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Abstract

This paper reviews the literature on whether regression-discontinuity studies reproduce
the results of randomized experiments conducted on the same topic. After briefly
reviewing the regression-discontinuity design and its history, we explicate the general
conditions necessary for a strong test of correspondence in results when an experiment is
used to validate any non-experimental method. In Economics, within-study comparisons
of this kind are associated with LaLonde (1986), and we elaborate on how to do such
studies better than twenty years ago. We identify three cases where regression
discontinuity and experimental results with overlapping samples were explicitly
contrasted. By criteria of both effect sizes and statistical significance patterns, we then
show that each study produced similar results across the experiment and regression-
discontinuity study. This correspondence is what theory predicts. But to achieve it in the
complex social settings in which these within-study comparisons were carried out
suggests that regression-discontinuity results may be generally robust.
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The Regression Discontinuity Design 

 

 Theoretical research in the social sciences is often concerned with causation, understood 

as identifying the effects of causal agents that can be deliberately manipulated. The concern is 

particularly manifested in program evaluation where debates still occur about the roles that 

experiments and non-experiments should play in identifying the causal impacts of policies and 

programs. These debates are now closed in some sectors, like medicine, public health, mental 

health, criminal justice, the prevention sciences, and even some parts of social welfare. The 

randomized experiment now reigns supreme in these areas, institutionally supported through the 

privileged role it plays in graduate training, research funding and academic publishing. Of 

course, random assignment is not universally feasible; and in some areas, debate still persists 

about the merits of random and systematic treatment assignment. So social scientists will always 

need to know about causal methods other than the experiment that can produce unbiased causal 

inferences or, failing that, methods that generate bias so small it can sometimes be tolerated. 

 Several beliefs are widely used to justify the preference for random assignment. The 

major one is that, when perfectly implemented, such assignment creates comparison groups that 

do not differ in expectation other than for the consequences of treatment assignment. It is thus 

that selection is ruled out (Rubin, 1974; 1978). However, the regression-discontinuity design 

(RDD) also permits unbiased causal inference in theory. In this design, units are assigned to 

treatment based on a cutoff score on an assignment variable, often a score indicating a specific 

level of merit or need that then determines who is to receive or not receive some need- or merit-

based resource. RDD is not limited to need and merit contexts. It has also been used with 

birthdates, like the date of entering formal schooling between January and December (Angrist & 
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Lavy, 1999; Ludwig, 2005), and even the order of applying for a particular resource. Although 

the design requires respecting the cutoff for treatment exposure, it is flexible as to what that 

assignment variable is so long as it forms at least an ordered continuum. For example, it is 

possible to index need by a single measure like household income (Lohr, 1972) or by a 

composite of many measures indicating physical hardship (Buddelmeyer & Skoufias, 2003) or 

by some index that predicts the likelihood of being out of work a long time (Black, Galdo & 

Smith, 2005). It is not important that the assignment variable has a clear meaning, or has high 

construct validity. Nor is it required that values on the assignment variable represent true scores 

since observed scores determine treatment exposure. The crucial need is for units to be assigned 

to one treatment if their assignment score falls below a given cutoff and for all units to be 

assigned to a different treatment if their scores are above it.  

The theoretical key here is that the assignment process into treatment or control status is 

completely known (Goldberger, 1972a; 1972b). Since this is also an attribute of random 

assignment, Mosteller (1990) has suggested that RDD be considered as just another form of the 

experiment. It is not, though, in the sense that the efficiency of RDD is lower (Goldberger, 

1972a; 1972b). Moreover, RDD is also not conceptually buttressed by as elegant a warrant as 

formal sampling theory provides for the experiment. Nor has there been as much experience with 

implementing RDD as with implementing experiments. Such experience is important if 

researchers are to identify the assumptions on which the method depends, if they are to be able to 

engineer how to test whether these assumptions hold and, most importantly, if they are to learn 

how to design research in order to prevent the assumptions from being violated in the first place. 

