ

− + − − −
= +

−%
.   (20) 

An estimate vBC of the variance of dBC can be computed by substituting the consistent 
estimate dBC for δBC in equation (20) above.  Note that the presence of ρC in the 
denominator of the estimator and its variance is possible since the effect size parameter 
only exists if ρC ≠ 0. 
 The variance in equation (20) is [1 – ρS + (n – 1)ρC]/nρC] as large as the variance 
of the standardized mean difference computed from an analysis using class means as the 
unit of analysis if the data had come from a simple random sample.  Thus [1 – ρS + (n – 
1)ρC]/nρC] is a kind of variance inflation factor for the variance of effect size estimates 
like dBC compared to this alternative effect size estimate.   
 Note that if ρS = 0 so that there is no clustering by school, the expression (19) for 
dBC and expression (20) for its variance reduce to those given in equations (11) and (12) 



Effect Sizes in Three Level Experiments    12 

in Hedges (in press) for the corresponding effect size estimate (called there dB2) and its 
variance in a two-level design with clusters of size n and intraclass correlation ρ = ρC.     
Estimation of δBS

If ρS ≠ 0 (so that δBS is defined), SBS may be used, along with the intraclass 
correlations ρS and ρC, to obtain an estimate of δBS.  A direct argument shows that  

 1 ( 1) ( 1)T C
S

BS
BS S

pn Cρ n ρY Yd
S pnρ

••• ••• − − + −−
=     (21) 

is a consistent estimate of δBS.  This estimate is normally distributed in large samples with 
variance 

 
21 ( 1) ( 1) [1+( 1) ( 1) ]{ }

2( 2)
S C S C

BS
S S

pn BSρ n ρ pn ρ + n ρ δV d
mpnρ M pnρ

+ − + − − −
= +

−%
. (22) 

An estimate vBS of the variance of dBS can be computed by substituting the consistent 
estimate dBS for δBS in equation (22) above.  Note that the presence of ρS in the 
denominator of the estimator and its variance is possible since the effect size parameter 
only exists if ρS ≠ 0. 
 The variance in equation (22) is [1 + (pn – 1)ρS + (n – 1)ρC]/pnρS] as large as the 
variance of the standardized mean difference computed from a simple random sample.  
Thus [1 – ρS + (n – 1)ρC]/pnρS] is a kind of variance inflation factor for the variance of 
effect size estimates like dBS compared to this alternative effect size estimate.   
 Note that if ρC = 0 so that there is no clustering by classroom, expressions (21) 
and (22) reduce to the corresponding effect size estimate (called there dB2) given in 
equation (11) and its variance given in equation (12) of Hedges (in press) in a two-level 
design with cluster size np and intraclass correlation ρ = ρS.   

Estimation of Effect Size: Unequal Sample Sizes 
 When classroom or school sample sizes are unequal, expressions for the effect 
size estimates are more complex and expressions for their variances are much more 
complex.  In this section we give expressions for several of the effect size estimates and 
their sampling distributions.  These expressions may be of use in cases where the number 
of classrooms and students within classrooms are markedly unequal and they are given 
explicitly in reports of research.  They also provide some in sight into what single 
“compromise” value of p and n might give most accurate results when substituted in to 
equal sample size formulas. 
Estimation of δWC 

If ρS + ρC ≠ 1, then the estimate dWC of δWC when sample sizes are unequal is 
identical to that in the equal sample size case given in equation (13), and it is 
approximately normally distributed.  However in the case of unequal sample sizes, the 
variance is given by 

 
21 ( 1) ( 1){ }

(1 ) 2( )
U S U C WC

WC
S C

p ρ n ρ δV d
N ρ ρ N P

+ − + −
=

− − −%
+ ,    (23) 

where  
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T
N NN
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=

+
%

C ,  

and   

  
1 1

T Cm mT C
i i

i i
P p p

= =
= +∑ ∑

is the total number of classrooms.  Note that if if all the ni
T and ni

C are equal to n, then nU 
= n, and that if all the pi

T and pi
C are equal to p, then pU = pn, and P = Mp, so that (23) 

reduces to (14).  As in the case of the equal sample size formulas an estimate vWC of the 
variance of dWC can be computed by substituting the consistent estimate dWC for δWC in 
equation (23) above.   
Estimation of δWS

If  ρS ≠  1,then δWS is defined and an estimate dWS is the unequal sample size case 
becomes 

 ( )
( )( )

1
1 1

1
T C

C
WS

WS S S

n ρY Yd
S ρ N

••• •••⎛ ⎞ −−
= −⎜ ⎟⎜ ⎟ − −⎝ ⎠

%
,     (26) 

where 

 ( ) ( )2 2

1 1 1 1
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i ip pM MT C T T C C

ij i ij i
i j i j

Mn M( n n ) n n n n+ +
= = = =
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⎜ ⎟ ⎜
⎝ ⎠ ⎝
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,  (27) 

 , 
1

T
ip

T T
i i

j
n n+

=
= ∑

 , 
1

C
ip

C C
i i

j
n n+

=
= ∑

and NS = N/M is the average sample size per school.  Note that if all of the nij
T and nij

C are 
equal to n and all the pj

T and pj
C are equal to p, then = n, Nn% S = pn, and (26) reduces to 

(15). 
The estimate dWS is normally distributed in large samples with variance 
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where the auxiliary constant A = (AT + AC)/M  and AT and AC are given by 
 , 
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2 2

22 2

1 1 1 1 1 1

T T TT T T
i i i

i

p p pm m mT T T T T
ij ij ij i

i j i j i j
A n n n N n

+ +
= = = = = =

⎛ ⎞⎡ ⎤ ⎛⎜ ⎟ ⎜ ⎟⎢ ⎥= + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦ ⎝⎝ ⎠

∑ ∑ ∑ ∑ ∑ ∑
3 Tn

⎞

⎠
 

and           (29) 
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Note that if all of the nij
T and nij

C are equal to n and all the pj
T and pj

C are equal to p, then 
= n, P = pn, A = n1n% 2(p – 1), and (28) reduces to (16). 

