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Abstract 

Field experiments that involve nested structures may assign treatment conditions either to 
entire groups (such as classrooms or schools), or individuals within groups (such as 
students). Even though typically the interest in field experiments is in determining the 
significance of the overall treatment effect, it is equally important to examine the 
inconsistency of the treatment effect in different contexts, and understand how they vary. 
This study provides methods for computing power of tests for the variability of 
treatment effects in different clusters in three-level designs, where for example, students 
are nested within classrooms and classrooms are nested within schools. The power 
computations take into account clustering effects at the classroom and at the school level, 
and sample size effects (e.g., number of students, classrooms). The methods can also be 
applied to quasi-experimental studies that examine the significance of the variation of 
group differences in an outcome, or associations between predictors and outcomes across 
different clusters.  
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Often times populations of interest in the social sciences, education, and psychology have 

multilevel structures. For example, students are nested within classrooms, and classrooms are 

nested within schools, employees are nested within departments, which are nested within firms, 

individuals are nested within neighborhoods, which are nested within cities. Experiments that 

involve populations with nested structures may assign treatments to groups (or clusters) because 

the treatment is naturally administered to intact groups (such as a curriculum to a classroom or a 

management system to a firm), or because the assignment of treatments to groups is much easier 

to implement than assignment to individuals. Other times however, treatments are assigned to 

individuals (such as different forms of computerized instruction to students within classrooms or 

schools). In education there has recently been an increased interest in large-scale field 

experiments to evaluate educational interventions (see, e.g., Mosteller & Boruch, 2002).  An 

example of a field experiment in education is Project STAR, a large-scale randomized 

experiment, where within each school students and teachers were randomly assigned to 

classrooms of different sizes (see Nye, Hedges, & Konstantopoulos, 2000).  

Methods for power computations of tests for treatment effects in multi-level designs have 

already been developed (Donner, 1984; Hsieh, 1988; Konstantopoulos, 2006; Murray, 1998; 

Murray, Van Horn, Hawkins, & Arthur, 2006; Raudenbush, 1997; Raudenbush & Liu, 2000, 

2001). For example, a recent study by Murray et al. (2006) provided ways for analyzing data 

with complicated nested structures within the ANCOVA framework and discussed power 

computations of tests for treatment effects. Although much of the interest in experiments is in 

determining the significance of an overall treatment effect, it is also important to determine the 

inconsistency of treatment effects in different contexts, and understand how they vary. That is, to 

justify the effects of an intervention, one needs to evaluate them in different contexts to 
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understand how context shapes both the nature of the intervention, as implemented, and the 

effects expected. This is an important part of the design and the implementation of interventions, 

since program developers try to ensure that intervention effects are relatively consistent across 

different contexts. Ideally, a researcher would aspire to an overall positive average treatment 

effect and a small variation of the treatment effect across clusters. Large variation in the 

treatment effect across clusters would indicate large differences in treatment effectiveness. A 

researcher would then be able to identify the clusters where the treatment was more successful 

and determine the cluster-specific factors that contributed to the success. This could eventually 

help reconsidering the nature of the intervention and its implementation (see Raudenbush & 

Wilms, 1991; Turpin & Sinacore, 1991).  

This suggests evaluating educational interventions in a larger scale to determine whether 

treatment effects, that may be evident in smaller scale studies, are generalizable to larger scale 

studies. The notion of generalizability of treatment effects is closely related to the concept of 

external validity, which is concerned with the degree to which causal relationships hold across 

different clusters (see Shadish, Cook, & Campbell, 2002). Even though external validity and 

generalization have typically been expressed in qualitative terms, as Shadish et al. (2002) argue, 

there is a conceptual similarity between generalizability of treatment effects and interactions 

between treatments and clusters. Evidence of an interaction between clusters and treatments 

indicates low external validity. One way to evaluate the generalizability of an intervention is to 

examine the inconsistency of the treatment effect across various clusters (e.g., classrooms or 

schools). Specifically, when the treatment is assigned within clusters it is likely that context may 

interact with the treatment to produce differential treatment effects across clusters. In educational 

research for example, these interactions can occur between an intervention and classrooms or 
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schools. Suppose that an intervention randomly assigns students to treatment conditions within 

schools. Then, one can compute a treatment effect for each school and since schools may differ 

in leadership, organization, climate, and commitment to the intervention it is plausible that the 

effectiveness of the treatment will vary across schools. That is, in some schools the treatment 

may be more beneficial to students than in other schools. This example illustrates possible 

variation of the treatment effect across clusters in two-level designs where level-1 units 

(students) are nested within level-2 units (schools) and the treatment is assigned at level 1. In 

three-level designs however, the treatment can be assigned either at the first level or at the 

second level. When the treatment is assigned at the first level the treatment effect can vary across 

level 2 and level 3 units, and when the treatment is assigned at the second level the treatment 

effect can vary across level 3 units.   

Conducting studies to determine the inconsistency or variability of treatment effects 

across clusters is a very timely issue, since some research programs are dedicated to understand 

how treatment effects vary across contexts. For example, the Interagency Educational Research 

Initiative (IERI), funded jointly by the National Science Foundation, the National Institute of 

Child Health and Human Development, and the Institute of Educational Sciences is a major 

program of research devoted to the problem of determining which educational interventions 

produce consistent effects across classrooms and schools. Most IERI research projects involve 

implementation of interventions in several clusters to generate evidence about the variation of 

both implementation and outcomes across clusters.   