The history of RDD is manifestly more recent than the history of the experiment, and its 

implementation has not attracted as much attention—yet!  
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As interpreted by Cook (in press), the history of RDD began in Psychology with 

Thistlewaite & Campbell (1958). In Campbell & Stanley (1963), two rationales were offered for 

the design. The first was rooted in its similarity to the randomized experiment at points 

immediately around the cutoff score--and only there. The relevant intuition is that someone 

whose IQ is 140 is hardly different from someone whose IQ is 139, yet one gets the intervention 

for gifted students but the other does not. The selection difference between students with these 

two scores is likely to be almost entirely due to chance, to measurement error; and chance is the 

very mode of treatment assignment from which the experiment draws its interpretative power. 

The second rationale for RDD that Campbell offered was that the selection process into 

treatments can be very well indexed by the regression line of the assignment variable on 

outcome. Indeed, this value in the untreated part of the assignment variable provides the 

counterfactual against which a change in level or slope at the cutoff is assessed. The implication 

here is that the untreated slope functions like the untreated control group mean in an experiment. 

Campbell’s work also specified the two major interpretative threats with RD—that bias can 

result if the functional form of the assignment on outcome is mis-specified or if treatment 

misallocations occur around the cutoff. Such misallocations are presumably more likely when 

the cut value is used to justify how scarce resources are distributed, and it was to explore this 

possibility that Campbell discussed the school leavers’ exam in Ireland. There, a state exam was 

used for determining who could leave school, and scores just below the cutoff were 

systematically under-represented in the total distribution of scores, presumably because the 

examiners did not want to fail students so close to passing. This example points to social 

influences that modify allocation decisions in ways that do not completely respect the technical 

need to respect the intended cutoff.  
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Psychologists pursued Campbell’s agenda for 40 years, learning how to analyze data so 

as to avoid mis-specifying functional forms, how to design studies so as to get independent 

checks on what the functional form in the treated part of the assignment would look like if there 

were no treatment there, how to identify and handle the fuzzy RDD that follows from treatment 

mis-allocations around the cut score, and how to determine and increase statistical power so as to 

minimize this disadvantage relative to the experiment. All these developments are summarized in 

Trochim (1984). Nonetheless, use of the design was quite sporadic in Psychology, and by 1995 it 

was essentially in abeyance. All those who had sought to make their reputations by pursuing it 

went on to study other things, and all that remained was its popularization in a few specialized 

texts on quasi-experimental design (Cook & Campbell, 1979; Shadish, Cook & Campbell, 2002). 

In Statistics, the design never really caught on. It was mentioned as early as 1979 (Rubin, 

1979). It was also the origin of several advances in non-parametric regression in order to deal 

more flexibly with the functional form assumptions on which the method so heavily depends 

(Spiegelman & Sacks, 1980). Also, Spiegelman (1976; 1977; 1979) conducted studies to find 

ways of dealing with the fuzzy discontinuity problem. The first formal proof in Statistics came 

later, and was due to Finkelstein & Robbins (1996a; 1996b). They called RDD the risk allocation 

design to emphasize how it could be used to assign patients to treatment based on some cutoff on 

a risk measure. It is clear that the authors had not then heard of RDD and thought they were 

offering a novel and general way of solving the selection bias problem. Indeed, the journal 

editors allowed them what was essentially three articles to make and illustrate their case, and 

even commissioned a special editorial from Mosteller (1996). Also in Statistics, Berk & Rauma 

(1983) generalized the design to deal with dichotomous rather than continuous outcomes (see 

also Berk & de Leeuw, 1999). But apart from that, nothing much happened in Statistics.  
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Why? It is impossible to be sure, but we suspect that to those formally trained 

statisticians who know about the design saw it as limited in its generality, as heavily tied to 

causal inference around a single cutoff value. Indeed, the generality issue emerges when 

comparing RDD to Rubin’s version of assignment on the basis of a covariate. His model requires 

random assignment of the treatment at some points on the assignment variable but all-or-none 

assignment to one or the other treatment at the other points. The random assignment allows valid 

estimation of the functional form of the different treatment group regressions, and researchers 

