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Abstract

This paper reviews the history of the regression discontinuity design in psychology,
statistics, and economics. The design was invented by Donald T. Campbell in 1958. He
and a group of Northwestern University colleagues in both psychology and statistics
worked on the design and its analysis until the early 1980s, with Campbell's student
William Trochin then carrying on the work. Trochim explored variants of the design in
terms of their validity, implementability and analysis. But by 1995, no psychologists
could be found working to improve the design, only to popularize its use--at which they
had only modest success at best. In statistics, the design has never had a high profile,
perhaps because it is deemed unexciting to be able to model selection when the selection
process is completely known, perhaps because the design leads to causal inferences
whose generalization is limited to the cutoff point, and perhaps because its interpretation
depends on functional forms that cannot be directly observed. The first formal proof of
unbiased causal inference resulting from the design came from unpublished papers in
economics--by Goldberger in 1972. However, economists were then pursuing a broader
causal agenda and interest in regression-discontinuity lapsed. It was not used in economic
applications until the mid-1990s. However, it has widely caught on since them among
younger labor economists and econometricians in both the United States and Europe. Has
life now arrived for this 50-year-old design, invented in 1958 and rarely used until the
beginning of this century?



Introduction

The regression discontinuity design (RDD) occurs when assignment to treatment
depends deterministically on a quantified score on some continuous assignment variable.
This score is then used as a covariate in a regression of outcome. When RDD is perfectly
implemented, the selection process is fully observed and so can be modeled to produce an
unbiased causal inference.

This paper is about the history of RDD. Although I am not a trained historian, I
know enough to respect the primacy historians place on documenting events and trends. I
also know that interpreting these events and trends has to be conditioned by independent
knowledge of temporal sequence, by archived specifics that are relevant to the
explanations offered, and by recourse to substantiated theories of individual and
institutional behavior. Fortunately, most of this paper is about such events, trends and
interpretations. But a few parts are not, and historians may well become nervous when I
try to interpret events that might have happened but did not. Although some historians are
developing a taste for counterfactual or virtual history (Ferguson, 1997), it is deservedly a
minority taste. As an amateur historian, I will almost certainly fall into other traps
professionals learn to avoid. Of those I can recognize, one is the teleological trap of
inferring inevitable-seeming links between past events when, with more secure footing in
the original time and place, these events might seem more contingent and many other
futures possible. Another problem is that I am not an independent commentator on RDD.
I have been peripherally involved in its history, albeit as a disseminator and not a theorist
or practitioner.  I was also marginally involved in the Northwestern University theory
group that developed the design in the early 1970’s after its discovery earlier
(Thistlethwaite & Campbell, 1960).  Doubtless I know more about RDD’s history in that
context than about other attempts to develop, disseminate or evaluate the design. While I
have read many of the original sources reported on here, I have probably relied on
secondary sources more than a real historian would. The relatively recent history of RDD
has helped me, though, since many of the method’s pioneers are still alive and have
offered commentary on earlier drafts of this paper as it touched on their work. I have tried
to incorporate their memories and sensitivities into this final version, sometimes even
citing their notes to me about their work. Nonetheless, the following account is mine and
not theirs; and while I respect the simplest norms of writing history, I cannot hope to dip
deeply into the historian’s bag of analytic tools. So, caveat lector.

This is not the first historical account of RDD. Donald Campbell, the design’s
originator, wrote his own version of the design’s early history (Campbell, 1984), and
various scholars have given snapshots of its history since then (Trochim, 1984; 2001).
However, the present account is more current, detailed and interdisciplinary than its
predecessors. Indeed, it is organized around academic disciplines, tracing the history of
the design in Psychology and Education, then in Statistics and Biostatistics, and then in



Economics. The account speaks to many themes, including the repeated re-invention of
the design across these disciplines. This was often done invoking different names for the
design, the upshot being that RDD has not attained consistent “brand” status across the
various behavioral, social and health sciences. Another theme speaks to the design’s
differential waxing and waning by discipline, trying to describe and explain what
happened. RDD was invented and initially developed in Psychology and Education, but
interest in it waned there after about 1990. It has never had much visible growth in
Statistics, though its was acknowledged there. And in Economics RDD had a
serendipitous birth, a long period of neglect, and then a renaissance after about 1995.
This special journal number is part of that revival. Since its invention in 1960, RDD has
been, in Samuel Beckett’s words: "waiting for life to happen". Will this revival breathe
life into the design in Economics and, who knows, even beyond?

Psychology and Education

No doubt exists that the first publication on RDD was an application in education
by two psychologists, Thistlethwaite and Campbell (1960). No doubt also exists that
Campbell was the initiator and that he continued to work on the topic while
Thistlethwaite did not. What is less clear is the intuition that led Campbell to develop the
design. To probe this we go to Campbell and Stanley (1963) since it provides more
conceptual clarification than the earlier paper. This clarification did not involve statistical
proofs, though, for Campbell was not a formal statistician. He operated from intuition and
analogy embedded in deep knowledge of Fisher’s work on design structure, Brunswik’s
work on representative design, and Popper’s work on epistemology, especially as regards
the merits of falsification. However, Campbell regularly sought contact with statistically
sophisticated colleagues, both senior and junior, though in his own oral account to me he
claimed that Stanley provided little to the thinking about RDD in Campbell and Stanley.

In that work, two themes stand out in Campbell’s explanation of RDD. The first
involves selection bias. Campbell and Stanley write that RDD seeks to handle selection
“through representing (it) in detail, not through equation”. That is, selection depends on a
measured cutoff score on a continuous assignment variable. This cutoff fully determines
treatment exposure, and the regression of outcome on assignment estimates how the
entire assignment variable and outcome are functionally related so as to assess whether a
discontinuity occurs in the regression at the cutoff point. This strategy requires
maximizing selection differences since in RDD the treated and untreated groups should
not overlap at all on either side of the cutoff. Experiments handle selection quite
differently--by creating treatment groups that overlap on all observables and
unobservables other than for treatment, thereby “equating” them. Campbell and Stanley’s
reference to RDD representing the selection process “in detail” comes close to specifying
what was later identified as its most important causal feature, that selection is completely
known. Campbell realized how useful a well-described selection process is, implying that
selection is not a problem per se—only unknown selection is.



However, Campbell and Stanley gave more prominence to a second rationale for
RDD that turns out to have a more intuitive than formal statistical warrant. They imagine
a “tie breaking experiment…for a narrow range of scores at or just below the cutting
point” and invite readers to see RDD as an attempt “to substitute for this true experiment
by examining the regression line for a discontinuity at the cutting point”. The implication
here is that RDD should be considered as though it were an experiment limited to scores
immediately around the cutoff. It is there that chance plays its largest role in determining
treatment assignment and true scores their smallest role, certainly when compared to
what happens at more extreme points on the assignment variable. Campbell and Stanley
contend, then, that RDD is like a randomized experiment at the cutoff, but nowhere else;
and that knowledge of the assignment cutoff and of the function relating assignment and
outcome creates a “detailed” description of the selection process.

Campbell and Stanley make little explicit mention of a third rationale for RDD.
Campbell’s early work on the design coincided with his work on interrupted time-series
(ITS), including the British breathalyser study in which he took a special interest (Ross,
Campbell & Glass, 1970). ITS depends on an abrupt intervention occurring at a known
point in time. If causally effective, this intervention should then lead to a discontinuity in
the functional form relating time and outcome, either when the intervention begins or
after a theoretically predicted temporal lag. The analogy with RDD is clear, for in RDD a
change in intercept is also predicted to occur at a very specifically predicted intervention
point on a continuum, albeit not necessarily a time continuum. Although the similarity
with ITS represents a plausible background feature of Campbell’s thinking about RDD at
the time, it is not emphasized in his writings on RDD. More salient are its similarity to a
tie-breaking experiment and its provision of detailed knowledge about the selection
process.

In discussing the statistical analysis of RDD data, Campbell and Stanley point to
the importance of parallel and linear slopes on each side of the cutoff. They propose
several analytic strategies for this case, without being definitive about any of them. These
include a t-test at the cutoff, and covariance analysis using the assignment variable and
the cutoff score as covariates. But they also note the possibility of non-linear regressions
and, to deal with this, they propose data transformations or non-parametric regression.
The discussion of analytic strategies is brief and tentative but shows sensitivity to the
complications of non-linearity. However, the discussion assumes the computation of two
separate regressions, one each side of the cutoff, a feature that Campbell would later
reject under advice that, in his 1984 history, he attributes to Boruch (1973).