The Sensitivity of the Design 

In order to determine the statistical significance of the between-cluster variation of the 

treatment effect one needs to ensure that the design is sensitive enough to detect this variation, if 
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it exists. Hence, a critical task in planning experimental studies to evaluate the inconsistency of 

treatment effects involves making decisions about sample sizes and clustering effects to ensure 

sufficient statistical power of the test for the inconsistency or variability of the treatment effect 

across clusters. The power in this case is the probability of detecting a significant inconsistency 

of the treatment effect across clusters when the inconsistency is true. 

To test the variability of treatments effects, designs in which treatments are crossed with 

context factors (e.g., classrooms, schools) are necessary. In these multi-level designs the 

inconsistency of treatment effects across clusters are evaluated as interactions between 

treatments and factors representing context. These context factors and interactions can be treated 

as random effects with variance components structures. These variance components, which 

indicate clustering via intraclass correlations, will influence the power of the inconsistency of the 

treatment effect. In addition, the sample sizes at different levels of nesting will affect power 

differently. For example, the power of the test used to detect the variability of the treatment 

across level 2 units in two-level designs depends on the sample size of the level 1 units, and the 

clustering effect at the second level (see Raudenbush & Liu, 2000). In addition, the number of 

level 2 units impacts power via the df of the F-test. Statistical theory for computing the power of 

the test for the variability of the treatment effect in two-level designs where the treatment effect 

varies across level 2 units has already been provided (see e.g., Raudenbush & Liu, 2000). 

Raudenbush and Liu found that the proportion of the variance between clusters (or clustering 

effect) is directly and positively related to the power of the test for the variability of the treatment 

effect. In addition, their work indicated that as the number of level 1 (e.g., students) within 

clusters (e.g., schools) gets infinitely large, the power tends to one.   
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Nonetheless, designs and data have often more complicated structures that may involve 

three levels of nesting. For example, in education, students are nested within classrooms, and 

classrooms are nested within schools. In medicine, patients are nested within wards, and wards 

are nested within hospitals. In these examples nesting occurs naturally at two levels (classrooms 

and schools) regardless of whether both sources of clustering are taken into account in the design 

and the analysis part of the study. For example, a researcher may choose to ignore one level of 

clustering, conduct an experimental study following a two-level design and analyze the data 

obtained using two-level models. However, a more appropriate design and analysis would 

involve three levels, since clustering effects exist naturally at both level 2 and level 3. Ignoring 

the three-level structure will result in an inaccurate estimate of power of the test for the 

variability of the treatment effect in the design stage as we demonstrate in the results section.  

In three-level designs the computation of power is even more complex than in two-level 

designs, since there are clustering effects at the second and at the third. The power in these 

designs is, among other things, a function of two different sample sizes: the number of level 1 

and level 2 units. The power is also a function of two different intraclass correlations (at levels 2 

and 3). This paper provides methods that facilitate the computation of statistical power of tests 

for the inconsistency of the treatment effect in three-level designs. We provide examples drawn 

from the field of education to illustrate the power computations. The remaining of the paper is 

structured as follows. First, we review the effects of clustering on power. Second, we outline the 

three-level designs that will be discussed. Then, we present methods and examples for 

computing power separately for each design. Finally, we summarize the usefulness of the 

methods and draw conclusions.   
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Clustering in Three-Level Designs 

Previous methods for power analysis of the variance of the treatment effect in two-level 

designs involved the central F-distribution (see Raudenbush & Liu, 2000). The power is a 

function of the clustering effect, typically expressed as an intraclass correlation, and the number 

of observations within clusters. Suppose that in a two-level design the total variance of the 

outcome in a population with nested structure (e.g., students nested within schools) is 2
T! . The 

total variance is decomposed into a between-cluster variance 2"  and a within-cluster variance 

2
e! , so that 2 2 2

T e# $! ! " . Then 2 2/ T#% " !  is the intraclass correlation and indicates the 

proportion of the variance in the outcome between clusters.  

The same logic holds for three-level designs. The only difference is that clustering in 

three-level designs occurs in more than one level. In this case the total variance in the outcome is 

decomposed into three components: the within level 2 and between level 1 units variance, 2
e! , 

the between level 2 and within level 3 units variance, 2& , and the between level 3 units variance, 

2" . Then, the total variance in the outcome is defined as 2 2 2 2
T e! ! & "# $ $ . Hence, in three-

level designs we define two intraclass correlations:  

2

2 2
T

&%
!

#            (1) 

at level 2  

2

3 2
T

"%
!

#            (2) 

at level 3 (and the subscripts 2 and 3 indicate the level of the hierarchy).  
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When covariates are included in the model the variances are defined as 2 2 2, ,Re R R! & " , and 

2
RT! , where 2 2 2 2

RT Re R R# $ $! ! & "  (and R indicates residual variances because of the adjustment of 

the covariates). There are two parameters that summarize the associations between these four 

variances and indicate the clustering effects at levels 2 and 3: the adjusted intraclass correlation 

at the level 2  

2

2 2
R

A
RT

&%
!

#           (3) 

and the adjusted intraclass correlation at level 3  

2

3 2
R

A
RT

"%
!

# ,          (4) 

(where subscript A indicates adjustment).  

The computation of statistical power for the variability of the treatment effect in field 

experiments requires knowledge of the intraclass correlations. One way to obtain information 

about reasonable values of intraclass correlations is to compute these values from cluster 

randomized trials that have been already conducted. Murray and Blitstein (2003) reported a 

summary of intraclass correlations obtained from 17 articles reporting cluster randomized trials 

in psychology and public health and Murray, Varnell, and Blitstein (2004) give references to 14 

very recent studies that provide data on intraclass correlations for health related outcomes.  

Another strategy is to analyze sample surveys that have used a cluster sampling design. 