 The second term of (28) is rather complex and involves detailed sample size 
information that may not be available.  A direct argument shows that the second term of 
(28) is always smaller than δWS

2/2[P – M], therefore a slightly conservative overestimate 
of the variance of dWS is obtained from 

 { } ( )
1 ( 1) ( 1)

1 2(

2
U S U C WS

WS
S

p ρ n ρ δV d
N )ρ P M

+ − + −
≈

− −%
+ .    (30) 

As in the case of the equal sample size formulas an estimate vWS of the variance of dWS 
can be computed by substituting the consistent estimate dWS for δWS in equation (28) or 
(30) above. 
Estimation of δWT

A consistent estimate dWT of δWT in the case of unequal sample sizes is  

 2( 1) 2( 1)1
2

T C
U S U

WT
WT

p ρ nY Yd
S N

Cρ••• •••⎛ ⎞ − + −−
= −⎜ ⎟⎜ ⎟ −⎝ ⎠

,    (31) 

where pU is given by (23) and nU is given by (24) above.  Note that if all of the nij
T and 

nij
C are equal to n and all the pj

T and pj
C are equal to p, (29) reduced to (16). 

The exact expression for the variance of dWT is quite complex when sample sizes 
are unequal.  The simplest expression that we have been able to obtain for the variance of 
dWT is about a page and a half in length.  The complexity of the expression is not 
unexpected.  It is quite similar to that of the variance component estimates from which it 
is derived, which are also quite complex in unbalanced designs with two nested factors 
(see e.g., Searle, 1971, pp. 473 - 474).   

Note however that the variance consists of two terms.  The first term arises from 
the uncertainty of the mean difference, and it typically much larger than the second term, 
which arises because of the uncertainty of the standard deviation.  Because the leading 
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term almost completely determines the variance, we suggest a simple approximation to 
the variance of dWT when sample sizes are unequal that makes use of the exact first term 
and an approximation to the second term.  That approximation is 

{ }

[ ]
2 2 2

S C

1 ( 1) ( 1)

( 2) 2 2
2( 2) ( 2) 2( 1) 2( 1)

U S U C
WT

2 U U S U U C U U S C U S U C
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p ρ n ρV d
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p N ρ n N ρ N ρ n N ρ ρ N ρ ρ+2N ρ ρδ
N N p ρ n ρ

+ − + −
=

⎛ ⎞+ + − + +
+ ⎜ ⎟⎜ ⎟− − − − − −⎝ ⎠

%
) ( ) ) ( (32) 

where UN
)

= (N – 2pU), = (N – 2nUN
(

U), and ρ = 1 – ρS – ρC.  Note that if if all the ni
T and 

ni
C are equal to n, then nU = n, and that if all the pi

T and pi
C are equal to p, then pU = pn, 

and (32) reduces to (18).   
However the approximation above for the variance of dWT is still rather complex 

and a simpler conservative approximation might be desired.  A direct argument shows 
that the second term of (32) is always smaller than δWT

2/2[M - 2], therefore a slightly 
conservative overestimate of the variance of dWT is obtained from 

 { } 1 ( 1) ( 1)
2( 2)

2
U S U C WT

WT
p ρ n ρ δV d

N M
+ − + −

≈ +
−%

.    (33) 

As in the case of the equal sample size formulas an estimate vWT of the variance of dWT 
can be computed by substituting the consistent estimate dWT for δWT in equation (32) or 
(33) above. 
Estimation of δBC and δBS

There is more than one way to generalize the estimator dBC to the case of unequal 
school and classroom sample sizes.  One possibility is to use the means of the classroom 
means in the treatment and control group in the numerator and standard deviation of the 
classroom means in the denominator.  This corresponds to using the classroom means as 
the unit of analysis.  Another possibility for the numerator is to use the grand means in 
the treatment and control groups.  Similarly, there are multiple possibilities for the 
denominator, such as the mean square between classrooms.  When school and classroom 
sample sizes are identical, then all of these approaches are equivalent in the sense that the 
effect size estimates are identical.  When the cluster sample sizes are not identical, the 
resulting estimators (and their sampling distributions) are not the same.   

Similarly, there is more than one way to generalize the estimator dBS to the case of 
unequal school and classroom sample sizes.  One possibility is to use the means of the 
school means in the treatment and control group in the numerator and standard deviation 
of the school means in the denominator.  This corresponds to using the school means as 
the unit of analysis.  Another possibility for the numerator is to use the grand means in 
the treatment and control groups.  Similarly, there are multiple possibilities for the 
denominator, such as the mean square between schools.  When school and classroom 
sample sizes are identical, then all of these approaches are equivalent in the sense that the 
effect size estimates are identical.  When the school and classroom sample sizes are not 
identical, the resulting estimators (and their sampling distributions) are not the same. 

Because there are so many possibilities, because some of them are rather complex, 
and because the information necessary to use them (i.e., means, standard deviations, and 
sample sizes for each classroom and school) is frequently not reported in research reports, 
we do not give the estimates or their sampling distributions in this paper.  A sensible 
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approach if these estimators are needed is to compute the variance estimates for the equal 
sample size cases, substituting the equal sample size formulas.   
Confidence Intervals for δWC, δWS, δWT, δBC, and δBS
 The results in this paper can also be used to compute confidence intervals for 
effect sizes.  If δ is any one of the effect sizes mentioned, d is a corresponding estimate, 
and vd is the estimated variance of d, then a 100(1 – α) percent confidence interval for δ 
based on d and vd is given by 
 d – cα/2√vd ≤ δ ≤ d + cα/2√vd,       (34) 
where cα/2 is the 100(1 – α/2) percent point of the standard normal distribution (e.g., 1.96 
for α/2 = 0.05/2 = 0.025). 

Applications in Meta-analysis 
 The statistical results in this paper should be useful in deciding what effect 

sizes are desirable in a three level experiment or quasi-experiment.   They should also be 
useful for finding ways to compute effect size estimates and their variances from data that 
may be reported.  We illustrate applications in some examples in the sections that follow. 
Obtaining Values of Intraclass Correlations 

Intraclass correlations are needed for the methods described in this paper are often 
not reported, particularly when these effect sizes are calculated retrospectively in meta-
analyses.  However, because plausible values of ρ are essential for power and sample size 
computations in planning cluster randomized experiments, there have been systematic 
efforts to obtain information about reasonable values of ρ in realistic situations.  Some 
information about reasonable values of ρ comes from cluster randomized trials that have 
been conducted.  For example, Murray and Blitstein (2003) reported a summary of 
intraclass correlations obtained from 17 articles reporting cluster randomized trials in 
psychology and public health and Murray, Varnell, and Blitstein (2004) give references 
to 14 very recent studies that provide data on intraclass correlations for health related 
outcomes.  Other information on reasonable values of ρ comes from sample surveys that 
use clustered sampling designs. For example Gulliford, Ukoumunne, and Chinn (1999) 
and Verma and Lee (1996) presented values of intraclass correlations based on surveys of 
health outcomes.  Hedges and Hedberg (2007) presented a compendium of intraclass 
correlations computed from surveys of academic achievement.   