One of Campbell’s habits was to work closely with a graduate student on a
particular topic, promoting him or her as “the world’s authority” on the topic and thus as
his tutor. The first of these on RDD was Joyce Sween. Her dissertation (1971) contained
two innovations. The first was conceptual, and involved arguing that RDD should be
treated as an experiment rather than an observational study. The logic is that a well-
implemented RDD study entails perfect knowledge of the selection process, and that
perfect knowledge of the selection process is what gives the experiment its inferential
power. Although the equation of groups was central in Fisher’s rationale for random



assignment and in the subsequent rationales for randomized clinical trials, Sween saw
this equation as merely another instance of the more general idea that causal inference is
facilitated when the selection process is fully known. Campbell (1984) reported being
leery about this argument on grounds that causal inference is most justified around the
cutoff and so is more local and limited in external validity than in the experiment. He also
noted that, even within the narrow range of scores around the cutoff, formal random
assignment is absent with RDD, making it impossible to guarantee that chance alone
determines on which side of the cutoff an individual unit falls. Even so, Sween planted a
seed that would later be reinvented: Is it an empty exercise to distinguish between the
experiment and RDD if each involves full knowledge of the selection process?

Sween’s second innovation concerned how to handle non-linearity. She proposed
many ways of describing, transforming and testing the function relating assignment to
outcome. She particularly focused on under-fitting and over-fitting the functional form,
demonstrating in Monte Carlo analyses that fitting a lower order function than the data
warranted resulted in a biased causal inference. However, over-fitting did not, though it
did reduce statistical power due to the polynomial and interaction terms required. On the
assumption that bias is more important than precision, Sween’s dissertation resulted in
Campbell’s group recommending over-fitting.  Her concern with mis-specified functional
form also influenced the real-world examples of RDD that Campbell encouraged
Northwestern graduate students to conduct. Seaver & Quarton (1976) examined how
being put on the Dean’s List in college based on a cutoff GPA of 3.5 affected grades in
the subsequent quarter. In part, this was to explore those RDD cases where an
intervention is awarded to individuals for especially high merit (or especially pressing
need) and so leads to a restricted range of scores on one side of the cutoff. How should
functional form be modeled in this circumstance to test hypotheses about intercept and
slope differences due to treatment? Seaver and Quarton decided that responsible tests of
slope differences were impossible, given the curtailed distribution on one side of the
cutoff. But after visually inspecting the regressions and interpreting them as linear, they
then tested intercept differences and concluded there was a treatment effect. However,
Sween fitted a quadratic model to the same data and showed that the discontinuity
claimed with a linear fit disappeared with a quadratic one (reported in Cook & Campbell,
1979). The danger of mis-specified functional form, already known from theory and
simulations, was now demonstrated with real data.

Sween left Northwestern by 1971 but remained a peripheral part of the theory
group Campbell organized around RDD in the early 1970’s. It would be a mistake to see
RDD as a dominant intellectual interest for Campbell at the time. As summarized in
Overman (1981), he was then also involved in many other intellectual pursuits touching
on methodology writ large, evaluation, social psychology and epistemology. Nonetheless,
RDD was important enough to him that he did spend systematic time on it between 1970
and 1975, with his interest tapering off thereafter until the mid 1980’s when it was
effectively zero.  But in Psychology in the 70’s, the new RDD group included Robert
Boruch, Charles Reichardt and eventually, William Trochim. In Mathematics, it included
two mathematical statisticians on faculty, Jerome Sacks and Rose Ray, and two graduate
students, Clifford Spiegelman and George Knafl. The efforts of the graduate students in



Psychology and Mathematics was supported by a National Science Foundation grant to
Campbell whose largesse also provided funds for outside visitors to spend up to two
summers at Northwestern. One of these visitors was William Lohr who worked on how
eligibility for Medicaid, based on household income, affected the number of physician
visits in the year Medicaid was passed (Lohr, 1972).

This work was important for its eventual emphasis on an embellishment to the
basic RDD design. To the physician visit data from the year after Medicaid, Lohr added
similar data from the year before the program. This pretest allowed him to check whether
the pretest and posttest regressions differed, especially in the untreated segment of the
assignment variable where a treatment effect cannot have influenced the obtained
intercepts or slopes. Adding the pretest RDD function improves the causal counterfactual
over the basic RDD where the counterfactual is a simple (and sometimes heroic)
extrapolation of the regression slope from the untreated into the treated segment of the
assignment variable. The pre-intervention RDD function allows the analyst to examine
the comparability of pre- and posttest slopes in the untreated segment and also to test
whether the displacement at the cutoff is different when the treatment is present versus
absent. It has further advantages. It increases statistical power, enhances the
communicability of results as visual plots, and if the pretest and posttest functions do not
differ in the untreated segment, it permits a more credible test of slope differences due to
treatment. Campbell wrote the section in Riecken et al (1974) that first presented the
Lohr design, though the text there is not explicitly couched in RDD terms. Nor does it
sharply catch all the advantages that pretest information offers when compared to simple
RDD designs that have to rely on statistical adjustments requiring strong assumptions
about functional form. With pretest data, this form is directly observed, albeit not at the
same time an intervention is implemented.

 Riecken et al presented another modification to the basic RDD design--
implementing the intervention at more than one point on the assignment variable. This
also renders the causal hypothesis more complex, since two or more discontinuities
should now result. Data corroborating this expected pattern will make many alternative
interpretations less plausible. External validity will also be increased because the
treatment effect is now estimated, not just at the cutoff, but at two different points on the
assignment continuum. I know of no uses of this RDD variant, perhaps because it
requires very stable data over a wide range on the assignment variable. Even so, like
adding a pretest RDD function, implementing the intervention at multiple cutoff points
captures Campbell’s usual preference to deal with validity threats by design rather than
model-based adjustment.

In Psychology at Northwestern, Trochim came to assume Sween’s mantle as local
authority and tutor to Campbell. The main emphasis in his work has been to synthesize
and disseminate what is known about RDD, to work with the mathematical statistician,
Spiegelman, on the fuzzy discontinuity problem, to begin the empirical study of
implementing the design, and to add to the repertoire of design variants for improving the
bare-bones RDD design. His 1984 book introduced several other important innovations
also. For one, he implicitly challenged Campbell’s assertion that RD is a design capable



of few realizations in practice. He pointed to the ways it could be used in any merit or
need situation or in a first come first served situation. He also stressed that the design
could be used with any kind of continuous assignment variable, whether a single item or
some composite metric. He painted RDD as capable of more applications than Campbell
and Stanley (1963) had implied when they wrote: “While very limited in its range of
applications, the presentation (of RDD) here seems justified by the fact that those limited
settings are mainly educational”.

Trochim also empirically examined the design’s use by practitioners, taking
advantage of a U. S. Department of Education research program to evaluate the national
Title 1 Program where eligibility depends on a specific poverty criterion. In this case,
though, the Department of Education did not learn about RDD from Campbell and his
theory group, but from Tallmadge and Horst (1976) and Tallmadge & Wood (1978) who
may have independently invented the design. In any event, the department let school
districts choose how they would evaluate Title 1, utilizing RDD as one of the three
possible choices. About 2% of the districts chose RDD, about 200 in total. This low
percentage implies that, for whatever reasons, school districts did not find the design
attractive; but still, the absolute number of choices enabled Trochim to explore why
districts had and had not used the design, developing a long list of such reasons
(Trochim, 1984). He also interviewed district officials about their experiences
implementing the design, again producing a list of facilitating and impeding factors. This
implementation study recreates what happened in the history of both sample surveys and
experiments where the necessary statistical theory had to be complemented by
empirically informed propositions about better ways to implement surveys or
experiments in field settings. Only when an elegant statistical theory was linked to a
hodge-podge theory of implementation could surveys and field experiments become
practical research tools.