Gulliford, Ukoumunne, and Chinn (1999) and Verma and Lee (1996) presented values of 

intraclass correlations based on surveys of health outcomes. A recent study provided plausible 

values of clustering for educational outcomes using recent large-scale studies that surveyed 

national probability samples of elementary and secondary students in America (Hedges & 
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Hedberg, 2006). The present study uses intraclass correlation values that are reported in Hedges 

and Hedberg (2006).  

Three-Level Designs 

In two-level designs either level 1 or level 2 units are randomly assigned to one of two or 

more treatment conditions. When treatment is assigned at level 1 the treatment effect can vary 

across level 2 units. In three-level designs the nested structure is more complex, since the 

treatment can be assigned either at level 1, at level 2, or at level 3. When the assignment is either 

at the first or the second level the treatment effect can vary across level 2 and level 3 units. This 

study discusses three-level designs where randomization can occur at two levels: the first and the 

second level. In the first design, the random assignment occurs at level 1 and hence, the 

treatment effect can vary across level 2 and level 3 units. In the second design, the random 

assignment occurs at level 2 and hence the treatment effect can vary across level 3 units. In each 

design we illustrate the general case, which includes covariates at all levels of the hierarchy and 

then the simplest case, where covariates are not included at any level. 

For simplicity, in each design we assume that there is one treatment and one control 

group and that the designs are balanced. In the first design, level 1 units are randomly assigned to 

treatment and control conditions. In this case we represent the total number of level 3 units by m, 

the number of level 2 units within each level 3 unit by p, and the number of level 1 units within 

each group (treatment or control) within each level 2 unit by n. The sample size for the treatment 

and the control groups is t cN N mpn# #  and the total sample size is 2t cN N N mpn# $ # . In 

the second design, level 2 units are randomly assigned to treatment and control groups. In this 

case we also represent the total number of level 3 units by m, the number of level 2 units within 

each group (treatment or control) within each level 3 unit by p, and the number of level 1 unit 
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within each level 2 unit by n. The sample size for the treatment and the control groups is again 

t cN N mpn# #  and the total sample size is 2t cN N N mpn# $ # . In addition, in each design, we 

consider the case where q level 3 covariates, w level 2 covariates, and r level 1 covariates are 

included in the analysis. We assume that the covariates at the first and second levels are centered 

around their level specific means respectively (that is we assume group-mean centering). This 

ensures that predictors explain variation in the outcome only at the level at which they are 

introduced. In addition, we assume that the covariates at the first and second levels are fixed. 

Design I: Treatment is Assigned at Level 1 

In this design level 2 units are nested within level 3 units, and the treatment is crossed 

with level 2 and level 3 units (see Kirk, 1995, p. 489). The level 1 units are randomly assigned to 

treatment and control conditions within each level 2 and level 3 units. In this case, n is the 

number of level 1 units within each condition within each level 2 unit. In the discussion that 

follows, we assume that the level 2 and level 3 units as well as the treatment by level 2 and the 

treatment by level 3 units interactions are random effects.  

The structural model in ANCOVA notation is  

' ( ' (Ai Aj Aij A(j)k Ai j k ijk lµ + ! " + !" + # + !# + $T T T
ijkl I ijkl C ijk S j AY ) ) )# $ $ $ $X Z * ,  (5) 

where µ is the grand mean, !Ai is the (fixed) effect of the ith treatment (i = 1,2), T
I)  = ("I1, …, "Ir) 

is a row vector of r level 1 covariate effects, T
C)  = ("C1, …, "Cw) is a row vector of w level 2 

covariate effects, T
S)  = ("S1, …, "Sq) is a row vector of q level 3 covariate effects, Xijkl is a 

column vector of r level 1 covariates, Zijk is a column vector of w level 2 covariates, !ij is a 

column vector of q level 3 covariates, the last five terms represent level 3, treatment by level 3 

units, level 2, treatment by level 2 units, and level 1 random effects respectively. Specifically, 
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Aj+  is the random effect of level 3 unit j (j = 1,…,m), Aij!" , is the treatment by level 3 units 

random effect, ( )A j k,  is the random effect of level 2 unit k (k = 1,…,p) within level 3 unit j, 

' (Ai j k-,  is the treatment by level 2 units random effect within level 3 unit j, and ' (A ijk l.  is the error 

term of level 1 unit l (l = 1,…,n) within treatment i, within level 2 unit k, within level 3 unit j. 

We assume that the adjusted level 1 error term as well as the adjusted level 2, level 2 units by 

treatment, level 3, and level 3 units by treatment random effects are normally distributed with a 

mean of zero and residual variances 2 ,Re!  2 ,R&  2 ,Rt&  2
R" , 2 ,Rt"  respectively (where subscript t 

indicates treatment).   

In a multi-level framework the model becomes  

0 1
T

jkl jk A jk jkl rjk rjkl AjklY u u TREATMENT e# $ $ $u X , 

the level two model for the intercept and the treatment effect is 

0 00 0 0

1 10 1 1

% &

% & ,

T
jk j wj wjk A jk

T
A jk A j wj wjk A jk

u +

u +

# $

# $

Z

Z

/

/
 

and the level three model for the intercept and the treatment effect is 

00 000 00 00

10 010 01 01

% ' (

% ' ( ,

T
j q qj A j

T
A j A q qj A j

*

*

# $ $

# $ $

0

0
 

where TREATMENTi is a dummy variable centered at its mean (treatment is 0.5, otherwise - 0.5), 

#A0jk is the level 2 random effect adjusted by the effects of the level 2 covariates Z, 1& A jk  is the 

treatment by level 2 units random effect adjusted by the effects of the level 2 covariates Z, 00A j1  

is the level 3 random effect adjusted by the effects of the level 3 covariates !, 01A j1  is the 

treatment by level 3 units random effect adjusted by the effects of the level 3 covariates !, and 

Ajkle  is a level 1 error term adjusted by the effects of the level 1 covariates X. The level 1 and 
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level 2 covariates are treated as fixed. The level 1 residual as well as the adjusted level 2, level 2 

units by treatment, level 3 unit, and level 3 units by treatment random effects are normally 

distributed with a mean of zero and residual variances 2 ,Re!  2 ,R&  2 ,Rt&  2
R" , 2 ,Rt"  respectively.  