can test how well these values correspond with adjacent values on the assignment variable where 

all-or-none assignment occurs. In this model, RDD is merely the special case of all-or-none 

allocation on one side or another of the cutoff without any random allocation at all. Moreover, 

the tie-breaking experiment (Boruch, 1973) that combines RDD with symmetrical random 

assignment in a region around the cutoff--thus formalizing what Campbell intuited gave RDD its 

inferential power anyway– becomes in Rubin’s formulation the special case where random 

assignment occurs at all assignment points within some range around the cutoff but is all-or-none 

outside this range. The point is that Rubin’s formulation is more general than RDD, a virtue that 

scholars formally trained in Statistics are likely to appreciate. For them, identifying causal 

impacts when the selection process is completely known represents a trivial intellectual 

challenge; and dealing with functional forms and treatment mis-classification probably involve 

minor variants on well-known data analytic procedures that themselves command a quite minor 

place in the discipline. In this interpretation, it is not surprising that RDD is hardly visible in 

Statistics. 

RDD’s history in Economics is more complex, and only partially overlaps with its history 

in Statistics. The first formal proof of RDD came in two unpublished papers by the 
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econometrician Arthur Goldberger (1972a; 1972b). However, the proof was serendipitous and 

incidental to the main purpose of these papers. Indeed, Goldberger never knew he had provided 

of proof of RDD as such, for he did not know about it at the time. In any event, the proof in 

Goldberger’s own words, with our clarifications added in parentheses, boils down to the 

following: “Recall that z (a binary variable representing the treatment contrast at the cutoff) is 

completely determined by pretest score x (an obtained ability score). It cannot contain any 

information about x* (true ability) that is not contained within x. Consequently, when we control 

on x as in the multiple regression, z has no explanatory power with respect to y (the outcome 

measured with error). More formally, the partial correlation of y and z controlling on x vanishes 

although the simple correlation of y and z is nonzero” (Goldberger, 1972,a; p. 16).  

Goldberger’s independent, serendipitous and unpublished discovery of RDD did not have 

much reverberation in Economics which, at the time, was pursuing causal method agendas more 

general than RDD. The search was for methods to handle selection in the many and varied 

circumstances where it occurs without a cut score. For a time, Heckman-type selection models 

and other uses of instrumental variables were the rage. But it became apparent from within-study 

comparisons like those of LaLonde (1986) and Fraker & Maynard (1987)--later followed by 

many other similar studies summarized in Glazerman, Levy & Meyers (2003)—that as 

Heckman-type models were used in actual research practice they failed to recreate the results of 

experiments that shared the same treatment group as the non-experiment. So the bloom went off 

the Heckman rose. Experience also began to accumulate that decisions about whether particular 

instrumental variable applications met the method’s stringent requirements depended very 

heavily on social consensus rather than on independently verifiable technical criteria. This 

realization undermined faith in many applications of instrumental variables and so many 
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economists cast around for other causal methods, not being willing to rely on extrapolations from 

the complex substantive theories incorporated into general equilibrium models.  So these 

younger economists turned to random assignment experiments, natural experiments, and RDD 

studies for the control each gave over exogeneity. After about 2000, a flurry of theoretical papers 

on RDD began to appear in Economics (e.g., Hahn, Todd & van der Klaauw, 2001; Lee, 2006), 

as did many applications of the design (e.g. Angrist & Lavy, 1999; van der Klaauw, 2002; Jacob 

& Lefgren, 2004a; Jacob & Lefgren 2004b; Ludwig & Miller, 2005; Gormley & Philips, 2005) 

and even a special edition of the Journal of Econometrics (in press). In addition, some American 

governmental agencies that commissioned evaluations began to specify that RDD should be used 

in preference to other methods if an experiment was not possible (IES, 2004). By about 2002, 

RDD seemed to have arrived in Economics after its birth elsewhere in 1958 and after its 

extremely low profile and independent discovery in that discipline in 1972. 