Trochim also sought to extend the range of factors that could be added to the
basic design over and above a pretest function and multiple cutoffs. He called attention to
one section of Reichardt’s (1979) dissertation that dealt with adding RDD control
functions from a non-equivalent group of units. Thus, for a state-level intervention the
RDD in a treated state could be compared to that from an adjacent state. Or better yet,
researcher s could sample two adjacent cities on the same states’ shared border in order to
achieve a more local counterfactual function for RDD analysis. The problem here that the
non-equivalent intervention and comparison settings might be associated with different
regression functions. Simple intercept differences pose no major problem, though; the
most relevant alternative interpretations require site differences that affect intercepts or
slopes especially at or around the cutoff. The inferential problems with a non-equivalent
control RDD are thus more akin to those associated with non-equivalent control series in
interrupted time-series work. These are less numerous and opaque than the problems that
beset simpler designs with non-equivalent groups and a single pretest measure on the
same scale as the outcome. It is hard to say how plausible are selection differences that
are local to the cutoff area. But it seems plausible to contend that they are least likely if
high power tests have failed to show slope differences in the untreated segment of the
assignment variable. To my knowledge, no examples yet exist of creating the



counterfactual from RDD functions that were obtained from an untreated, non-equivalent
comparison group. But this possibility is real, and with very local matches to boot.

However, another variant Trochim discussed has already been used, as we see
later with Black, Galdo & Smith (2005). This is “the trickle” or “batch” variant where
treatment assignment occurs in time-dependent batches. This assignment practice is often
used to ensure that there are enough cases to fill all the slots in local programs that vary
over time in the pattern of client entries and exits. When this happens, even the cutoff
score can vary over time in order to accommodate fluctuations in client flow. Sometimes,
also, relatively few units are available per site, but there can be many sites. Then,
different cutoffs can ensue per site in order to handle the local variation in client flows.
Such heterogeneity of cutoff values complicates analysis, requiring that data be pooled
across cutoffs that vary by site and even by period within sites. Even so, two potential
advantages emerge:  External validity increases because the causal hypothesis is not now
restricted to a single cutoff value; and at each site/period combination, the design retains
its sharp discontinuity. Fuzziness arises when the site data are pooled, but at other levels
of analysis sharp discontinuities still exist that should play a major role in the choice of
analytic strategy.

The final design variant discussed by Trochim (1984) is use of a non-equivalent
dependent variable function. An example of this would be when a compensatory
language arts program is given to some students based on a particular score on, say, a
prior language arts-related course. After the intervention, students are then tested in
language arts as well as in some other “control” topic. Imagine, first, that this other topic
is mathematics under the assumption that both language arts and math are subject to most
of the same social, psychological and biological background forces that affect
achievement. Accepting this assumption means that the regression for mathematics can
then function as the no-cause counterfactual for language arts. Of course, it would be
even better if the treatment were designed to advance some quite specific language arts
skill and if, in addition to the dependent variable assessing this skill, there were also
measures of intervention-irrelevant language skills. These last skills could then serve as
counterfactual RDD functions; and they would be less dissimilar to the treated skill than
mathematics is, so long as there is no cross-over from the intervention-relevant language
arts skills to the intervention-irrelevant ones.

Trochim emphasizes RDD pretests, non-equivalent groups and non-equivalent
dependent variables in order to bring more relevant data to bear for modeling functional
form. With multiple cutoff points and trickle assignment, the attempt is to broaden causal
inference beyond a single cutoff point. But in every instance, the aim is to use design
features to compensate for limitations in the basic RDD. Boruch (1975) pushed this
design preference to its extreme when he argued for combining RDD and a randomized
experiment in the same study. If, in theory, RDD is most like an experiment around the
cutoff, and if bias-inducing deliberate misallocations sometimes occur around the cutoff,
why not persuade those persons who have the necessary authority to do a randomized
experiment in the contested area around the cutoff while simultaneously conducting an
RDD study across the rest of the assignment variable? This combined option has several



advantages: truly unbiased causal inference around the cutoff, an increase in statistical
power, and enhanced credibility in the eyes of those suspicious of RDD.

Trochim’s concern with design variants of the basic RDD structure is an
important contribution, even if empirical examples of each variant are not yet available.
But his major achievement was to draw attention to fuzzy discontinuities. He did not coin
the term. Campbell (1969) did when he came to realize that knowledge of a cutoff can
create social dynamics unique to that point--dynamics that can bias regressions because
some cases around the cutoff get treatment access that violates their assigned access. At
the time, Campbell was also working on the social dynamics of implementing random
assignment, for example noting how social workers sometimes ensured that families with
special needs received the treatment the worker thought good for them and not the
treatment the coin toss had assigned them (Campbell & Boruch, 1975). Similarly, with
RDD he publicized results from the Irish school-leaving exam (Madaus & Greaney,
1985) that showed how students scoring just below the passing mark were
underrepresented in the population while those scoring just above it were
overrepresented. The presumption is that examiners gave students close to the cutoff
extra points they did not truly deserve. Campbell’s original solution to the fuzzy
discontinuity issue stressed observing socio-political dynamics at the cutoff and
determining an area on the assignment variable where misallocation was least likely. The
regression discontinuity could then be compared at the boundary points of this area rather
than at the actual cutoff point. This was a poor solution, though. It offers an imperfect
description of the misallocation; it throws out data in the area of uncertainty and so
reduces statistical power; it requires even stronger and less transparent assumptions about
functional form; and it loses the virtue of being like a random assignment experiment at
the cutoff. Something better was needed, and Trochim took on the fuzzy discontinuity
problem with Clifford Spiegelman, by then no longer at Northwestern. Their work is
discussed in the later section on Statistics since Spiegelman played the major creative
role, Trochim being the indispensable synthesizer and interpreter to those not skilled in
mathematical statistics.

 While a faculty member at Cornell, Trochim worked closely with a graduate
student, Joseph Cappelleri, who tackled the statistical power issue with RDD. The main
insight here had come earlier from the econometrician, Arthur Goldberger (1972,a), who
showed two things: that the experiment was about 2.75 times more efficient than RDD
under the conditions Goldberger chose to explore; and that this decrement was due to the
correlation between the assignment variable and cutoff in RDD that is not present with
the experiment. In a series of subsequent simulation papers, Cappelleri extended
Goldberger’s work by showing how this power advantage varies with where the cutoff
point is located on the assignment variable, with the size of the actual effect, and with the
percentage of cases that are randomly assigned in a tie-breaker study (Cappelleri, 1991;
Cappelleri, Darlington & Trochim, 1994). In none of the assessed circumstances did the
efficiency of RDD equal that of an experiment with the same number of cases. And since
the reason for the differential is known, Cappelleri’s work allowed Shadish, Cook and
Campbell (2002) to develop in their Table 7.2 a list of the factors under a researcher’s
control that can be used to increase power in RDD work.



Together with Trochim, Cappelleri also took on the task of persuading the
medical research community of the desirability and viability of combining RDD and an
experiment in the same study (Trochim & Cappelleri, 1992; Cappelleri & Trochim, 1994,
1996). The context they emphasized was the ethical constraint that precludes doing
experiments with those sick people most in need. They proposed giving such individuals
privileged access to treatment, creating groups of the highest and lowest scorers that
could be analyzed as an RDD study. However, among patients with moderate symptom
levels they proposed forming a treatment and control group through random assignment,
thus recreating Boruch’s tie breaking experiment. This suggestion did not attain much
resonance, perhaps because of its complexity or because medical researchers want to use
random assignment even among volunteer patients in great physical need. Nonetheless,
the effort of Cappelleri and Trochim is important in another way. Whereas Trochim had
earlier used the term “regression-discontinuity” without much apparent hesitation, by the
early 1990’s he and Cappelleri were instead referring to it as the “cutoff-based design”.
Did they find “regression discontinuity” so alien that it endangered its own broader
adoption, necessitating a different “brand name”?