While most of these surveys have focused in intraclass correlations at a single 
level of nesting, they do provide some empirical information and guidelines about 
patterns of intraclass correlations at lower, versus higher, levels of nesting.  We know of 
two sources of information about classroom level intraclass correlations from reasonably 
large samples.  One is project STAR, which collected data on Kindergarten through third 
grade students in 79 schools in Tennessee.  Nye, Konstantopoulos, and Hedges (2004) 
reported variance components from a three level model that permits the computation of 
school and classroom level intraclass correlations (our ρS and ρC).  The second source of 
intraclass correlation data is based on analyses of the National Assessment of Educational 
Progress (NAEP).  Konstantopoulos (personal communication) used NAEP to estimate 
school and classroom level intraclass correlations in reading and mathematics 
achievement for the 1992 and 1996 fourth grade NAEP assessments.  The values of 
intraclass correlations from these sources are given in Table 1.  The values of school level 
intraclass correlations (ρS values) are very consistent with those obtained with those 
obtained by Hedges and Hedberg (2007) using data from other surveys.  The classroom 
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level intraclass correlations (ρC values) fall in a range of 0.08 to 0.14.  The school level 
intraclass correlations (ρS values) range from 0.11 to 0.18 in project STAR, but are a little 
larger in NAEP, possibly because of its broader (nationally representative) sample of 
schools.  While these values may be useful in suggesting a plausible range of classroom 
level intraclass correlations, more data on classroom intraclass correlations is clearly 
needed. 
Computing Effect Sizes When Individuals are (Incorrectly) the Unit of Analysis  
 The results given in this paper can be used to produce effect size estimates and 
their variances from studies that incorrectly analyze cluster randomized trials as if 
individuals were randomized.   The required means, standard deviations, and sample 
sizes cannot always be extracted from what may be reported, but often it is possible to 
extract the information to compute at least one of the effect sizes discussed in this paper.  
 Suppose it is decided that the effect size δWT is appropriate because most other 
studies both assign and sample individually from a clustered population.  Suppose that 
the data in a study are analyzed by ignoring clustering, then the test statistic is likely to be 
either  
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Either can be solved for  
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which can then be inserted into equation (18) or (31) along with ρS and ρC to obtain dWT.  
This estimate of dWT can then be inserted into equation (19) or (32) to obtain vWT, an 
estimate of the variance of dWT.   
 Alternatively, suppose it is decided that the effect size δWC is appropriate because 
most other studies involve only a single site.  We may begin by computing dWT and vWT as 
before. Because we want an estimate of δWC, not δWT, we use the fact given in equation 
(10) that  
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is an estimate of δWC with a variance of  
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.         (36) 

 Similarly, we might decide that δWS was a more appropriate effects size because 
most other studies involve schools that have several classrooms and nesting of students 
within classrooms is not taken into account in most of them.  We may begin by 
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computing dWT and vWT as before. Because we want an estimate of δWS, not δWT, we use 
the fact given in equation (9) that  
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and therefore  
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         (37) 

is an estimate of δWS with a variance of  
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.          (38) 

 If we decided that δBC or δBS was a more appropriate effect size, then we could 
still begin by computing dWT and vWT, but then use (12), namely 
 BC WT Cδ δ ρ=  
to obtain  

WT Cd ρ          (39) 
as an estimate of δBC with variance 
 vWT/ρC          (40) 
or use (11), namely 
 BS WT Sδ δ ρ=  
to obtain 

WT Sd ρ          (41) 
as an estimate of δBS with variance 
 vWT/ρS .          (42) 
Example 
 An evaluation of the connected mathematics curriculum reported by Ridgway, et 
al. (2002) compared the achievement of pT = 2 classrooms of 6th grade students who used 
connected mathematics in each of mT = 9 schools with that of pC = 1 classrooms in each 
of mC  = 9 schools in a comparison group that did not use connected mathematics.  In this 
quasi-experimental design the clusters were schools and classrooms.  The class sizes 
were not identical but the average class size in the treatment group was NT/mT = 338/18 = 
18.8 and NC/mC = 162/18 = 18 in the control group.  The exact sizes of all the classes 
were not reported, but here we treat the cluster sizes as if they were equal and choose n = 
18 as a slightly conservative sample size. The mean difference between treatment and 
control groups is TY••• – = 1.9, the pooled within-groups standard deviation SCY••• WT  = 
12.37.  This evaluation involved sites in all regions of the country and it was intended to 
be nationally representative.  Ridgeway et al. did not give an estimate of the intraclass 
correlation based on their sample.  Hedges and Hedberg (2007) provide an estimate of the 
school level grade 6 intraclass correlation in mathematics achievement for the nation as a 
whole (based on a national probability sample) of 0.264 with a standard error of 0.019.  
For this example we assume that the intraclass correlation at the school level is ρS = 0.264 
and that the classroom level intraclass correlation is about two thirds as large, namely ρC 
= 0.176. 
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The analysis ignored clustering and compared the mean of all of the students in 
the treatment with the mean of all of the students in the control group via a t-test, the t-
value obtained was t = 3.488.  This leads to a value of the standardized mean difference 
of  

0 1536.
T C

WT

Y Y 
S

••• •••−
= , 

which is not an estimate of any of the three effect sizes considered here.  If an estimate of 
the effect size δWT is desired, and we had imputed a school level intraclass correlation of 
ρS = 0.264 and a classroom level intraclass correlation of ρS = 0.176, then we use equation 
(31) to obtain 
 dWT = (0.1536)(0.9811) = 0.1507. 
The effect size estimate is very close to the original standardized mean difference 
because the amount of clustering in this case is rather small.  However even this small 
amount of clustering has a substantial effect on the variance of the effect size estimate.  
The variance of the standardized mean difference ignoring clustering is  
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. 