 

Requirements for Validating RDD against Experiments in a Within-Study Comparison 

 

It is one thing for a method to justify causal inference in some theory of method, and 

another thing for it to produce unbiased inferences in actual research practice. After all, one 

could glibly assert that complete knowledge of the selection process results in unbiased causal 

inference. Based on this, one might then try to measure the selection process as completely as 

possible and adjust study results for what one had learned about this process. While such practice 

respects theory, it is unlikely to generate the same results as an experiment. This is because 

selection processes are so complex in the real world that it is well-nigh impossible to 

conceptualize and measure them perfectly. For example, in job training some individuals sign up 
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because of court sanctions, others because of social worker suggestions, others because they are 

bored, others because their spouses or significant others persuade them to, others because their 

friends do so, others because they have heard of recently trained acquaintances who got stable 

jobs, and others out of sheer desperation. And, of course, there can be idiographic blends of all 

these different motivations. With RDD, the main practical tasks are to estimate functional form 

properly and to deal with any fuzziness there might be at the cut point, tasks that are difficult but 

still much easier than conceptualizing and measuring selection processes like those in job 

training.  

But even so, with RDD we need to know not so much whether it can produce the same 

results as experiments, for theory predicts that it should when all the conditions of each method 

type are met. Rather, the issue is, “Do RDD and experimental studies produce the same casual 

estimates when they are implemented in the real world with all the warts that necessarily 

accompany the implementation of any one study, particularly multi-year, multi-site studies with 

complex interventions?” A related issue is whether the two types of studies produce similar 

standard errors, and consequently the same pattern of statistical significance. We know from 

Goldberger’s work that experiments should be about 2.75 times more efficient than RDD studies; 

and we know from other work that the actual degree of superiority--that is, the deviation from 

2.75--depends on a number of factors outlined in Cappelleri, Darlington, and Trochim (1994)  

and in Shadish, Cook, and Campbell (2002). If standard errors are indeed larger in an RDD study 

than an experiment, in some circumstances this is bound to change the conclusions researchers 

draw based only on evidence from statistical significance patterns.  

A methodology for answering questions like those proposed here already exists. It is the 

so-called within-study comparison study, of which LaLonde (1986) was the originator. He took 
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the causal estimate from an experiment and compared it to the estimate from a non-experiment 

that shared the same treatment group as the experiment but had a control group that was non-

randomly formed. The intent was then to use OLS analyses and Heckman-type selection models 

or—in the work of LaLonde’s successors--propensity scores, to see if any of them could correct 

for the selection bias occurring in the non-experiment. The non-experiments in question were all 

studies of two non-equivalent groups that had a posttest observation, pretest demographic 

information and sometimes one or more pretest scores on the same scale as the outcome. None of 

the non-experiments in the review of this literature by Glazerman et al. (2003) was an RDD 

study. Yet it is easy to imagine the same kind of within-study comparison being used to contrast 

experimental results with those from RDD, though as we see below some modifications have to 

be made to suit the particularities of RDD. 

As Smith and Todd (2005) pointed out, some of the past within-study comparisons were 

technically flawed. It is indeed difficult to conduct a good study of this type, and so we explicate 

below seven criteria that, if met, improve the interpretation of a within-study comparison. 

1). A within-study comparison has to demonstrate variation in the types of method being 

contrasted—one comparison group has to be constructed via a random assignment mechanism 

and the other by whatever systematic mechanism is under test. In the RDD case, this should be 

assignment via a cutoff score. This difference in assignment mechanisms constitutes the 

independent variable of interest in a within-study comparison. It is the putative causal agent, as it 

were.  

2). The two assignment mechanisms cannot be correlated with other factors that are 

related to the study outcome. As Smith & Todd (2005) showed with the LaLonde-type job 

training studies, it is not a good idea to construct the non-equivalent comparison group from 



  Empirical tests of RDD 12

some national data source like the Current Population Survey. This confounds the experimental 

and non-experimental study with how the outcome was measured, where it was measured, and 

when it was measured, as well as with geographic setting. Identifying the consequences of 

different assignment mechanisms requires that no correlates of the outcome should be 

confounded with the assignment mechanism. In the RDD case, such a confounding would arise 

if, for example, units one side of the cutoff were measured differently from units on the other 

side.  