The next real contribution from psychologists was by Aiken, West, Schwalm,
Carroll & Hsuing (1998). Although simulation studies had already compared the results
of experiments and RDD (Trochim & Cappelleri, 1992), Aiken et al. conducted the first
ever within-study comparison of RDD and experimental results. For the RDD study, they
took advantage of the fact that students entering Arizona State University with ACT or
SAT scores below a given threshold were required to take a remedial writing course
rather than the standard writing course. The study outcome was writing ability at the end
of the standard writing class that remedial students also had to take eventually. The
randomized experiment took students from a narrow but unspecified segment just below
the standardized cutoff scores and randomly assigned them to the remedial or non-
remedial course. Using an ANCOVA analysis that makes strong assumptions about
parallel and linear regressions, the authors showed that the RDD estimates were quite
close to the experimental ones. By itself, this study is not definitive. The effect is not
estimated at quite the same point in the experiment and RDD study; it is not clear from
the reported particulars whether the functional form was appropriately modeled; and the
performance outcomes were assessed at different times in the treated and control
conditions, though some data suggested this may not have been a problem. (Two other
attempts to contrast RDD and experimental estimates in the same study will be reported
on later, each again showing that the two design types did not result in different causal
conclusions).

From the mid 1960’s on, many attempts were made by Campbell and his
colleagues to popularize RDD. It was discussed in Campbell and Stanley (1963) and in
greater detail in books on social experimentation for which Campbell wrote sections
(Riecken et al., 1974; Bennet and Lumsdaine, 1975). RDD was also extensively
discussed in texts on quasi-experimentation (Cook and Campbell, 1979; Shadish, Cook
and Campbell, 2002), and evaluation (Judd & Kenny, 1981; Mohr.1985). Trochim (1984)
wrote the first book devoted exclusively to the method. While the book’s cover title in



caps reads Research Design for Program Evaluation, its sub-title in non-caps and only
about a quarter as large in size as the title reads: the regression-discontinuity approach. It
is as though program evaluation were the emphasis of the monograph and not the novelty
of RDD.

Despite this publicity, RDD has not been widely adopted in Psychology or
Education. Campbell and Stanley probably did not help in this when they introduced
RDD as a method “very limited in its range of applications…(that are) mainly
educational”. This is not a ringing endorsement, particularly when coming from the
method’s own developer! Time has shown that Campbell’s early judgment was off the
mark, and that the range of application is potentially large. Any continuous variable can
be used for assignment; and many nations already have allocation principles that lend
themselves to RDD because allocation by merit, need, first come first served, or date of
birth is valued. Indeed, even more emphasis could probably be placed on them, given
how normatively entrenched they are. Even cronyism lends itself to RDD, so long as
those spreading their largesse are willing to progressively prioritize whom they wish to
benefit! Also relevant for the practicality of RDD is that, as the Lohr (1972) example
showed, it can be used with any descriptive longitudinal data set, or combination of sets,
so long as they permit distinguishing an assignment variable, a cutoff and an outcome. In
some ways, RDD is more flexible than experiments because RDD does not require
researchers or their proxies to directly manipulate the independent variable.

Of course, some applications of RDD had dribbled into the literature in
Psychology and Education; and at the institutional level, RDD was recently given special
status at the Institute for Educational Sciences (IES) for when an experiment is not
possible. Among the large national evaluations now underway at IES, it is being used to
evaluate Reading First and Early Reading First as well as to evaluate the effects of part of
the Bush administration’s No Child Left Behind legislation. But even the Reading First
cases result from a misadventure, for the Congressional study authorization was
inadvertently written in a way that gave school districts an easy out from participating in
an experiment. Once this loop-hole was closed, later evaluations from IES have been
almost all experimental.  So IES’ assignment of special status to RDD hardly undermines
the conclusion that its influence has been generally weak among researchers  who were
trained in Psychology and Education. Even the scholars who built all or some of their
professional reputations around RDD became discouraged. Sween and Boruch stopped
studying the issue as early as 1975; Campbell all but gave up the design after 1985; and
Trochim and Cappilleri stopped about 1995. No-one from Campbell’s theory group
remained actively working on the design; nor did their students.

 This is ironical, for many of the theoretical, statistical and logistical issues with
RDD had already been identified and solved by then; the design was discussed with
approval in broadly disseminated research design and evaluation texts; successful
instances of the design’s application were available for those who chose to look for them;
and work had progressed on identifying factors that affect the design’s implementation in
real-world education contexts in particular. By about 1990, RDD had become an
established tool in Psychology and Education. But it was ossified; not a living tool that



generated novel theory and functioned as the template for numerous empirical
applications whose causal yield was superior to that of other non-experimental methods.
After decades of concerted but perhaps overly local and even in-bred effort by members
of Campbell’s extended theory group, by the mid 1990’s RDD was still “waiting for life
to arrive” in both Psychology and Education.

Statistics

For the purposes of this paper I understand statistics in terms of scholars trained in
that field, whether in a Department of Statistics, Mathematics or Biostatistics. Also
included are those scholars trained in other fields who later came to hold their major
academic appointment in a Statistics Department.

Rubin (1977) is the first published article I could find in Statistics that mentions
RDD.  This paper has been portrayed as another independent invention of the design
together with a formal proof (Trochim, 1984; 2001; Shadish et al, 2002). But it is hardly
an independent invention, since the paper cites Campbell and Stanley (1963) on RDD and
also mentions Goldberger (1972, a). Nor is it a proof of RDD in the normal sense, given
that Rubin’s aim is broader than Campbell’s. Rubin wanted to show that assignment on
the basis of a covariate can lead to unbiased causal inference across the entire range of
the assignment variable, X. He stipulates that all units with the same score on X must
either receive the same treatment or be randomly assigned to the treatments under test.
His approach uses the X points where random assignment occurs to estimate treatment
and control regressions and, via model-fitting procedures that he describes, this then
disciplines interpretation of the values obtained where the treatment assignment was
deterministic rather than random. The tie-breaking experiment of Boruch (1975) is a
special case of this model--the one when random assignment takes place symmetrically
around the cutoff and deterministic assignment occurs elsewhere.  But the model also
captures classic RDD as another special case–where assignment occurs at only one point
on X and all cases falling on any one side of this X receive the same treatment or control
status. Rubin recognized this link to RDD, writing: “If the X values in the two samples do
not overlap (e.g., as in the regression discontinuity design, Campbell & Stanley, 1963, pp
61-64) it is impossible to check the accuracy of (the regressions) for the full range of
observed X values, and we must rely on a priori assumptions. Consequently, in order for
the model-fitting efforts described above to be useful in practice, we must either have
samples that overlap or strong a priori information about the functional forms” (p.11).
Rubin does not detail how to get this a priori information, and it is not necessary for him
to do so if the treatment and control regressions can be directly observed at the dispersed
points along X where random assignment has occurred. Indeed, all the study examples
that Rubin cites to illustrate his model involve random assignment at some points on X,
though this is not a necessary condition for his model as his allusion to the relevance of
RDD makes clear. But its presence in all the examples he does provide may be a measure
of the importance Rubin attributes to directly observing functional forms and thus not
having to assume them as in simple RDD. It may also reflect, though, his desire to



generate a model of assignment on the covariate that is more general than RDD because
cause is estimated at multiple points on X rather than at a single point.

The next stage in Statistics is somewhat bizarre. At Northwestern, Campbell felt
the need for more statistical expertise than he or his Psychology collaborators possessed.
In 1973, he began the earlier mentioned active collaboration with faculty and graduate
students in the Mathematics Department. Led by Sacks, the major effort they undertook
was to estimate functional form. Their first relevant published paper was in many ways
the most important (Sacks and Ylvisaker, 1978). As interpreted to me in a letter of April
30, 2006 by his student, George Knafl, Sacks’ purpose was to use “linear combinations of
the observed outcome values to estimate a special kind of nonlinear relationship, which
he termed ‘approximately linear’. By that he meant that the relationship was linear plus a
bounded deterministic (nonrandom) error term. He first maximized the mean square error
over this deterministic error and then minimized that maximum to determine the weights
to assign to each observed outcome value... An observed outcome value's weight depends
on how close its associated x value is to the "origin" of the current estimation problem
(which need not always be 0). ...In the regression setting, …the approximate straight line
model in terms of a single predictor variable X with origin at x0 would have the following
form for each x value: E(Y|X=x)=a+b(x-x0)+r   where r is the deterministic error term
and is bounded by m(x-x0)

2…A separate linear estimate is computed for each possible
predictor value x0 treating it as the associated ‘origin’. Thus, the Sacks-Ylvisaker method
generates a special kind of … local nonparametric regression technique in that it is
applied at each local x0 value separately to generate the regression curve as opposed to a
global approach which would estimate the curve over its whole range of x values
simultaneously”.  The paper has another important attribute brought out by its authors:
“In the ideal linear model observations farthest from the origin are weighted most heavily
but in the approximately linear model the observations closest to the origin have the most
weight” (p. 1123).