In this design two tests are employed to determine the varaibility of the treatment effect. 

In particular, since the treatment is assigned at level 1, the treatment effect can vary across level 

2 units (within level 3 units) and within level 3 units. The first test will determine the 

significance of the variance of the treatment effect between level 2 units and the second test will 

determine the significance of the variance of the treatment effect between level 3 units.  

Hypothesis Testing for the Mariance of the Treatment Effect between Level 2 Units 

The significance of the variance 2
Rt&  of the treatment effect across level 2 units can be 

tested with an F-test. In particular, we test the hypothesis 

H0: 2 0Rt #& , 

and compute   

 
' ( ' (

' ( ' ( ' (

2

1 1
2 2

1 1 2 2
1 1 1 1 1 1

/ 1

/ 2 1

pm

Ajk Aj
j k

p pm n m n

Ajk l Ajk Ajk l Ajk
j k l j k l

Y Y m p w
F

Y Y Y Y mp n r

# #

# # # # # #

2 3 2 3 3
#
4 5

3 $ 3 3 36 7
6 78 9

::

::: :::

!! !!!

! !

,  (6) 

where 1 2Ajk A jk A jkY Y Y2 # 3!! ! !  is the adjusted mean difference in the outcome between the 

treatment and the control group for level 2 unit k within level 3 unit j, 1A jkY !  is the adjusted 

mean of the outcome in the treatment group for level 2 unit k within level 3 unit j, 2A jkY !  is the 

adjusted mean of the outcome in the control group for level 2 unit k within level 3 unit j, 

1 2Aj A j A jY Y Y2 # 3!!! !! !!  is the adjusted mean difference in the outcome between the treatment 
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and the control group for level 3 unit j, 1A jY !!  is the adjusted mean of the outcome in the 

treatment group for level 3 unit j, 2A jY !!  is the adjusted mean of the outcome in the control 

group for level 3 unit j, 1Ajk lY  is the adjusted outcome for level 1 unit l in condition i within level 

2 unit k within level 3 unit j, AjkiY ! is the adjusted mean in the outcome of condition i within level 

2 unit k within level 3 unit j, m is the total number of level 3 units, p is the number of level 2 

units within each level 3 unit, n is the number of level 1 units in condition i within level 2 unit k 

within level 3 unit j, w is the number of level 2 covariates, and r is the number of level 1 

covariates. Under the null hypothesis the test statistic in equation 6 follows an F distribution with 

df  = ( ' (1m p w3 3 , ' (2 1mp n r3 3 ).  

The alternative hypothesis is  

Ha: 2 0Rt ;& .  

Following Kirk (1995) and Raudenbush and Liu (2000) the ratio of the expectation of the 

numerator to the expectation of the denominator in equation 6 is  

2 2 2

2 21Rt Re Rt
A

Re Re

n n& ! &<
! !
$

# # $ ,        (7)  

which indicates that under the null hypothesis A<  = 1. The parameter 2
Re!  can be expressed as a 

function of the adjusted intraclass correlations at level 2 and level 3 namely  

2

2
2 3

1 .
(1 )

Rt
A

RT A A

n&<
! % %

# $
3 3

        (8) 

Suppose that the residual variance of the treatment effect across level 2 units, 2
Rt& , is a proportion 

of the total residual variance between level 2 units, 2
2R& , namely 2 2

2 2Rt R R& = &#  and 20 1R=> > . 

Then equation 8 becomes 
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2
2 2

2
2 3

1
(1 )

R R
A

RT A A

n= &<
! % %

# $
3 3

        (9) 

and in turn equation 9 can be expressed as a function of the unadjusted intraclass correlations  

2 2 2

1 2 3

1 ,
(1 )

R
A

n= ? %<
? % %

# $
3 3

        (10) 

where  

2 2 2 2
2 1R Re e/ , /? & & ? ! !# # .        (11)  

The ? s indicate the proportion of the variances at each level of the hierarchy that is still 

unexplained (percentage of residual variation). For example, when 1? = 0.20, this indicates that 

the variance at level 1 decreased by 80 percent due to the inclusion of covariates.  

Computing Power of the Test for the Mariance of the Treatment Effect between Level 2 Units  

When the null hypothesis is false, the ratio of the F test statistic in equation 6 to A<  in 

equation 8 follows an F distribution with df = m(p – 1) – w, 2mp(n – 1) – r. The power of the F-

test is computed as  

 
p1 = probhF > Faj = probh F / A<  > Fa / A< j  

    = 1 - Hh Fa / A< , m(p – 1) – w, 2mp(n – 1) – rj,    

where Fa is the critical value of the F distribution for a certain level of significance a, and H is 

the cumulative distribution function of the F distribution.  When no covariates are included at 

any level (that is q, w, r = 0) the degrees of freedom are slightly changed and the ratio of the 

expectations becomes 

2 2

2 3

1
1

n= %<
% %

# $
3 3

, 
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since 1 2 1? ?# # , and 2 2
2 /t= & &#  is the proportion of the between-level 2 units variance of the 

treatment effect to the overall between-level 2 units variance. Notice that when the clustering at 

level 3 is ignored the power of the test refers to a two-level design where level 1 units are nested 

within level 2 units.  