However, computing the variance of dWT using equation (32) with ρS = 0.264 and ρS = 
0.176, we obtain a variance estimate of 0.093295, which is more than 10 times the 
variance ignoring clustering.  It is worth noting that if we had used the conservative 
approximation for vWT given in (33), we would have obtained a variance estimate of 
0.093895, which differs from the computation given (32) by less than 1 percent.  A 95 
percent confidence interval for δT is given by 
     0 4480 0 1507 1 96 0 093295 0 1507 1 96 0 093295 0 7494T. . . . δ . . . .− = − ≤ ≤ + = . 
If clustering had been ignored in computing the variance of dWT, the confidence interval 
for the population effect size would have been -0.0382 to 0.3395. 
 If we wanted to estimate δWC, then an estimate of δWC given by expression (35) is 

 0 1507 0 2014
1 0 264 0 176

. .
. .

=
− −

, 

with variance given by expression (36) as 
 0.093295/(1 – 0.264 – 0.176) = 0.166598.  
If an estimate of δWS was wanted, then an estimate of δWS could be computed from 
expression (37) as 

 0 1507 0 1757
1 0 264

. .
.

=
−

, 

with variance given by expression (38) as 
 0.093295/(1 – 0.264) = 0.126759.  
 If we decided that δBC was a more appropriate effect size, an estimate could be 
computed from (39) as 

0 1507 0 176 0 3592. . .= ,  
with variance given by expression (40) as 
 0.093295/0.176 = 0.53008. 
If we decided that δBS was a more appropriate effect size, an estimate could be computed 
from (41) as 
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0 1507 0 264 0 2933. . .= ,  
with variance computed from (42) as 
 0.093295/0.264 = 0.353389. 
Is it Really Necessary to Take Both Levels of Clustering Into Account? 

One might be tempted to think that accounting for clustering at one the highest 
level (e.g. schools) would be sufficient to account for most of the effects of clustering at 
both levels.  Indeed there is a widely held belief among some researchers that only the 
highest level of clustering matters in analysis, and that lower levels of clustering can 
safely be omitted if they are not explicitly part of the analysis.  Another belief that is 
sometimes cited is that any level of the design can be ignored if it is not explicitly 
included in the analysis.  If this were the case the results of this paper might be 
theoretically interesting, but have few practical implications.  It is clear from (15) and 
(17) that the effect size estimates dWS and dWT do not depend strongly on the intraclass 
correlation (at least within plausible ranges of intraclass correlations that are likely to be 
encountered in educational research).  However, the analytic results presented here show 
that, in situations where there is a plausible amount of clustering at two levels, omitting 
either level of clustering from variance computations can lead to substantial biases in the 
variance of effect size estimators.   

Table 2 shows some calculations of the variance of the effect size estimate dWT 
and its variance in a balanced design with m = 10, n = 20, ρS = 0.15, ρC = 0.10, and dWT = 
( )/T C

WTT T S••• •••− = 0.15 (fairly typical values).  Omitting the classroom (lowest level) of 
clustering leads to underestimates of the variance when the number of classrooms (lower 
level clusters) per school is small, underestimation that become less serious as the 
number of classrooms per school increases.   For example, omitting the classroom level 
of clustering from variance computations leads to underestimation of the variance of dWT 
by 22% when p = 2, but by only 11% when p = 5.  Because the number of classrooms per 
school is typically small in educational experiments, we judge that variance is likely to be 
seriously underestimated when the classroom level is ignored in computing variances of 
effect size estimates in three level designs. 

The table shows that omitting the school (highest level) of clustering leads to 
larger underestimates of variance when the number of classrooms (lower level clusters) 
per school is small, which become even more serious when the number of classrooms 
becomes larger.  Omitting the school level of clustering from variance computations 
leads to underestimation of the variance of dWT by about 67% when p = 2, but by 84% 
when p = 5. 

One potential substitute for computing variances using the formulas for two levels 
of clustering is to compute the variances assuming two levels of clustering, but use a 
composite intraclass correlation that “includes” both between-school and between-class 
components.  Table 2 shows that using only the school level of clustering to compute the 
variance of dWT but using ρ = ρS + ρC  in place of the school level intraclass correlation 
performs poorly, leading to overestimates of the variance of from 23% (for p = 2) to 45% 
(for p = 5).  However, using only the school level of clustering to compute the variance of 
dWT but using ρ = ρS + ρC /p in place of the school level intraclass correlation performs 
much better, leading to overestimates of the variance of less than 1% for all p.   
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Conclusions 
 This paper has provided definitions of five different effect sizes that can be 
estimated in three level studies using cluster randomization.  Methods of estimation are 
provided for each effect size, and the sampling variances are also given.  The sampling 
distribution of each estimator is shown to be a constant times a noncentral t-distribution 
and simple normal approximations are given in each case.  Because these approximations 
have been extensively studied in the context of simpler effect size estimates and power 
analysis, there is reason to believe that they are reasonably accurate unless sample sizes 
are quite small (which is unlikely in cluster randomized designs).  Simulation studies 
(reported in other studies) evaluating the accuracy of these approximations confirm 
expectations. 

The analytic work shows that while clustering has only a small effect on the 
estimates of effect size involving between-student standard deviations, it can have a 
substantial effect on the variance of these effect size estimates.  The example provided 
illustrates that small, but plausible, amounts of clustering can have a very large effect on 
the variance of effect sizes and therefore on confidence intervals in practical situations.  
This implies that ignoring clustering can have serious effects in meta-analysis, leading to 
serious underestimates of uncertainty in effect size estimates.  Moreover, when the 
sampling design involves two levels of clustering (such as schools and classrooms), it 
appears that simply ignoring one of the levels of clustering in computing the variances of 
effect size estimates can also lead to marked underestimates of the variance of effect size 
estimates.  

The results given in this paper can be used to estimate the effect sizes (and their 
variances) in cluster randomized trials that have been improperly analyzed by ignoring 
clustering, provided an intraclass correlation is known or can be imputed.  The effect size 
estimates can then be used in meta-analyses along with any other effect size estimates of 
the same conceptual parameter, using the variances of the estimates to compute weights 
in the usual way, and using those weights in fixed or mixed effects analyses. 