3). A quality within-study comparison also has to demonstrate that the randomized 

experiment deserves its status as a causal gold standard. This implies that a correct 

randomization procedure has been used, that it has been correctly implemented, that there is not 

unhappy randomization, that there is not differential attrition, and that there are no treatment 

crossovers to vitiate the SUTVA conditional assumption (Rubin, 1990). It would be futile indeed 

to compare non-experimental results to experimental ones that failed to meet these assumptions, 

for the experiment could not then function as the validity criterion for the non-experimental 

study results. In practice, all experiments deviate from most of these assumptions in various 

ways, increasing standard errors in many cases and even producing some bias in others, even if 

only to a minor degree. This makes the “gold standard” rhetoric a little stretched, although the 

argument is strong that no other causal method is as well fitted to serving this function as the 

well-conducted experiment. 

4). It is also important that the non-experiment be a good example of its type. This is a 

somewhat more opaque requirement and its specifics obviously depend on which type of non-

experiment is under discussion. In the RDD case, there is more clarity than with most other non-

experimental designs. We know the three major things that need to be examined: how the 
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functional form issue is handled; how the analyst deals with treatment mis-allocations around the 

cutoff; and how the analyst deals with the lesser statistical power of the RDD study. Needed for 

functional form are descriptions of the slopes each side of the cutoff. Where they are not linear 

and parallel, adjustments for non-linearities have to be made within a parametric perspective or 

else semi- or non-parametric methods must be used. Also, efforts need to be made to see how 

estimates vary as a function of proximity to the cutoff. Greater faith is warranted in estimates 

generated from a narrower bandwidth around the cutoff, for this is not as sensitive to functional 

form mis-specification as broader bandwidths. But narrower bandwidths create a trade-off with 

statistical power by decreasing sample size. So this trade-off also has to be taken into account in 

evaluating how well an RDD study has been done. Concern about the technical quality of the 

non-experiment is central because we want to identify whether its causal results closely 

approximate those from an experiment when the design was executed as well as the state of the 

art allows, as opposed to it being executed in whatever fashion an analyst happens to have 

accomplished. While this last evaluates how well a particular application of a given design 

approximates the results of an experiment, it does not evaluate the potential of a design to 

reproduce the results of an experiment.  

5). An experiment and non-experiment should estimate the same causal quantity. It 

makes little sense to compute the average effect size for an experiment and to compare it to the 

local average treatment effect from an RDD study that is estimated at a different point on the 

assignment variable than the average in the experiment. Should the relationship between the 

assignment variable and outcome be non-linear, there is no reason to expect correspondent effect 

sizes. This puts a special premium on being able to identify those experiments where the 

experiment takes place among cases symmetrically distributed around the cut score. Only then is 
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the experiment’s average treatment effect strictly comparable with the local average treatment 

effect in an RDD study. Of course, comparison at different points on the assignment variable is 

not meaningless, though it can be mischievous. In particular, it is important for assessing the 

robustness concern of this paper. Will similar results be achieved when the causal entities being 

estimated are not quite identical, as well as in the technically more correct context when they 

are? 

6). A within-study comparison should be explicit about the criteria it uses for inferring 

correspondence between experimental and non-experimental results. Identical estimates are not 

to be expected. Even close replications of the same randomized experiment will not result in 

identical posttest sample means and variances. Assuming statistical power of .80, the same 

pattern of statistical significance will result in only 68% of comparisons. That is, the probability 

of two significant findings across experiments is .80 x.80, and the probability of two non-

significant ones is .20 x .20. Comparisons of significance test patterns are important in the RDD 

context, not because so many scholars use them for decision-making, but because RDD studies 

are known to be less efficient than experiments. All things being equal, then, differences in 

statistical significance patterns can be expected across an experiment and the RDD study yoked 

to it, with the latter study producing more no difference findings. More meaningful than 

statistical tests are focused tests of the difference between casual estimates from an experiment 

and RDD study. But these are rare in the literature we review. Instead, we will report estimates 

for each method type singly, using our own judgment to make decisions about comparability and 

inviting readers to judge for themselves. 