How Does Power Depend on Level 1, Level 2, and Level 3 Units? 

In three-level designs, the number of units at different levels of the hierarchy will have 

different effects on power. In two-level designs for example we know that the number of level 1 

units in each level 2 unit have a larger impact on power than the number of level 2 units (see 

Raudenbush & Liu, 2000). Similarly, in three-level designs level 1, level 2, and level 3 units will 

impact power differently. One way to examine this impact is to compute A<  (in 10) when the 

number of units at different levels of the hierarchy gets infinitely large. The power is a direct 

function of A<  and hence, other things being equal, when A<  converges to a real number, the 

power is smaller than one, and when A<  gets infinitely large the power approaches one. We 

illustrate the effect of the number of level 1, level 2, and level 3 units on statistical power in 

figures 1 to 2. In our computations we assume achievement data and clustering effects at the 

level 2 and level 3.  

Notice that in this test the power is influenced by the term  

 2 2 2

1 2 3(1 )
Rn= ? %

? % %3 3
.          (12) 

Figure 1 illustrates that, as the number of level 1 units in each level 2 unit becomes 

larger, power increases dramatically and tends to one. In fact, as the number of level 1 units 

becomes infinitely large, A<  (or < ) tends to infinity and hence power tends to one. Figure 1 

illustrates power computations for the F-test without covariates as a function of the number of 
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level 1 units holding constant the number of level 2 and level 3 units (p = 4, m = 20). Figure 2 

illustrates that, as the number of level 3 units becomes larger power increases considerably and 

when the number of level 3 units gets infinitely large the power tends to one. In fact, as the 

number of level 3 units becomes infinitely large power tends to one. Figure 2 illustrates power 

computations for the F-test without covariates as a function of the number of level 3 units 

holding constant the number of level 1 and level 2 units (n = 10, p = 4). The number of level 2 

units has a similar effect on power as the number of level 3 units. Notice that the number of level 

2 and level 3 units influence power only via the df of the F-test.  

To select plausible values of clustering at the third level (school), we use the findings of a 

recent study that computed a large amount of intraclass correlations in two-level designs (Hedges 

& Hedberg, 2006). The findings indicated that with educational data most of the level 3 

intraclass correlations ranged between 0.1 and 0.2. Evidence from two-level analysis of the 

National Assessment of Educational Progress (NAEP) trend data, and Project STAR data also 

points to level 2 (school) intraclass correlations between 0.1 and 0.2. Hence, we compute power 

using two values for the intraclass correlation at level 3: 0.1 and 0.2. In addition, evidence from 

NAEP main assessment and Project STAR using three-level models indicate that the clustering 

at level 2 is nearly 2/3 as large as the clustering at level 3. Hence, we compute power using two 

values for the intraclass correlation at level 2: 0.07 and 0.14. In addition, evidence from project 

STAR indicates that the variance of the treatment effect between level 3 units is nearly 15 

percent of the overall variance between level 3 units (and this estimate is used in our power 

computations). We also assume that the variance of the treatment effect between level 2 units is 

nearly 15 percent of the total variance between level 2 units. 
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The following patterns are consistent in Figures 1 to 2. First, the number of level 1 units 

has the largest impact on power and increases power at a faster rate than the number of level 2 

and level 3 units. The level 1 units impact power via the df of the denominator also, and when 

the df become infinitely large the critical value of F tends to a 2
1/@ A , where )1 = m(p – 1) – w, 

and in turn power tends to one. The number of level 2 and level 3 units influences power only via 

the df of the F-statistic. As the df of the numerator and the denominator become infinitely large, 

the critical value of F tends to one, and in turn power tends to one. Second, the clustering effects 

(e.g., intraclass correlations) also impact power with larger clustering effects producing larger 

power. For example, consider a design with a total sample size of 1600, where there are 20 level 

1 units per level 2 unit, four level 2 units per level 3 unit, and 20 level 3 units. When no 

covariates are included, and the clustering effects at level 3 and level 2 are respectively 3%  = 0.1 

and 2% = 0.07, the power is 0.16, but nearly three times larger, 0.44, when the clustering effects 

are respectively 3%  = 0.2 and 2% = 0.14. Third, the larger the variance of the treatment effect 

between level 2 units the larger the power. In addition, the proportion of the variance in the 

outcome explained at level 1 and level 2 also impacts power, but differently. In particular, 

covariates that explain variation at level 1 influence power positively, and covariates that explain 

variation of the treatment effect at level 2 affect power inversely.  

-------------------------------------------- 

Insert Figures 1 and 2 About Here 

-------------------------------------------- 

Hypothesis Testing for the Mariance of the Treatment Effect between Level 3 Units  

The variance 2
Rt"  of the treatment effect across level 3 units can be tested with and F-test. 

In particular, we test the hypothesis 
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H0: 2 0Rt #" , 

and compute  
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where AY2 !!!!  is the adjusted mean difference in the outcome between the treatment and the 

control group across all level 3 units, q is the number of covariates at level 3, and all other terms 

have been defined in equation 6. Under the null hypothesis, the test statistic in equation 13 

follows an F distribution with df  = (m - q – 1, m(p – 1) – w).  

The alternative hypothesis is  

Ha: 2 0Rt ;" .  