The results given in this paper require that a value of the intraclass correlation 
parameters ρS and ρC be known or imputed for sensitivity analysis.  In some cases 
external data about ρS and ρC may be available (e.g., from previous studies or compendia 
such as that of Hedges and Hedberg, 2007).  It is important to use external values of ρS 
and ρC with considerable caution, because the values of ρS and ρC have substantial 
influence on the results of analyses.  In particular, it would be difficult to justify the use 
of the methods described in this paper using estimates of ρS and ρC obtained from small 
samples (small numbers of clusters) because those estimates are likely to be subject to 
considerable sampling error.  Similarly, it would be difficult to justify the use of external 
estimates of ρS and ρC, even from large sample sizes if those estimates were not based on 
a similar sampling strategy, with similar populations, and similar outcome measures.  
However, making no correction for the effects of clustering at all corresponds to 
assuming that ρC = ρS = 0.  The assumption that ρS = ρC = 0 is often very far from the case 
and thus it may introduce more serious biases in the computation of variances than using 
values of ρ that are slightly in error.   

A major practical problem is that while there is rather extensive reference data on 
school level intraclass correlations (ρS), the data on classroom level intraclass correlations 
(ρC) is less extensive.  Such data, either computed from surveys or from reports of 
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experiments themselves, is badly needed to improve the meta-analysis of studies with 
multiple levels of clustering.  Moreover, given the connection between effect sizes and 
statistical power, we speculate that our findings about the variance of effect size estimates 
imply that computations of statistical power in three level designs by omitting levels of 
clustering (that is, compute power in three level designs as if there were only two levels) 
will badly underestimate power in plausible situations.  If this is so, information on 
classroom level intraclass correlations may be as crucial for planning of educational 
experiments that assign schools to treatments as well as for computing effect sizes. 
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Appendix: Derivation of Sampling Distributions of Effect Size Estimates 
 The sampling distribution of the effect size estimates proposed in this paper all 
follow from the same theorem, which was proven in Hedges (in press) and is restated 
below.   
Theorem: Suppose that Y ~ N(μ, aσ2/ ) and that SN% 2 is a quadratic form in normal 
variables that is independent of Y, so that E{S2} = bσ2, and V{S2} = 2cσ4, where a, b, c, 
and are constants.  Then  N%

 Nb YT
a S

⎛ ⎞= ⎜ ⎟
⎝ ⎠

%
 

has approximately the noncentral t-distribution with b2/c degrees of freedom and 
noncentrality parameter 

 Nb μ Nbθ δ
a aσ

⎛ ⎞= =⎜ ⎟
⎝ ⎠

% %
, 

where δ = μ/σ.  Consequently 

 Y b aD T
S N

= =
%

        (A1) 

is a consistent estimate of the effect size δ with approximate variance 

 
2

2
a cδ
N b
+

%
.         (A2) 

 The theorem can be applied to obtain the sampling distribution of each of the 
effect size estimators given in this paper, using some elementary facts.  In each case we 

apply the theorem with T CY Y Y••• •••= − , T Cμ μ μ•• •= − • , and = NN% TNC/(NT + NC), but with 
different definitions of S and σ (which imply different choices of the constants a, b, and 
c).  In each case, we use the fact that the expected value of the mean difference is given 
by 

{ }T C TY Y Cμ μ••• ••• •• ••− = −E  

However the variance of variance of TY Y C
••• •••− and the mean and variance of various 

choices of S require different derivations in the balanced (equal cluster sample size) and 
unbalanced (unequal cluster sample size) cases. 
Equal Cluster Sample Sizes 
 In the case of equal cluster sample sizes, a direct argument gives the variance of 
the mean difference as 

 
{ } ( ) ( )

( ) [ ]

1 2 2 2

1 2 1 ( 1) ( 1)

T C
WC BC BS

WT C S

Y Y N n np

N n ρ pn ρ

σ σ σ

σ

−
••• •••

−

− = + +

= + − + −

V %

%
.   (A3) 

We also use the moments of SBS
2, SBC

2, SWC
2, SWS

2, and SWT
2, which are derived 

from their relation to sums of squares in the analysis of variance (see, e.g., Snedecor, 
1956).  The design described here has a treatment factor with schools (nested within 
treatments) and classrooms (nested within schools and treatments) as nested factors.  
Using the expected mean squares from a design with one crossed factor and two nested 
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factors, where both nested factors are considered random effects (see, e.g., Kirk, 1995, 
p.488) we have 
 E{MSBS} = σWC

2 + nσC
2 + pnσS

2 = σWT
2[ 1 + (n – 1)ρC + (pn – 1) ρS], 

 E{MSBC} = σWC
2 + nσC

2 = σWT
2[1 + (n – 1)ρC – ρS], 

and 
 E{MSWC} = σWC

2 = σWT
2[1 – ρC – ρS]. 

A standard result from analysis of variance of this design, is that the sums of squares 
divided by their expectations are independently distributed as chi-squares.  In particular, 
 SSBS / σWT

2[ 1 + (n – 1)ρC  + (pn – 1) ρS] ~ χ(M – 2)
2,     

 SSBC / σWT
2[ 1 + (n – 1)ρC  – ρS] ~ χM(p – 1)

2 ,       
and  

  SSWC / σWT
2[ 1 – ρC  –  ρS] ~ χMp(n – 1)

2 .      
Therefore, because the expected value of a chi-square equals its degrees of freedom, it 
follows that the expectations of the sums of squares are 
 E{SSBS} = σWT

2(M – 2) [ 1 + (n – 1)ρC  + (pn – 1) ρS], 
 E{SSBC} = σWT

2M(p – 1)[ 1 + (n – 1)ρC  – ρS], 
and 
 E{SSWC} = σWT

2Mp(n – 1)[ 1 – ρC  – ρS]. 
Because the variance of a chi-square equals twice its degrees of freedom, it follows that 
the variances of the sums of squares are 
 V{SSBS} = 2σWT

4(M – 2) [ 1 + (n – 1)ρC  + (pn – 1) ρS]2, 
 V{SSBC} = 2σWT

4M(p – 1)[ 1  + (n – 1)ρC  – ρS]2, 
and 
 V{SSWC} = 2σWT

4Mp(n – 1)[ 1 – ρC – ρS]2. 
 Using these results, we obtain the expected value and variance of the five sample 
variances involved in the expressions for the effect size estimates described in this paper.  
Because SWC