At issue here is a set of functional forms more general than Campbell and his
collaborators had developed with their emphasis on parallel and linear regressions and
deliberate over-fitting. These newer methods stressed nonparametric regression in general
and approximately linear relationships in particular. They also included concern for
weighting observations more heavily if they are closer to a specified origin (i.e., the
cutoff) and estimating effects locally at that origin/cutoff. The next step in this work was
to estimate model-robust confidence intervals and bands for the approximately linear
slopes discussed in Sacks & Ylvisaker (1978). A series of papers did this (Knafl, Sacks &
Spieglman, 1982; Knafl, Sacks, Spiegelman & Ylvisaker, 1984; Knafl, Sacks &
Ylivsaker 1985). At the same time, the Northwestern mathematical statisticians were
exploring other nonparametric regression themes. They showed, for instance, that
window estimates of a nonparametric regression are “universally” consistent (Spiegelman
& Sacks, 1980), just as Stone (1977) had shown for nearest neighbor estimates.
Spiegelman (1980) even did some work on errors of measurement when estimating
slopes, a small part of the more general problem of ascertaining functional form. Of
course, nonparametric regression already had a long history in Statistics prior to Sacks
and Campbell (summarized in Silverman, 1986). What the Northwestern mathematical



statisticians brought to their work was  sensitivity to those parts of the nonparametric
agenda that had to be developed because they were especially relevant to analyzing RDD
data.

Spiegelman’s main contribution to the RDD agenda was his work on the fuzzy
discontinuity problem. He wrote two papers and part of his dissertation around the topic
(1976; 1977; 1979). The results were summarized in Trochim and Spiegelman (1980) and
extended in Trochim (1984). The essence of the approach was to construct an estimated
assignment variable for each unit. Its distribution resembled, not the step function of a
sharp discontinuity, but an ogive whose slope value depended on how much mis-
assignment had occurred. To construct this estimated assignment variable, Spiegelman
used two methods. He either calculated the percentage of mis-assignments within narrow
ranges on the assignment variable or used a nearest neighbor moving average model. He
also weighted the regressions. To check on these procedures he conducted many
simulations that varied whether there was an effect or not, whether assignment was by the
pretest plus error or was by four different types of true scores with error, and whether the
error was large or small. Five analyses were then conducted for each simulation, one
using the raw assignment variable, two others using the relative assignment variable
either with or without weighting, and the final two using the moving average model again
either with or without weighting. Trochim (1984) reports the results as follows:
“Estimates from the analyses based on real assignment are biased, except when the error
is random”. This is as expected. “The moving average estimates of relative assignment
appear to yield unbiased estimates of gain for most of the models and conditions (and)
are less biased than the ones from the average assignment method” (p. 165). Since the
relevant tables under the circumstances built into this simulation show a slight benefit for
weighting, the weighted moving average procedure fared consistently best overall in
controlling for the selection bias due to a fuzzy discontinuity. The same procedure also
proved to be superior when Trochim (1984) used it to reanalyze data from a Title 1 site,
again suggesting the discovery of an apparently unbiased way of dealing with a fuzzy
discontinuity.

Sacks’ other graduate student, Knafl, came to Northwestern slightly later. Among
other things, he collaborated with his mentor to produce a computer program that
incorporated all the analytic procedures the Northwestern statisticians had developed. It
focused on nonparametric regression and calibration, approximately linear models,
differential weighting, and local estimation at a particular value (Knafl, 1984). Campbell
(1984) reports that it was successfully used with various engineering and some education
examples, and Knafl confirmed the engineering uses by letter. But, as Knafl
acknowledges, the program was not used by subsequent RDD researchers or incorporated
into standard data-analytic packages where it would have been useful for those instances
where it is difficult to assume parallel and linear regressions. It would be another decade
before young economists independently developed similar methods and estimation
techniques.

It is striking how small was the influence of this work. Though two papers did
appear in the Annals of Statistics and another in the Journal of the American Statistical



Association (JASA), others were published in lesser outlets or were not published at all.
Spiegelman reported to me how difficult it was to get the work published in premier
statistics journals. Moreover, the work has not been cited in general statistical discussions
of causation, and certainly not in the narrower context of debates on RDD.  This last is
not so surprising, however, for I could not find a single instance of the phrase “regression
discontinuity” in any of the papers by statisticians associated with Northwestern, though
the Thistlethwaite and Campbell publication is sometimes referenced.  Even in a work as
comprehensive as a dissertation is supposed to be, Spiegelman (1976) thanks Campbell
and Boruch for their intellectual support, cites the Thistlethwaite and Campbell article in
the reference section, but never uses the words regression discontinuity. Spiegelman
reported to me that this was because statisticians had little to gain by framing their papers
around a novel design from the social sciences. They believed they would be better
served by framing their work around themes then active in their discipline. So they wrote
about the topics above without explaining that they were partly undertaken to solve data-
analytic issues in RDD. Regression discontinuity was like the love “that dared not speak
its name”.

The name came out of the Statistics closet, though, in the next appearance of the
design I could find. Richard Berk had been a professor of Sociology at Northwestern in
the 1970’s and had interacted with the psychologists there who introduced him to RDD.
He left Northwestern for UCLA where he eventually transferred his billet into the
Statistics Department. Berk and Rauma (1983) published a JASA paper in which they
used the design in a criminal justice application. The innovation in this paper followed
from the dependent variable being categorical, requiring Berk to devise generalized least
square procedures that emphasized logistic and Poisson functions rather than the linear
and polynomial ones previously considered. This, and a later paper in the same journal
(Berk & de Leuuw, 1999), called attention to the fact that the general linear model cannot
do full justice to all the ways in which the assignment and outcome variables might be
related, requiring new procedures for non-continuous dependent variables. But despite
dealing explicitly with RDD and appearing in JASA, these two papers do not seem to
have spawned any growth in interest in RDD within Statistics. The papers presented
basically uses of the design, albeit with extension to categorical outcomes. They were not
textended presentations or defenses of the design.

The next important references I could find involve a mathematical statistician and
a bio-statistician (Finkelstein, Levin & Robbins, 1996 a, b). RDD is renamed in these
papers, now being called the “risk-based allocation design”. It is presented as an unbiased
way to achieve causal inference when it is unethical to withhold treatment from those at
greatest risk. It is also presented as a design with no predecessors, and the recommended
analysis is based on Robbins & Zhang (1988, 1989, 1991). The editors of the American
Journal of Public Health published two back-to-back articles on the topic, the first a
theory paper and the second containing some examples. The latter had a very long
appendix that, in his invited editorial, Mosteller (1996) likened to a third article. To
publish so much on the topic, including an editorial, suggests that the editors saw the
risk-based allocation design as worthy of high profile. This was probably because it
seemed to solve the selection problem, and estimation procedures and examples were



already on hand. Mosteller’s editorial pricked this nascent bubble by pointing out that the
featured new design was RDD and that its range of application was limited compared to
other attempts then underway to deal with selection. Still, these two articles constitute the
first extended and explicit presentation of RDD by statisticians, albeit writing in a
practice-oriented outlet rather than a mainstream statistics or biostatistics journal.
Otherwise, apart from a small and earlier symposium that included papers on the use of
RDD in the health sciences (Sechrest, Bunker & Perrin, 1990), little else transpired to
develop or promote the design at the intersection of Statistics and Public Health.

The Finkelstein et al papers were published 38 years after Thistlethwaite and
Campbell and many years after efforts had begun to feature the design in Psychology and
Education. Yet Levin and Robbins thought they were inventing something new; and the
journal editors presumably thought the same in giving such prominence to the work. This
suggests the design had not gained much visibility in the larger community of
researchers. Otherwise, why create a new name for RDD? Why else did the journal’s
reviewers not catch the similarity between the design being proposed as a novelty and
what was already known? What would have happened had Mosteller not written his
editorial? That the design was reinvented and re-labeled by Finkelstein et al. so long after
its discovery is powerful testimony to RDD’s low profile among the cause-probing
methods then available in Statistics and Biostatistics.