Following Kirk (1995) and Raudenbush and Liu (2000) the ratio of the expectation of the 

numerator to the expectation of the denominator in equation 13 is  

2 2 2 2
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n n
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& ! & !
$ $

# # $
$ $

       (14) 

which indicates that under the null hypothesis A<  = 1. Equation 14 is eventually expressed as a 
function of the unadjusted intraclass correlations at the levels 2 and 3 namely  

3 3 3

1 2 2 1 2 1 3
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,       (15) 

where 2 2
3 R /? " "#  and 2 2

3 /R Rt R= " "#  is the proportion of the residual variance of the treatment 

effect across level 3 units to the total residual variance between level 3 units, and 30 1R=> > .  
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Computing Power of the Test for the Mariance of the Treatment Effect between Level 3 Units 

When the null hypothesis is false, the ratio of the F test statistic in 13 to A<  in equation 

14 follows an F distribution with df = (m - q – 1, m(p – 1) – w). The power of the F-test is 

computed as  

p1 = probhF > Faj = probh F / A<  > Fa / A< j  

         = 1 - Hh Fa / A< , m – q - 1, m(p -1) – wj,    

where Fa is the critical value of the F distribution for a certain level of significance a, and H is 

the cumulative distribution function of the F distribution. When no covariates are included at any 

level (that is q, w, r = 0) the degrees of freedom are slightly changed and the ratio of the 

expectations becomes 

3 3

2 2 3

1
1 ( 1)

pn
n

= %<
= % %

# $
$ 3 3

,        

where 2 2
3 /t= " "#  is the proportion of the variance of the treatment effect between level 3 units 

to the total variance between level 3 units.  
 

How Does Power Depend on Level 1, Level 2, and Level 3 Units? 

Notice that in this test the power is influenced by the term  

 3 3 3

1 2 2 1 2 1 3( )
R

R

pn
n

= ? %
? = ? ? % ? %$ 3 3

.        (16) 

Figure 3 illustrates that, as the number of level 1 units becomes larger, power increases 

dramatically and tends to one. In fact, as the number of level 1 units becomes infinitely large, A<  

(or < ) tends to infinity and hence power tends to one. Figure 3 illustrates power computations 

for the F-test without covariates as a function of the number of level 1 units holding constant the 

number of level 2 and level 3 units (p = 4, m = 20). Figure 4 illustrates that, as the number of 

level 2 units becomes larger, power increases dramatically and tends to one. As the number of 
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level 2 units becomes infinitely large power tends to one. Figure 4 illustrates power 

computations for the F-test without covariates as a function of the number of level 2 units 

holding constant the number of level1 and level 3 units (n = 10, m = 20). 

The following patterns are consistent in figures 3 to 4. First, the number of level 1 and 

level 2 units have the largest impact on power. The number of level 2 units impacts power via 

the df of the denominator also and when the df become infinitely large the critical value of F 

tends to a 2
1/@ A , where )1 = m - q – 1, and in turn power tends to one. The number of level 3 

units influences power only via the df of the F-statistic and, as the df of the numerator and the 

denominator become infinitely large, the critical value of F tends to one, and in turn power tends 

to one. Second, the clustering effects (e.g., intraclass correlations) also affect power, with larger 

clustering effects producing larger power. Third, the larger the variance of the treatment effect 

between level 3 units the larger the power. In addition, the proportion of the variance in the 

outcome explained at level 1, level 2, and level 3 also impacts power, but differently. In 

particular, covariates that explain variation at level 1 and level 2 influence power positively, 

whereas covariates that explain part of the variation of the treatment effect between level 3 units, 

affect power inversely. 

-------------------------------------------- 

Insert Figures 3 and 4 About Here 

-------------------------------------------- 

Design II: Treatment is Assigned at Level 2 

In this design, level 3 units and treatments are crossed, and level 2 units are nested within 

treatments and level 3 units (see Kirk, 1995, p. 491). Within each level 3 unit, level 2 units are 

randomly assigned to a treatment and a control group. In this design p is the number of level 2 
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units in each condition. In the discussion that follows, we assume that level 2, level 3 units, and 

the treatment by level 3 units interaction are random effects. 

The structural model in ANCOVA notation is  

' (Ai Aj Aij A(ij)k ijk lµ + ! " + !" + # + $T T T
ijkl I ijkl C ijk S j AY ) ) )# $ $ $ $X Z * ,   (17)  

where the last four terms represent level 3, treatment by level 3 units, level 2, and level 1 random 

effects respectively (and all other terms have been defined previously).  

In a multi-level framework the model becomes  

0
T

jkl jk rjk rjkl AjklY u e# $ $u X , 

the level two model for the intercept is 

0 00 01 0 0% % &T
jk j A j jk wj wjk A jku Treatment +/# $ $ Z , 

and the level three model for the intercept and the treatment effect is 

00 000 00 00

01 010 01 01

% ' (
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T
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# $ $

# $ $

0

0
 

where all parameters are as defined in the first design. All covariates at level 1 and 2 are treated 

as fixed as in the first design. 

Hypothesis Testing for the Mariance of the Treatment Effect between Level 3 Units 

The significance of the variance 2
Rt"  of the treatment effect across level 3 units can be 

tested with an F-test. In particular, we test the hypothesis 

H0: 2 0Rt #" , 

and compute   
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where m is the total number of level 3 units, p is the number of level 2 units within condition i 

within level 3 unit j, n is the number of level 1 units, and all other terms are defined in equations 

6 and 13. Under the null hypothesis the test statistic in equation 18 follows an F distribution with 

df  = (m – q – 1, 2mp(n – 1) – r).  

The alternative hypothesis is  

 Ha: 2 0Rt ;" .  