7). The data analyst should perform the non-experimental analyses before learning the 

results of the experimental ones. This is to prevent the analyst deliberately or inadvertently 
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skewing the many decision points in any analysis so as to increase the likelihood of recreating 

the already known experimental results. Such demand characteristics are common and powerful 

in science (Rosenthal, 1966). None of the studies reviewed provides evidence about the temporal 

sequence of method comparisons, and so we have little to say about this point except to note that 

it is desirable for future research in this area. However, it is worth noting that RDD imposes 

more discipline on the analyst than most other types of non-experimental study, given how 

transparent is the assignment process. This makes it more difficult to play around with many 

selection models before deciding on the one that produces closest correspondence to the 

experiment. Some playing around is still possible, particularly in the choice of functional form 

specifications and other covariates. But the extent of this is almost certainly less than with other 

non-experiments.  

 Having presented our criteria for evaluating quality within-study comparisons, we 

proceed with the following three goals: 1). to identify all RDD and experimental comparison 

studies that were simultaneously conducted on the same topic; 2). To assess the degree of 

correspondence by design type according to criteria of similarity in both their causal estimates 

and statistical significance patterns; and 3). to use the seven criteria above to begin the process of 

explaining whatever degree of causal outcome correspondence was achieved. We found three 

such studies that compared results from an experiment with those from an RDD, and discuss 

them in depth below.  

 

Aiken, West, Schwalm, Carroll and Hsiung (1998) 
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 Aiken et al. (1998) examined how students enrolled in a college remedial writing class 

performed relative to students who did not take the course. The RDD took advantage of a school 

policy that assigned students to a remedial writing course on the basis of their ACT or SAT 

scores, depending on which of these they had taken during high school. The treatment group 

(N=99) consisted of students who scored below the particular test-specific cutoff score and had 

consented to participating in the evaluation study prior to the start of the school year. These 

students took the college remedial writing class in the fall semester, followed by the standard 

freshman composition course in the spring semester. The comparison group (N=119) consisted 

of students who had scored above the cutoff, and were randomly selected from fall or spring 

semester sections of the standard freshman composition, stratified across times and days. All 

students took the writing assessments as part of in-class testing exercises at the beginning and 

end of the semester. The RDD analysis was an ANCOVA using the assignment variable, the 

cutoff score, and the pretest score as covariates. Separate analyses were conducted on each of the 

two assignment variables, SAT and ACT scores. The authors tested the robustness of the 

functional form assumption by adding a quadratic selection term and an interaction between the 

selection term and binary treatment predictor, and found no appreciable change in effect size 

estimates.  

The randomized experiment involved taking a sample of students whose “admission test 

scores…fell within a fixed range just below the normal cutoff scores” (Aiken et al., 1998, pg. 

212). These students were asked to volunteer to be in an experiment that would assign them 

either to taking the remedial course or going straight into standard English writing classes. No 

section of standard freshman composition enrolled more than one control participant to ensure 

that class progress would be unaffected by the presence of excess non-remediation students. 
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Treatment students (N=39) assigned to the remedial course were administered the writing 

assessment at the beginning and end of fall semester, and again when they completed the 

standard freshman composition class at the end of spring semester. Control students (N=69) were 

administered writing assessment outside of class at the beginning of fall semester, and again as 

part of an in-class examination in their standard freshman composition course. Controlling for 

pretest scores from the beginning of fall semester, Aiken et al. used ANCOVA to compare 

posttest writing assessment scores for remediation versus non-remediation students at the end of 

fall and spring semesters.  