Overall, RDD has not fared well with statisticians. Those who came to the topic
relatively early did not stay with it. Spiegelman reported being discouraged by the great
difficulty of getting his papers published and, by 1981, had dropped this line of work for
more professionally rewarding topics (personal communication, March, 2006). Sacks and
Knafl did the same. With the exception of Berk’s JASA papers, publications explicitly
devoted to RDD have not appeared in the more prestigious Statistics outlets. Even Rubin,
whose work on causation has achieved very high resonance in Statistics, mentioned RDD
only in parentheses in his Journal of Educational Statistics paper on assignment by a
covariate. And neither he nor his trend-setting colleagues who write on causation,
Holland or Rosenbaum, have ever written in detail about RDD either conceptually or
data-analytically. They know about it, of course, and sometimes mention it in their
general writing on observational studies. But RDD does not loom large for these well-
known statisticians of causation, and ignorance is not the reason for this. Taste is more
likely. It seems fair to conclude that RDD has hardly been born in Statistics as a
discipline, let alone is “waiting for life to arrive”.

Spiegelman thinks that the reception was poor because he and his colleagues
could not provide illustrative applications that would appeal to editors. He did not feel
himself well enough acquainted with the social science examples then being generated at
Northwestern; and he had no other examples to present from domains that he thinks
statisticians traditionally prefer, like the hard sciences or engineering. But another
explanation may also be viable.  One of Paul Erdos’ many idiosyncracies was to assign a
dollar value to mathematical problems depending on the richness of the puzzle they
presented. To statisticians, does RDD seem more like an Erdos 50 cent problem than a $5
million one? After all, RDD deals with causation, but causation is not of particular



interest to many mathematical or survey statisticians. Even for statisticians interested in
causation, once it is clear that the selection process is completely known in RDD, it is not
very challenging to model that process. And when one further realizes that RDD solves
the selection problem only when there is a cutoff score--and not for the more numerous
and more complex situations where researchers encounter selection—then the generality
of RDD seems limited. It seems even more limited when one realizes that causal
inference is less problematic with RDD closer to the cutoff point on the assignment
variable than away from it. Also, many statisticians are suspicious of distant
extrapolations, and simple RDD requires projecting a functional form into data-less
segments of the assignment variable, making it seem both dangerous and naïve. To add
insult to injury, RDD is a problem already solved theoretically, and hence not even a
puzzle. Of course, a few problems of analysis still remain unsolved, and new ones will
surely emerge. Even so, many statisticians will anticipate that solving these problems will
require only minor variations in already accepted practices for modeling functional form,
weighting observations, dealing with treatment crossovers, pooling RDD estimates, etc. I
could find no historical record clearly laying out the case that, as a problem or tool, RDD
is worth closer to 50 cents than $5 million. So it is only a hypothesis that the factors
above explain why the most visible theorists of causal methods in Statistics have not
spent much time on a design they know about.

Economics

The earliest papers on RDD in Economics were by Goldberger (1972 a, b). These
unpublished papers represent two main accomplishments for RDD theory, though they
were only incidental to Goldberger’s main purpose. The first accomplishment was a
proof of the basic design, showing formally what Campbell had only intuited. The
Goldberger’s papers were based on the distinction between non-equivalent groups whose
difference depends on true ability in one case, and on measured ability in the other. The
immediate reason for framing the paper this way was an article by Campbell and
Erlebacher (1970) who, using an educational example, had shown how attempts to adjust
for group pretest differences in true scores lead to biased causal conclusions because the
measurement of ability contains at least error and so leaves were claiming that all
controls for group pretest differences are biased, Goldberger showed formally that bias
occurs when non-equivalent groups do indeed differ on a pretest true score that is
incompletely observed, but that bias does not occur when selection into treatment
depends only on an observed pretest score, as in RDD.  The following citation captures
the essence of Goldberger’s proof, with the descriptions in parentheses being mine: “The
explanation for this serendipitous result (no bias when selection is on an observed pretest
score) is not hard to locate. Recall that z (a binary variable representing the treatment
contrast at the cutoff) is completely determined by pretest score x (an obtained ability
score). It cannot contain an information about x* (true ability) that is not contained within
x. Consequently, when we control on x as in the multiple regression, z has no explanatory
power with respect to y (the outcome measured with error). More formally, the partial
correlation of y and z controlling on x vanishes although the simple correlation of y and z
is nonzero” (p. 16). Goldberger (1972, b) generalized the argument by proving that



selection on an imperfectly observed true score also leads to biased estimates of the
interaction of treatment and third variables, whereas selection on the measured pretest
score does not.

The second contribution Goldberger (1972, a) made was to understanding the
efficiency of RDD relative to that of the randomized experiment. Under the conditions he
analyzed–-that included a cutoff at the midpoint of the assignment variable--its efficiency
is about 2.75 times less than an experiment with the same number of units. Goldberger
was also able to show why this advantage occurred, basically because the assignment
variable and treatment dummy are correlated in RDD whereas they are not in the
experiment. Thanks to this work, another advantage of the experiment over RDD became
evident for the first time. To its greater transparency about functional form could now be
added its greater power to reject the null hypothesis for a given sample size.

These papers had a great influence on Campbell and his theory group. Once they
understood that Goldberger had provided a formal proof of RDD, they cited the papers
relentlessly, especially the first one. However, this is ironical, for Goldberger’s purpose
was not to provide a proof of RDD. In a letter dated March 22, 2006, Goldberger wrote
that: “The key point is that my 4/72 paper was not about the regression-discontinuity
design, but rather about the notion that pre-existing differences between treatment and
control groups inevitably bias estimated treatment effects. My colleague Glen Cain had
persuaded me by a simple example that the Campbell-Erlebacher argument couldn't be
right. In attempting to capture his argument formally, I happened to use a deterministic
treatment assignment rule, hence the discontinuity. I soon realized that deterministic
assignment wasn't crucial:…I have never thought of my paper as proposing a regression-
discontinuity design (Goldberger’s italics). Rather it was in effect distinguishing between
"selection on observables" and "selection on unobservables", a distinction that became a
focus of the vast econometric literature on selectivity bias.”

Even so, Goldberger’s papers did reinvent RDD. He did not cite Campbell’s work
on the topic and his serendipitous discovery was obviously also an independent one. That
he was not seeking to propose a new causal method is clear from the structure of his
papers. They rigorously pursue the distinction between selection on imperfectly observed
true pretest scores and selection on perfectly observed yet psychometrically fallible
pretest scores, showing that only the first results in bias so that group pretest differences
do not constitute a universal problem for causal inference. The great irony here is that
Goldberger reinvented RDD in order to critique the more general causal thinking of the
very person who had earlier invented RDD! So it is no surprise that, once Campbell
realized that the limiting condition Goldberger had discovered was RDD, he could accept
Goldberger’s criticism. After all, it fell outside the bounds of how he and Erlebacher had
tried to define their problem, with its emphasis on the futility of using fallible observed
pretest scores to control for group differences in true pretest scores. In RDD, selection
depends on observed scores that do not need to pretend they are true scores. An even
greater irony, though, is that Campbell & Erlebacher did not even mention Campbell’s
own earlier discovery of RDD as one condition limiting their main argument about the
inadvisability of using pretests to model selection. Perfect selection adjustments are



possible when group differences are fully observed. Goldberger clearly proved that, and
the proof he developed he later learned to call RDD.

By 1972, Campbell was distressed by the statistical models then in use that sought
to adjust for selection processes more complex than with RDD. He began urging the
increased use of social experiments, denigrating the use of non-experiments other than
RDD or ITS (Campbell, 1969; Campbell & Boruch, 1975). Goldberger’s Wisconsin
colleague, Cain (1975), interpreted this advocacy of experiments as undercutting the
value of Economics as a discipline because experiments have played a minor role in the
development of that discipline’s core empirical knowledge base. Non-experiments have
been the method of choice, making reliance on substantive theory and statistical models
to adjust for selection central, especially when interrupted time series methods could not
be used. Thanks to RDD, Cain could validly point to at least one form of statistical
adjustment that works in real-world settings; and he correctly generalized this to point out
that causal inferences are unbiased in all other cases where the selection process is
completely known and perfectly measured. But RDD’s dependence on a clear cutoff
means that it is irrelevant to the many other research situations where economists strive to
draw causal conclusions in the face of selection processes that are more complex and
difficult to measure than with RDD. So the issue became: How to generate a valid theory
of selection adjustments that does not depend on random assignment and is more general
than RDD?