2 = SSWC/(N – Mp), it follows that the expected value and variance of SWC
2 

are 

 { } (2 2 1WC WT C SE S )ρ ρσ= − −       (A4) 

and 

 { } ( )24 4
2 2 1 2WT C S WC
WC

ρ ρ
V S

N Mp N Mp
σ σ− −

=
− −

= .     (A5) 

Because SBC
2 = SSBC/M (p – 1) n, it follows that the expected value and variance of SBC

2 
are 

 { } [2 2 1 ( 1)BC WT CE S n ]ρ / nσ= + −       (A6) 

and 

 { } [ ]
( )

24
2

2
2 1 ( 1)WT C

BC
n ρ

V S
Mp M n

σ + −
=

−
.      (A7) 

Because SBS
2 = SSBS/(M – 2)np, it follows that the expected value and variance of SBS

2 are 

 { } [2 2 1+ ( 1) ( 1)  BS WT C SE S n ]ρ pn ρ / npσ= − + −     (A8)  

and 
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 { } [ ]
( )

24
2

2 2
2 1+ ( 1) ( 1)  

2
WT C S

BS
n ρ pn ρ

V S
M n p

σ − + −
=

−
.    (A9) 

The expectations and variances of these sums of squares permit computation of 
the expectations and variances of the composite sums of squares SSWS and SSWT and the 
variances SWS

2 and SWT
2.  Because SWS

2 = (SSWC + SSBC)/(N – M), it follows that the 
expected value and variance of SWS

2 are 

 { } ( ) ( )
( )( )

2 2 21 1
1 1

1 1C C
WS WT S WS

S

n ρ n ρ
E S ρ

pn ρ pn
σ σ

1
⎡ ⎤⎡ ⎤− −

= − − = −⎢ ⎥⎢ ⎥− − −⎢ ⎥⎣ ⎦ ⎣ ⎦
  (A10) 

and 

{ }
( )

( ) ( )

4 2
2

2

4 2

22

2 ( 1) 2 1 1

1

2 ( 1) 2 1 1

1 1

2 2
WT C C

WS

2 2
WS C C

S

pn ρ n( p )ρρ n ( p )ρ
V S

M pn

pn ρ n( p )ρρ n ( p )ρ

M pn ρ

σ

σ

⎡ ⎤− + − + −⎣ ⎦=
−

⎡ ⎤− + − + −⎣ ⎦=
− −

.  (A11) 

Because SWT
2 = (SSWC + SSBC + SSBS)/(N – 2), it follows that the expected value 

and variance of SWT
2 are 

 { }2 2 2( 1) 2( 1)1
2

S
WT WT

pn Cρ n ρE S
N

σ
− − −⎛= −⎜ −⎝ ⎠

⎞
⎟     (A12) 

and 

    { } ( )
( )

4 2 2 2
2

2

2 ( 2) 2 2

2

WT S C S C S C
WT

pnNρ nNρ N ρ nNρ ρ Nρ ρ+2Nρ ρ
V S

N

σ + + − + +
=

−

) ( ) ) (

, (A13) 

where N
)

= (N – pn), = (N – 2n), andN
(

ρ = 1 – ρS – ρC. 
 The distribution of dWC. In this case we apply the theorem with σ2 = σWC

2 and S2 = 
SWC

2.  Here  

 
2 2 2

2
1 ( 1) ( 1)

1
WC BC BS C S

C SWC

n np n ρ pn ρa
ρ ρ

σ σ σ
σ

+ + + − + −
= =

− −
. 

Because the expected value of SWC
2 is σWC

2it follows that b = 1.  Because the variance of 
SWC

2  is 2σWC
4/(N – Mp), it follows that c = 1/(N – Mp).  Substituting the expressions for a, 

b, and c into (A1) and (A2), and simplifying, gives the results in expressions (13) and 
(14).  Since S2 involves only a single chi-square, it follows that the t-statistic 
corresponding to dWC has exactly the noncentral t-distribution with (N – Mp) degrees of 
freedom.   
 The distribution of dWS. In this case we apply the theorem with σ2 = σWS

2 = σWC
2 + 

σBS
2 and S2 = SWS

2.  Here  

 
2 2 2

2
1 ( 1) ( 1)

1
WC BC BS C S

SWS

n np n ρ pn ρa
ρ

σ σ σ
σ

+ + + − + −
= =

−
, 
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{ } ( )

( )( )

2

2
1

1 1
1WS C

SWS

E S n ρ
b

ρ pnσ

−
= = −

− −
, 

and  

 
{ }

( )( )

2 2

4 2
( 1) ( 1) ( 1)

2 1 1

2 2WS C C

WS S

V S pn ρ n p ρρ n p ρc
M pn ρσ

− + − + −
= =

− −
. 

Substituting the expressions for a, b, and c into (A1) and (A2), and simplifying, gives the 
results in expressions (15) and (16).   
 The distribution of dWT. In this case we apply the theorem with σ2 = σWT

2 and S2 = 
SWT

2.  Here  

 
2 2 2

2 1 ( 1) ( 1)WC BC BS
C S

WT

n pna n ρ pn ρσ σ σ
σ

+ +
= = + − + − . 

Using the expected value of SWT
2 given in (A12), we compute 

 
{ }2

2
2( 1) 2( 1)1

2
WT S C

WT

E S pn ρ n ρb
Nσ

− + −
= = −

−
, 

and using the variance of SWT
2 given in (A13), we compute 

 
{ }

( )

2 2 2 2

4 2
( 2) 2 2

2 2

WT S C S C S C

WT

V S pnNρ nNρ N ρ nNρ ρ Nρ ρ+2Nρ ρc
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−

) ( ) ) (

. 

Substituting the expressions for a, b, and c into (A1) and (A2), and simplifying, gives the 
results in expressions (17) and (18). 
 The distribution of dBC. In this case we apply the theorem with σ2 = σBC

2 and S2 = 
SBC

2.  Here  
2 2 2

2
1 ( 1) ( 1)

1
WC BC BS C S

CBC

n pn n ρ pn ρa
ρ

σ σ σ
σ

+ + + − + −
= =

−
, 

{ }2

2
1 ( 1)BC S C

CBC

E S ρ n ρb
nρσ

− − −
= = , 

and 

 
{ } [ ]2 2

2 2
1 ( 1)

( 1)

BC S C

BC C

V S ρ n ρ
c

M p n ρσ

− + −
= =

− 2 . 