Following Kirk (1995) and Raudenbush and Liu (2000) the ratio of the expectation of the 

numerator to the expectation of the denominator in equation 18 is  

2 2 2

2 21Rt Re Rt
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Re Re
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$

# # $ ,       (19)  

which indicates that under the null hypothesis A<  = 1. Equation 19 is eventually expressed as a 

function of the unadjusted intraclass correlations at levels 2 and 3 namely 

3 3 3
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Computing Power of the Test for the Mariance of the Treatment Effect between Level 3 Units  

When the null hypothesis is false, the ratio of the F test statistic in 18 to A<  in equation 

19 follows an F distribution with df = (m – q – 1, 2mp(n – 1) – r). The power of the F-test is 

computed as  

p1 = probhF > Faj = probh F / A<  > Fa / A< j  
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         = 1 - Hh Fa / A< , m – q – 1, 2mp(n – 1) – r j,    

where Fa is the critical value of the F distribution for a certain level of significance a, and H is 

the cumulative distribution function of the F distribution. When no covariates are included at any 

level (that is q, w, r = 0) the degrees of freedom are slightly changed and the ratio of the 

expectations becomes 

3 3

2 3

1
1

pn= %<
% %

# $
3 3

. 

Notice that when the clustering at level 2 is ignored the power of the test refers to a two-level 

design where level 1 units are nested within level 3 units.  

How Does Power Depend on Level 1, Level 2, and Level 3 Units? 

Notice that in this case the term that impacts power is  

 3 3 3

1 2 3(1 )
Rpn= ? %

? % %3 3
.          (21) 

Figure 5 illustrates that, as the number of level 1 units becomes larger, power increases 

dramatically and tends to one. Figure 5 illustrates power computations for the F-test without 

covariates as a function of the number of level 1 units holding constant the number of level 2 and 

level 3 units (p = 4, m = 20). Figure 6 illustrates that, as the number of level 2 units becomes 

larger, power increases dramatically and tends to one. Figure 6 illustrates power computations 

for the F-tests without covariates as a function of the number of level 2 units holding constant 

the number of level 1 and level 3 units (n = 10, m = 20). 

The following patterns are consistent in figures 5 and 6. First, the number of level 1 and 

level 2 units have the largest impact on power. The number of level 1 and level 2 units impacts 

power via the df of the denominator also and when the df become infinitely large the critical 

value of F tends to a 2
1/@ A  where )1 = m - q – 1, and in turn power tends to one. The number of 
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level 3 units influences power only via the df of the F-statistic and as the number of level 3 units 

(and df) become infinitely large power tends to one. Second, the clustering effects (e.g., 

intraclass correlations) also affect power with larger clustering effects producing larger power. 

Third, the larger the variance of the treatment effect between level 3 units the larger the power. 

In addition, the proportion of the variance in the outcome explained at level 1 and at level 3 also 

impacts power, but differently. In particular, covariates that explain variation at level 1 influence 

power positively, whereas covariates that explain part of the variation of the treatment effect 

between level 3 units, affect power inversely. 

-------------------------------------------- 

Insert Figures 5 and 6 About Here 

-------------------------------------------- 

The Importance of Conducting Three-Level Power Analysis 

 In three-level designs three tests can be constructed for the variability of the treatment 

effect. When the treatment is assigned at level 1, the first test examines the significance of the 

variation of the treatment effect across level 2 units and the second test examines the significance 

of the variation of the treatment effect across level 3 units. When the treatment is assigned at 

level 2, the third test examines the significance of the variation of the treatment effect across 

level 3 units. Power analysis for all tests take into account both clustering effects at levels 2 and 

3. Power computations that ignore a level of clustering will always produce power estimates that 

are different than those in three-level designs. If the effects of clustering on statistical power in 

three-level designs are mainly due to one level of clustering and the other level of clustering has 

little additional effect, then, power computations that ignore a level of clustering will produce 

estimates similar to the actual power. One way to address this question is to compare estimates 
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from power computations in three-level designs to power computations in two-level designs that 

ignore one level of clustering. The examples below illustrate the degree of overestimation or 

underestimation of statistical power that can arise when one of the levels of clustering in the 

design is ignored.   

 The first test determines the significance of the variance of the treatment effect between 

level 2 units. In this case as equation 12 indicates, ignoring the clustering at level 3 (that is the 

third level is omitted) indicates that power becomes smaller and hence, a two-level design under-

predicts power. Suppose that we have a three-level design where randomization occurs at level 1 

and involves 20 level 3 units, four level 2 units per level 3 unit, and 30 level 1 units per level 2 

unit (total sample size is 2400). Suppose that no covariates are included at any level, and that the 

intraclass correlations at levels 2 and 3 are 2% = 0.2 and 3%  = 0.2 respectively. If we were to 

ignore the third level and consider a two-level design, we would still have 80 level 2 units with 

30 (15 in each condition) level 1 unit each (total sample size of 2400). There would still be no 

covariates, and let’s assume that the level 2 intraclass correlation would still be 2%  = 0.2.  Power 

computations assuming two levels yield a power of 0.76. Power computations assuming three 

levels however yield much larger power of 0.90. Thus there is a 14 percent absolute difference in 

power, and an 18 percent relative increase in power from 0.76 to 0.90. This is a considerable 

difference in power. 

The second test determines the significance of the variance of the treatment effect 

between level 3 units (when treatment is assigned at level 1). In this case as equation 16 

indicates, ignoring the clustering at level 2 (that is level 2 is omitted), suggests that power 

becomes larger, so long as 2 2 1Rn= ? ?;  (which is the most likely case) and hence the two-level 

design over-predicts power. In contrast, if 2 2 1Rn= ? ?B  the two-level model under-predicts power. 



Power Analysis for the Variability of Treatment Effects in Three-Level Designs 

 25

Assume the three-level design described above with a total sample size of 2400 and clustering 

effects at levels 2 and 3 2 3 0 15.% %# # . If we were to ignore level 2 and consider a two-level 

design, we would still have 20 level 3 units with 120 (60 in each condition) level 1 units each 

(total sample size of 2400). There would still be no covariates, and let’s assume that the level 3 

intraclass correlation would still be 3% #  0.15. Power computations assuming two levels yield 

power of 0.80. Power computations assuming three levels however yield smaller power of 0.72. 