By about 1980, RDD had fallen off the radarscope in economics, not to re-emerge
for another 15 years or so. The puzzle is why Goldberger and his Wisconsin colleagues
did not make more of their serendipitous discovery. After all, Goldberger did not publish
his two papers cited above; he did not do any further published work specifically devoted
to deterministic selection on a covariate; nor did he co-publish with Cain and Barnow on
the topic other than for a small section in Barnow, Cain and Goldberger (1978). Perhaps
Goldberger did not see or appreciate the practical relevance of his discovery, for in the
first paragraph of his first paper he writes as one apparently disinterested in practical
application: “We propose to demonstrate this point (the absence of bias when selection is
on a measured pretest) in terms of a highly idealized setting, that is a formal model”. But
it is more likely that, as his letter above suggests, he saw RDD as a limited special case of
a much broader and richer problem, understanding specification error writ large, solving
the missing variables problem more generally. Is he assigning RDD an Erdos-like 50
cents as a problem of minor importance? RDD’s birth in Economics was not auspicious
and, yet again, the design had to “wait for life to arrive”.

It had to wait all the longer because, by the early 1970’s, the task of generating a
general model of selection bias had captured the interest of many influential economists.
It is difficult to capture in brief all the energy and creativity that went into this intellectual
agenda. But put crudely, scholars were taken with two main approaches to causal
inference. Some were taken with instrumental variable (IV) approaches that depend on
discovering instruments correlated with selection but not with errors in the outcome.
However, from the mid 1980’s on, more and more economists came to realize how
difficult it was to achieve professional consensus about many of the causal claims



emanating from this kind of application of IV methods. It was one thing to have a highly
abstract, elegant and general theory about unbiased causal inference; and quite another
thing for this method to generate specific applications whose causal conclusions fellow
scholars saw as beyond dispute insofar as all the central assumptions were manifestly
met. Other economists interested in causation were taken with being better able to
theorize about the selection process and observe it validly, as Goldberger (1972, a) and
Cain (1975) had emphasized in their work on selection on observables. The problem here
is that in most economic applications the selection process is more complicated than with
RDD. It is usually multivariate and perhaps often non-linear; and it is almost always
imperfectly observed however well it is theorized. A uniquely visible variant of selection
modeling was Heckman’s theoretical work. Initial enthusiasm was high that his selection
models would solve the selection problem over a broad range of applications, certainly
broader than what RDD could achieve with its dependence on an observed cutoff score.
However, within-study comparisons from LaLonde (1985) on have shown that
Heckman’s selection models regularly fail to recreate the same results as experiments that
share the same treatment group (Glazerman, Levy & Myers, 2003; Smith & Todd, 2005;
Cook, Shadish & Wong, 2005). Aand while Heckman knew of RDD early, it was not
something he cared to feature and promote, given his larger agenda.

What should economists do, then, if causal issues are central to their field, if
substantive theory alone can only take one so far in determining causal effects, and if the
practical yield of the econometric selection agenda was interpreted as disappointing? In
this intellectual climate, some younger economists determined to seek out other unbiased
methods for testing causal propositions, and so RDD was re-discovered along with
experiments and natural experiments. By about 1995, new life was breathed into RDD in
Economics and among economists in Schools of Public Policy. Some of the fruits of this
revival can be found in this special edition. I will not try to recreate the very recent part
of RDD in Economics, for it is more like the present than history. But I do want to
mention seven things that characterize this revival for me.

The first is its hesitant birth in the form we now know it. The first papers since
Goldberger to take advantage of cutoffs on an assignment variable (Angrist & Krueger,
1991; Imbens & VanderKlaauw, 1995; Angrist & Lavy, 1999; VanderKlaauw, 1999)
sometimes cited Thistlethwaite and Campbell (1958), thus acknowledging a link to RDD.
But the general analysis was formulated within an IV framework rather than the current
linear or non-linear regression one, thus reflecting what was probably the dominant
causal analytic mode of the 1990’s. Only with time have these applications been fully
recognized as RDD.

A second important feature is the growing number of applications in the
increasing number of research domains where applied micro-economists are active (e.g.,
Angrist & Krueger, 1991; Imbens & VanderKlaauw, 1995; Angrist & Lavy, 1999;
VanderKlaauw., 1999; Lee, 2001; Buddelmeyer & Skoufias, 2003; Jacob & Lefgren,
2004a, b; Gormley & Phillips, 2005; Black, Galdo & Smith, 2005; Ludwig & Miller, in
press; Bloom, Kemple & Gamse, in preparation; Rand Corporation, in preparation).
While this growth in applications has little interest per se for most econometricians, it



belies Campbell’s early assertion that RDD is not of general applicability except perhaps
in education. Of course, Campbell’s assertion is self-evidently true in the sense that the
design requires a cutoff on a continuous variable. But this is not an uncommon situation
in cultures where allocation by need, by merit, or on a first-come-first-served are
legitimate and where some allocation decisions are made in terms of birth dates. The
normative status of such allocation principles also means that it should be possible to
increase their use in many countries. As applications accrue in Economics, and as
published examples come to be recognized as RDD where the authors failed to do so
(e.g., Joyce, Kaestner & Colman, 2006), it becomes even more feasible to probe the
hypothesis that RDD is essentially a rare hot-house flower. Inevitably, it has limiting
conditions; but this does not necessarily entail that its uses must be rare or trivial when it
comes to advancing substantive theory or public policy.

It is probably on the data-analytic front that most activity is taking place in RDD
studies in economics. Particular emphasis has been placed both on using nonparametric
regression  to better model functional forms and on weighting techniques to emphasize
observations closer to the cutoff. Striking is the number of sensitivity analyses done per
publication to assess the robustness of results across different specifications of functional
form. Also important is work on the fuzzy discontinuity problem. Random assignment
can function as an IV to examine treatment-on-treated effects as well as intent-to-treat
effects (Angrist, Imbens & Rubin, 1996). The cutoff in RDD can function this same way,
since it is not correlated with errors in the outcome once the assignment variable is
accounted for (Hahn, Todd & VanderKlaauw, 2002). If this extension of the Angrist et al
thinking holds up to deeper scrutiny, researchers can use RDD to examine both intent-to-
treat and treatment-on-treated causal hypotheses, thus solving the treatment mis-
assignment problem that leads to fuzzy discontinuities. Other striking data-analytic
advances are the emphasis being placed on the accurate measurement of behavior around
the cutoff and on pooling across sites (and times) that differ in cutoff score (Black, Galdo
& Smith, 2005).

On the design front, appreciation for a pretest RDD function is growing in
Economics, given the roles it plays in increasing power and independently observing the
functional form across all of X before the treatment is applied. The assumption here is
that the pretest function is a good proxy for those parts of the functional form that have to
be missing once a treatment is in place (Jacob & Lefgren, 2004,a; Bloom, Kemple &
Gamse, 2006). Moreover, awareness is increasing of the possibility of implementing the
intervention at different cutoff points, thus making causal inference more general than
around a single cutoff value while also promoting much needed research into the pooling
of RDD estimates (Black et al., 2005).  Less clear is the level of current appreciation for
other ways of independently assessing the likely functional form where it is not directly
observable on the assignment variable. Some of these design-based alternatives are
outlined in Trochim (1984) and in this paper, and others surely need to be developed. The
traditional econometric emphasis on modeling need not lead to neglect of design addenda
that strengthen the basic RDD structure by seeking to make functional forms more
observable and to study more than one cutoff point.