Substituting the expressions for a, b, and c into (A1) and (A2), and simplifying, gives the 
results in expressions (19) and (20).  Since S2 involves only a single chi-square, it follows 
that the t-statistic corresponding to dBC has exactly the noncentral t-distribution with M(p 
– 1) degrees of freedom.   
 The distribution of dBS. In this case we apply the theorem with σ2 = σBS

2 and S2 = 
SBS

2.  Here  
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2 2 2

2
1 ( 1) ( 1)

1
WC BC BS C S

SBS

n pn n ρ pn ρa
ρ

σ σ σ
σ

+ + + − + −
= =

−
, 

{ }2

2
1 ( 1) ( 1)BS C S

SBS

E S n ρ pn ρb
pnρσ

− − − −
= = , 

and 

 
{ } [ ]2 2

4 2 2
1 ( 1) ( 1)

2 ( 2)

BS S C

BS S

V S pn ρ n ρ
c

M p n ρσ

− − + −
= =

− 2 . 

Substituting the expressions for a, b, and c into (A1)and (A2), and simplifying, gives the 
results in expressions (21) and (22).  Since S2 involves only a single chi-square, it follows 
that the t-statistic corresponding to dBS has exactly the noncentral t-distribution with M – 
2 degrees of freedom.   
Unequal Cluster Sample Sizes 
 When cluster sample sizes are unequal, expressions for the effect size estimators 
and their variances are more complex.  We first derive the variance of the mean 
differences. A direct argument leads to 

 { } ( ) [1
1 ( 1) ( 1)T C

U S U CY Y N p ]ρ n ρ
−

••• •••− = + − + −%V    (A14) 

where pU and nU are defined by (24) and (25) respectively.  The expected value and 
variance of SWS

2and SWT
2 can be calculated from the analysis of variance across 

classrooms within schools and across schools within the treatment groups.  When cluster 
sample sizes are unequal, the between school, between classroom, and within classroom 
sums of squares are still independent, and the within classroom sum of squares has a chi-
square distribution, but if school and classroom sample sizes are unequal, the between 
school and between classroom sums of squares do not, in general, have chi-square 
distributions.  However because both of these sum of squares are quadratic forms, the 
methods used in this paper apply and the distribution of effect size estimates can be 
obtained.   
 The distribution of dWC. In this case, we apply the theorem with σ2 = σWC

2 and S2 = 
SWC

2.  Here 
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− −
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Because SWC
2 is the same whether school or classroom sample sizes are equal or not, it 

follows that b = 1and c = 1/(N – NS).  Substituting the expressions for a, b, and c into 
(A1) and (A2), and simplifying, gives the results in expressions (13) and (23).  Since S2 
involves only a single chi-square, it follows that the t-statistic corresponding to dWC has 
exactly the noncentral t-distribution. with (N – NS) degrees of freedom.   
 The distribution of dWS. In this case we apply the theorem with σ2 = σWS

2 = σWC
2 + 

σBS
2 and S2 = SWS

2.  Here  
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We obtain the expected value and variance of SWS
2 by using the fact that  

 2

2

T T C

WS
SSB SSW SSB SSWS

N
+ + +

=
−

C

, 

where SSBCT and SSWCT and SSBCC and SSWCC are the sums of squares between and 
within classes in the treatment and control groups, respectively.  Using the expected 
values of the SSBC’s and SSWC’s given, for example, on page 429 of Searle, Casella, and 
McCulloch (1992), we obtain (in our notation) 

 { }
2

2 ( )
( )

2 BC
WS WC

N Mn σE S σ
N M
−

= +
−
%

,  

so that 

 
{ }2

C
2

( )1
( 1)(1

WS

S SWS

E S n 1b
N

ρ
)ρσ

−
= = −

− −
%

. 

Because the between clusters variance component estimates in the treatment and control 
groups are 

 ( )2
T T

T
BC T

MSBC MSWCˆ
n

σ −
=

%
 

and 

 ( )2
C C

C
BC C

MSBC MSWCˆ
n

σ −
=

%
, 

it follows that SWS
2 can be written as a function of between and within cluster variance 

components 
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where BT = NT – /MTn% T and BC = NC – /MCn% C.  Therefore the variance of SWS
2 is given by 

( ) { } ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 22 2 2 2

2 2 2 2

2 2 2 2

V ( ) V ( ) V

V V

2( ) Cov 2( ) Cov

T T T C C C
WS WC WC

T T C C
BC BC

T T T T T C C C C C
WC BC WC BC

ˆ ˆN M S N M N M

ˆ ˆB B

ˆ ˆ ˆ ˆN M B , N M B ,

⎧ ⎫ ⎧ ⎫
− = − + −⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
⎧ ⎫ ⎧ ⎫

+ +⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

⎛ ⎞ ⎛ ⎞
+ − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

σ σ

σ σ

σ σ σ σ

.  

Using the expressions for the variances and covariances of the variance component 
estimates on page 430 of Searle, Casella, and McCulloch (1992), simplifying, and 
substituting into the formula for c yields 

 
{ }

( )( )

2 2

4 2
( 1) ( 1) ( 1)

2 1 1

2 2WS C C

WS S

V S pn ρ n p ρρ n p ρc
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− −
. 

Substituting the expressions for a, b, and c into (A1) and (A2), and simplifying, gives the 
results in expressions (26) and (28).   
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The distribution of dWT. In this case, we apply the theorem with σ2 = σWT
2 and S2 = 

SWT
2.  We obtain the expected value and variance of SWT

2 by using the fact that  

 2

2

T T T C C

WT
SSBS SSBC SSWC SSBS SSBC SSWCS

N
+ + + + +

=
−

C

, 

where SSBST, SSBCT, and SSWCT and SSBSC, SSBCC and SSWCC are the sums of squares 
between schools, between classes, and within classes in the treatment and control groups, 
respectively.  Using the expected values of the SSBS’s, SSBC’s, and SSWC’s given, for 
example, on page 429 of Searle, Casella, and McCulloch (1992), we obtain the expected 
value and variance of SWT

2.  Here 

 
2 2 2
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and  
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−
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The exact variance of S2 is quite complex, therefore we substitute pU for pn and nU for n 
into expression (A13) to obtain the approximate variance of SWT

2, use this approximate 
variance to obtain the constant c in the second term of the variance of dWT.  Substituting 
the expressions for a, b, and c into (A1) and (A2), and simplifying, gives the results in 
expressions (31) and (32).   