Thus there is an eight percent absolute difference in power, and a 10 percent relative increase in 

power from 0.72 to 0.80. In this case the two-level design over-predicts power, and this 

difference in power is not trivial.  

The third test determines the significance of the variance of the treatment effect between 

level 3 units (when treatment is assigned at level 2). As equation 21 indicates, ignoring the 

clustering at level 2 (level 2 is omitted) suggests that the power becomes smaller and hence the 

two-level design under-predicts power. Assume again the three-level design described above 

with a total sample size of 2400 and clustering effects at levels 2 and 3 2 3 0 15.% %# # . If we 

were to ignore the level 2 and consider a two-level design, we would still have 20 level 3 units 

with 120 (60 in each condition) level 1 units each (total sample size of 2400). There would still 

be no covariates, and let’s assume that the level 3 intraclass correlation would still be 3% #  0.15.  

Power computations assuming two levels yield power of 0.88. Power computations assuming 

three levels however, yield somewhat larger power of 0.93. Thus there is a five percent absolute 

difference in power, and a six percent relative increase in power from 0.88 to 0.93. This is a 

smaller difference in power than in the previous cases. Notice that when the level 2 clustering 

effect is ignored, this test for the treatment effect variance between level 3 units has higher 

power (0.88) than that in the previous test (the second test produced a power of 0.80) since the df 
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in the denominator are larger in this test and in turn the critical F value is smaller (which means 

that the power is larger).  

 These results indicate that, in designs that involve naturally three levels ignoring a level 

of clustering results in inaccurate estimates of statistical power and the amount of overestimation 

or underestimation of power depends on the intraclass correlation structure (and the degrees of 

freedom). If a researcher chooses to ignore a level of clustering our computations indicate that, 

with intraclass correlations that are plausible in educational achievement data, the power 

computations ignoring one level of clustering are closer to the power estimates that take into 

account both levels of clustering when level 2 is ignored. The difference in power estimates is 

larger when level 3 is ignored.  

Conclusion 

 In three-level designs the treatment can be assigned at level 1 or level 2 and hence the 

treatment effect can vary among level 2 and level 3 units. The appropriate power computations 

of tests for the inconsistency of the treatment effect in three-level designs need to include 

clustering effects at both the second and the third level. The present study provided methods for 

computing power of tests for the inconsistency or variability of the treatment effect in three-level 

designs where clustering occurs at the second and the third level.  

 Several interesting findings emerged from the power analyses: First, the number of level 

1 units has an overwhelming impact on power and this holds for both designs and all F-tests 

discussed. Similarly, the number of level 2 units has an overwhelming impact on power for both 

designs and for the F-tests that determine the significance of the variance of the treatment effect 

between level 3 units. The number of level 3 units also impacts power in all designs and tests, 

but to a smaller degree. In general, the larger the number of level 1, level 2, and level 3 units, the 
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larger the power. The clustering effects have a positive impact on power as well. In particular, 

the larger the clustering effects at level 2 and level 3, the larger the power. Similarly, the larger 

the variation of the treatment effect at level 2 and level 3, the higher the power.  

 In addition, covariates at level 1, which explain level 1 variation, increase power in all 

designs and tests. For the F-tests that determine the significance of the variance of the treatment 

effect between-level 3 units, including covariates at level 3 decreases power since the covariates 

explain part of the variation of the treatment effect between level 3 units. Including covariates at 

level 2, when the treatment is assigned at level 1 and the F-test determines the significance of the 

variance of the treatment effect between level 3 units increases power. Finally, including 

covariates at level 2 when the treatment is assigned at level 1 and the F-test determines the 

significance of the variance of the treatment effect between level 2 units decreases power, since 

these covariates explain part of the variation of the treatment effect between level 2 units.  

 Power computations that ignore one level of clustering in the design will either 

overestimate or underestimate the power of a three-level design (unless the intraclass correlation 

of the omitted level is exactly zero). Moreover our computations indicated that the degree of 

overestimation or underestimation of statistical power is not trivial. When clustering occurs 

naturally at two levels, three-level power computations are the most appropriate and accurate. 

 The methods provided here apply to both experimental designs and any non-experimental 

studies that involve nesting and estimate the inconsistency or variability of the association 

between a predictor and an outcome or group differences in the outcome between clusters. The 

logic of power computations remains the same and one can compute the power of a test that 

examines the inconsistency of an association or a group difference of interest using the results 

presented in this study.  
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Figure 1. The power of the between-classroom variance of the treatment effect in design one as a 
function of the number of students within classrooms holding constant the number of classrooms 
per school and the number of schools.    
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Figure 2. The power of the between-classroom variance of the treatment effect in design one as a 
function of the number of schools holding constant the number of students within classrooms and 
the number of classrooms per school. 
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Figure 3. The power of the between-school variance of the treatment effect in design one as a 
function of the number of students within classrooms holding constant the number of classrooms 
per school and the number of schools. 
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Figure 4. The power of the between-school variance of the treatment effect in design one as a 
function of the number of classrooms per school holding constant the number of students within 
classrooms and the number of schools.   
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Figure 5. The power of the between-school variance of the treatment effect in design two as a 
function of the number of students within classrooms holding constant the number of classrooms 
per school and the number of schools. 
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Figure 6. The power of the between-school variance of the treatment effect in design two as a 
function of the number of classrooms per school holding constant the number of students within 
classrooms and the number of schools.   