The recent spate of RDD studies by economists is notable for two empirical tests
of the design’s validity based on comparing RDD effect estimates to those from a
randomized experiment on the same topic (Cook & Wong, in press). While Aiken et al
did the first such study in 1998, Buddelmeyer & Skoufias (2003) went further than them
with a somewhat more sophisticated analysis. They took the first wave of Mexican
Progresa data and showed that similar patterns of statistical significance were obtained
when within-village program eligibles and ineligibles were compared relative to when the
contrast was of eligibles in randomly selected experimental and control villages. Even so,
the local average treatment effect in the RDD work was not identical with the average
treatment effect in the experiment (Imbens & Angrist, 1994). An even more sophisticated
test was by Black, Galdo & Smith (2005) who took pains to estimate the experimental
and RDD effects at the same average treatment effect, and who used multiple sensitivity
tests that varied the smoothers used as well as how close particular samples were to the
cutoff point. They too showed similar patterns of statistical significance and even effect
sizes, the more so closer to the cutoff given the non-linearity in their data. In some
senses, it is trivial to show this empirical correspondence between the two design types,
given theoretical proofs that each is unbiased. More surprising is the correspondence in
statistical significance patterns, given the power difference between experiments and
RDD studies and given that Aiken et al. had fewer cases in the RDD study than the
experiment! Even so, the correspondence in these three design replication studies is
comforting, for in each case the experiment and the RDD study were implemented in
complex social settings with error and perhaps even multiple small sources of bias. So the
design replications the economists have done speak to the robustness of RDD as it has
been carried out recently.

 Institutionalizing a design is not just an intellectual matter. Much is also
sociological. In Psychology and Education, intellectual work on RDD did not spread
much beyond Campbell’s small theory group, and applications have been sparse.
Campbell was such a polymath that RDD accounted for but a small fraction of his
intellectual energy that, in the period from 1960 to 1985, was more lavishly devoted to
work on evaluation theory, randomized experiments, interrupted time series, social
comparison, evolutionary epistemology and meta-science. None of his students stayed
with the topic or succeeded in handing it on to the next generation. RDD faded, in part
because Campbell’s theory group was in-bred and either failed or did not try to attract
new intellectual blood. In Statistics, RDD was never really seriously taken up after the
links between Campbell and the Northwestern mathematical statisticians broke up; no
champions or theory groups systematically developed the idea, and its original
proponents dropped it. The recent situation in Economics is quite different. For one, RDD
is associated with many individuals who teach at many different universities, including
some of the most prestigious ones in the USA. Individuals like Card at Berkeley, Imbens
at Harvard, Smith at Michigan, Todd at the University of Pennsylvania and Vander
Klauuwe at North Carolina are not “marginal” economists who publish in less respected
journals. Their names carry a high potential for legitimacy conferral nationally and
beyond. Indeed, RDD is now being used in Italy and Mexico, and in one Italian instance
it is even being used as the causal benchmark against which results from observational
studies are compared (Battistin & Rettore, 2005).  To add to the sense of growing



institutionalization, RDD is routinely discussed at economic conferences, and the entire
number of a prestigious journal has now been devoted to the topic. These are important
step towards institutionalizing the design in Economics, though not guarantees of the
success of this effort.

These are early days for predicting anything about RDD’s eventual
institutionalization in the Pantheon of widely used causal methods in Economics. But a
theory group has at least developed; this group is more institutionally distinguished and
nationally dispersed than in the other fields where RDD has been used; and the young
opinion-leaders exploring the design bespeak general good taste in econometrics rather
than a narrower purview limited just to RDD. This augurs well for new and rich life
being breathed into RDD, especially if most of the design applications now under way
turn out to be clear in their substantive findings and capable of generating new problems.
Whether this upswing of interest in Economics will carry over into Psychology is unclear,
though its prospects in Statistics remain grim unless it is possible to identify a rich seam
of new issues of general theoretical relevance to statisticians.

Conclusions

Several themes stand out in the half century of RDD’s history. One is its repeated
independent discovery. While this augurs well for the design’s validity and relevance
across fields, one circumstance of the reinventions has been strange. Campbell first
named the design regression-discontinuity; Goldberger referred to it as deterministic
selection on the covariate; Sacks and Spiegelman studiously avoided naming it; Rubin
first wrote about it as part of a larger discussion of treatment assignment based on the
covariate; Finkelstein et al called it the risk-allocation design; and Trochim finished up
calling it the cutoff-based design. RDD comes across as the design that dares not speak
its name, as though it is off-putting as a neologism. Of course, independent reinventions
may spawn new labels because the existing one is not known. And reinventions that are
incidental to some other purpose may not deserve a name because the discovery is, after
all, incidental. Moreover, clear framing of the design’s purposes and warrants can be
considered more important than giving the specification so achieved a unique name.
Motivations for the various design names are not clear in the historical record except for
Trochim’s (1990) intimation that regression-discontinuity is an unfortunate name whose
meaning many people cannot immediately intuit. The dissemination of RDD has
probably suffered from local labeling practices across disciplines, and so it is a relief to
note that economists are unabashedly using the original Campbell terminology as they
seek to revive the design that now dares to speak its name–at least in a social science like
Economics where regressions and discontinuities are like mother’s milk.

 RDD’s validity is hardly in doubt, given the proofs, the reinventions and the
successful uses over 50 years. So judgments of its importance will likely depend more on
the scientific consensus achieved about its generality. This last may not be as limited as
first appears. Causal inference is most warranted near to the cutoff. Yet if the repertoire
of sensitivity tests for functional form can be routinely extended to include a pretest, a
matched but non-equivalent group or, at last resort, a non-equivalent dependent variable,



then better counterfactual estimates of functional form will be possible and reliance on
unobserved extrapolations will be less. By moving to a difference in differences strategy
for RDD, we may achieve reasonable estimates of whether a causal conclusion should be
limited only to the cutoff area. Also, as applications pile up we may learn more about the
conditions under which parallel and linear regressions are found. These imply a causal
inference beyond the cutoff area, even with the most basic RDD design.

Treatment mis-allocations undermine confidence in causal claims, whatever the
method used; and it is not yet clear if the problem is more serious with RDD than with
experiments, say. Fuzzy discontinuities force a greater reliance both on the restricted set
of cases with a sharp discontinuity and also on the validity of techniques to control for
fuzziness. There is real recent cause for hope on this last score. In many contexts, the
cutoff value can function as an IV and engender unbiased causal conclusions, though
work is clearly needed to explore this potential solution in greater depth. The same is true
of Spiegelman’s continuous treatment functions.  Fuzzy assignment does not seem as
serious a problem today as earlier.

But RDD still only applies when assignment is by a cutoff score. How often this
occurs in our society, and whether we can capitalize on norms about allocation by need,
merit, birth date, and ‘first come, first served”, will determine much of the practical
future value of RDD. I have no problem seeing it as important among other cause-testing
arrows in the quiver of every non-doctrinaire social scientist. Many different causal
methods are needed for the many different contexts in which quality causal inference is
needed. Social scientists have been pursuing a more general pot of gold for three decades
now--the discovery of methods for warranting causal inference over many different
selection processes that are more complex than RDD. Solving that puzzle is indeed a
problem worth Erdos’ symbolic $5 million. But must belief in this larger goal inevitably
devalue RDD, explicitly or implicitly? Is not unbiased causal inference useful even when
it is restricted to clearly demarcated circumstances that actually occur with some
frequency in a given society? The causal silver bullet many theorists of method are
seeking is indubitably preferable; and Nobel committees are right to acknowledge those
who seek to crack this bigger selection problem. But arrows in a hunter’s quiver can still
promote physical survival even if they cannot fell prey as big as a bullet can. And let us
be crystal clear. At this time, the silver bullet is a legitimate aspiration, not a current
achievement like RDD is.

No advocates of RDD have seen it as superior to the randomized experiment or
even equivalent to it in terms of warranting causal claims. RDD is less statistically
powerful; it involves less transparent assumptions about functional form; its
implementation is less well empirically understood; and methods for improving its
implementation are less developed. The rationales for RDD are (1) that it can be used in a
circumscribed set of circumstances where an experiment might not be feasible; (2) that it
is then superior to all other known causal methods; and (3) that it can sometimes be
combined with an experiment and other design features to extend causal inference along
more of the assignment variable. To be bias-free in theory, as RDD is, is not necessarily
to be as assumption-free or as efficient as other methods.
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