Despite the challenge of implementing a study at a major public university with multiple 

campuses, a vast bureaucratic structure, and nearly 50,000 enrolled students, Aiken et al. (1998) 

met four of our seven criteria for a strong test of design types. The study varied in whether 

assignment was at random or via cutoff. It generally succeeded in holding most irrelevancies 

constant, with both designs drawing their samples from the same pool of university students, 

having participants undergo experiences together at the same institution, and assessing students 

under similar conditions. Dependent variables for both studies were also the same: performance 

on the TSWE, and on an essay exam scored by at least two independent trained raters. We did 

observe, however, one extraneous confound that might be correlated with the outcome and 

discuss this below. Randomization appeared to have worked, with no significant differences on 

pretest scores for the TSWE and the writing sample and no differential attrition. Finally, the 

authors were explicit in their criteria for correspondence, examining both the pattern of effect 

size as well as the pattern of statistical significance.  

The experiment and RDD, however, diverged in at least two ways. First, the randomized 

experiment was not the tie-breaker design usually advocated in the RDD literature, with its 
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choice of units symmetrically distributed around the cutoff (Boruch, 1975; Campbell, 1984). 

Instead, the authors estimated their average treatment effect in the experiment at a point just 

below where they estimated the local average treatment effect in their RDD study. Also, the 

RDD sample had to take the course to which their ACT or SAT scores assigned them, whereas 

students in the randomized experiment could refuse the randomization invitation and still stay at 

the university. Variation in the sample selection procedure confounds within-study results 

because discordant findings could be driven by sample differences rather than the assignment 

mechanism itself. 

The RDD appeared adequate, with no reported instances of fuzzy discontinuity. 

However, the authors were fortunate to have obtained robust results at all given the small sample 

size of their RDD. Separate analyses were conducted on the SAT and ACT assignment variables, 

with 35 and 46 students in the SAT and ACT treatment groups and 87 and 72 students in the 

SAT and ACT comparison groups. Sensitivity tests indicated that the relationship between the 

assignment and outcome variables was parallel and linear. Had it not been so, the authors would 

have had difficulty generating results through either parametric or non-parametric means. The 

small sample size would have also limited the power of their RDD, making detection of any 

significant effect difficult. It was likely the inclusion of pretest measures that enhanced the 

power of the RDD to a level where significant effects were detectable. Overall, we believe that 

Aiken et al. (1998) presented a fair – but imperfect – test of design types, and that they were 

lucky to have generated stable RDD results at all, much less achieve the level of correspondence 

that they report.  

Table 1 summarizes results for the experimental and RDD studies. The randomized 

experiment produced a statistically significant standardized effect size of .59 on the TWSE. The 
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RDD produced a reliable standardized effect of .49 when the assignment variable was ACT and a 

non-reliable .32 when SAT was used. On the writing task, all effect sizes were non-significant—

in the experiment it was .16 and in the RDD it was .22 for the ACT assignment variable and .02 

for the SAT. The authors noted that the pattern of effect sizes was the same for the randomized 

experiment and the RDD – the three largest effects were for TWSE and the three smallest were 

for the writing test, irrespective of design type. Correspondence in similar patterns of statistical 

significance for experimental and RDD results were found in half the TSWE results, and in all of 

the writing assessment results. Taken together, Aiken et al. (1998) concluded that their 

experiment and RDD study produced generally comparable results, with the bases for this claim 

being quite clear for the ACT assignment variable, less so for SAT. 

 

Buddelmeyer and Skoufias (2003) 

 

 The second experiment/RDD contrast was by Buddelmeyer and Skoufias (2003). They 

reanalyzed data from PROGRESA, a major Mexican program aimed at alleviating current 

poverty through monetary and in-kind benefits, as well as reducing future levels of poverty 

through investments in education, nutrition, and health. The authors used the fact that Mexican 

villages were randomly assigned to PROGRESA, but that families within the experimental 

villages were then assigned into treatment conditions based on their score on a scale of material 

resources. For the experimental and RDD studies, the authors examined whether PROGRESA 

improved school attendance and reduced labor force participation among girls and boys between 

the ages of 12 and 16. In total, 3301 boys and 2941 girls were assigned to the treatment condition 

in both the RDD and experimental studies, 1563 boys and 1378 girls were assigned to the 
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comparison group for the RDD study, and 1952 boys and 1863 girls were assigned to the control 

group for the experimental study. One round of pre-intervention data and two rounds of follow-

up data were analyzed for this study.  