Effect Sizes in Three Level Experiments    30 

 
References 

Box, G. E. P. (1954). Some theorems on quadratic forms applied to the study of analysis 
of variance problems, I. Effect of inequality of variance in the one-way 
classification. Annals of Mathematical Statistics, 25, 290-302. 

Bryk, A. & Schneider, B. (2000). Trust in schools. New York: Russell Sage Foundation. 
Donner, N., Birkett, N., & Buck, C. (1981). Randomization by cluster. American Journal 

of Epidemiology, 114, 906-914. 
Donner, A. & Klar, N. (2000). Design and analysis of cluster randomization trials in 

health research. London: Arnold. 
Donner, A. & Klar, N. (2002). Issues in the meta-analysis of meta-analysis of cluster 

randomized trials. Statistics in Medicine, 21, 1971-2980. 
Dunkin, M. J. & Biddle, B. J. (1974). The study of teaching. New York: Holt, Rinehardt, 

and Winston. 
Geisser, S. & Greenhouse, S. W. (1958).  An extension of Box’s results on the use of the 

F distribution in multivariate analysis. Annals of Mathematical Statistics, 29, 885-
891. 

Guilliford, M. C., Ukoumunne, O. C., & Chinn, S. (1999). Components of variance and 
intraclass correlations for the design of community-based surveys and 
intervention studies. Data from the Health Survey for England 1994. American 
Journal of Epidemiology, 149, 876-883. 

Hedges, L. V. & Hedberg, E. C. (2007). Intraclass correlation values for planning group 
randomized experiments in education. Educational Evaluation and Policy 
Analysis, 29, 60-87. 

Hedges, L. V. (1981). Distribution theory for Glass’s estimator of effect size and related 
estimators. Journal of Educational Statistics, 6, 107-128. 

Hedges, L. V. (in press). Effect sizes in cluster randomized designs. Journal of 
Educational and Behavioral Statistics. 

Hopkins, K. D. (1982). The unit of analysis: Group means versus individual observations. 
American Educational Research Journal, 19, 5-18. 

Kirk, R. (1995). Experimental design. Belmont, CA: Brooks Cole. 
Kish, L. (1965). Survey sampling. New York: John Wiley. 
Klar, N. & Donner, A. (2001). Current and future challenges in the design and analysis of 

cluster randomization trials. Statistics in Medicine, 20, 3729-3740. 
Laopaiboon, M.  (2003). Meta-analyses involving cluster randomization trials: A review 

of published literature in health care. Statistical Methods in Medical Research, 12, 
515-530. 

Murray, D. M. & Blitstein, J. L. (2003). Methods to reduce the impact of intraclass 
correlation in group-randomized trials, Evaluation Review, 27, 79-103. 

Murray, D. M., Varnell, S. P., & Blitstein, J. L. (2004). Design and analysis of group-
randomized trials: A review of recent methodological developments. American 
Journal of Public Health, 94, 423-432.  

Nye, B., Hedges, L. V., & Konstantopoulos, S. (2004). How large are teacher effects?  
Educational Evaluation and Policy Analysis, 26, 237-257. 

Raudenbush, S. W. & Bryk, A. S. (2002). Hierarchical linear models. Thousand Oaks, 
CA: Sage Publications. 



Effect Sizes in Three Level Experiments    31 

Rooney, B. L. & Murray, D. M. (1996). A meta-analysis of smoking prevention programs 
after adjustment for errors in the unit of analysis. Health Education Quarterly, 23, 
48-64. 

Searle, S. R. (1971). Linear models. New York: John Wiley. 
Searle, S. R., Casella, G., & McCulloch, C. E. (1992). Variance components. New York: 

John Wiley. 
Snedecor, G. W. (1956). Statistical methods applied to experiments in agriculture and 

biology. Ames, IA: Iowa State University Press. 
Verma, V. & Lee, T. (1996). An analysis of sampling errors for demographic and health 

surveys.  International Statistical Review, 64, 265-294. 



Table 1 
School and classroom level intraclass correlations estimated from STAR and NAEP 
 
 Mathematics    Reading 
Grade ρS ρC ρC/ρS   ρS ρC ρC/ρS

        
K (STAR) 0.17 0.13 0.76  0.17 0.11 0.69 
1 (STAR) 0.18 0.13 0.74  0.18 0.08 0.46 
2 (STAR) 0.16 0.12 0.74  0.15 0.10 0.64 
3 (STAR) 0.15 0.11 0.74  0.11 0.09 0.77 
4 (NAEP 1992) 0.24 0.14 0.59  0.22 0.12 0.53 
4 (NAEP 1996) 0.29 0.13 0.45   0.24 0.09 0.40 
Note: The intraclass correlations in STAR are computed from data in Nye, Konstantopoulos, 
And Hedges (2004). 
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Table 2 
The effect of ignoring levels of clustering on the variance of dWT
 
    Variance Computed   Estimated variance / True variance 

p dWT vWT   
Ignoring 
Classes 

Ignoring 
Schools 

Ignoring 
Classes        
ρ = ρS + ρC

Ignoring 
Schools            
ρ =  ρS + ρC / p   

Ignoring 
Classes 

Ignoring 
Schools 

Ignoring 
Classes         
ρ = ρS + ρC

Ignoring 
Schools             
ρ =  ρS + ρC / 
p 

             
1 0.1482 0.0576  0.0385 0.0290 0.0576 0.0576  0.670 0.504 1.000 1.000

             
2 0.1485 0.0438  0.0343 0.0145 0.0538 0.0440  0.783 0.332 1.229 1.006

             
3 0.1486 0.0392  0.0329 0.0097 0.0525 0.0394  0.838 0.247 1.341 1.006

             
4 0.1487 0.0369  0.0321 0.0073 0.0519 0.0371  0.871 0.197 1.407 1.005

             
5 0.1487 0.0355  0.0317 0.0058 0.0515 0.0357  0.893 0.163 1.451 1.004

             
8 0.1488 0.0335  0.0311 0.0036 0.0510 0.0336  0.929 0.108 1.524 1.003

             
16 0.1488 0.0317  0.0305 0.0018 0.0505 0.0318  0.963 0.057 1.591 1.002
                          
 
 Note: In this example, m = 10, n = 20, ρS = 0.15, ρC = 0.10, and ( )/ = 0.15 T C
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