The assignment variable in the RDD was a composite of detailed census information on 

all households and individuals living in communities covered by the program. Those scoring 

below the threshold were considered “poor” and eligible for participation in the program while 

those scoring above the cutoff were considered “not poor” and did not receive government 

support. Because treatment communities were located in seven different states in Mexico, 

separate composite variables and thresholds had to be calculated for each locality to account for 

geographic variations in material poverty. The selection method led to approximately 52% of 

households in the evaluation sample to be classified as eligible for program benefits.  

The RDD data were analyzed using non-parametric procedures and required information 

from only the following sources: the outcome measures, the poverty scale scores, and the seven 

cutoffs that varied from region to region. To rule out spurious discontinuities due to the 

assignment and outcome variables being non-linearly related, the authors used one-sided kernel 

regressions to estimate the unconditional means of the outcome measures. Their main analyses 

presented treatment estimates for a variety of kernel functions (rectangular, biweight, triangular, 

quartic, Epanechinikov, and Gaussian), and subsequent analyses showed estimates at different 

bandwidths (50, 75, and 100). Despite claims by PROGRESA central administration officials 

that assignment into the program was not based on a “purely mechanical approach in the sense 

that selected households were reclassified from one category to another based on an additional 

set of filters such as age, [and] feedback from local authorities...”, the authors found little 

evidence that non-eligible households were actually reassigned into the treatment condition. 
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Thus, they characterized the PROGRESA selection process as a “sharp” rather than “fuzzy” 

RDD.  

The experimental study compared program-eligible families in villages randomly 

assigned to PROGRESA with similarly eligible families in the control villages. The analyses 

used pooled data from all survey rounds, but included controls for round of survey and for 

household, individual, and geographic characteristics. The authors report that randomization 

worked at the locality level, with no significant differences in means on key variables. However, 

significant differences in means were detected when individual level data was examined, 

suggesting that assignment was not entirely random because observed characteristics in the pre-

program round significantly predicted assignment into the treatment condition. As a result, the 

authors report estimates from cross-sectional analyses that compared post-program treatment and 

control group means, as well as estimates from difference-in-difference analyses.  

In assessing the comparability of the experimental and non-experimental designs, we note 

variation in assignment mechanisms, and attempts to reduce confounds correlated with study 

outcomes. Measurement seems to have been the same in both the experimental and control 

villages and also for the treatment and non-equivalent comparison groups within the 

experimental, and hence also RDD, villages. As discussed above, pretest results indicated 

problems with the experiment, so the authors used adjusted experimental estimates to address 

randomization concerns. They found little evidence of fuzziness in the RDD data, and employed 

non-parametric procedures to avoid assumptions about the functional form. Both the 

experimental and RDD studies had large sample sizes, though the RDD had fewer comparison 

groups members than the experimental. The slightly smaller sample size in the RDD likely had 
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minimal consequences on the study’s power given that the experimental sample had just over 

10,000 cases while the RDD had almost 10,000.  

The main area of discrepancy between the two design types lies in the localities of 

estimated treatment effects. The experimental study estimated average treatment effects (ATE) 

while the RDD study estimated local average treatment effects (LATE) for a subgroup of 

observations near the cutoff. The authors attempted to address this concern by presenting 

experimental estimates for a restricted sample of households that had assignment scores within 

the same RDD bandwidth. A comparison of the cross-sectional estimates with the restricted 

sample estimates revealed evidence of heterogeneity in program impacts across households with 

different profiling scores, thus prompting the authors to use experimental results for the restricted 

sample as their benchmark estimates. To be sure, using restricted sample of the experimental 

group is an ad hoc and generally not recommended method for ensuring that the same causal 

quantities are estimated. This is because the RDD analyses was conducted within experimental 

villages where the comparison groups were more materially advantaged on average than were 

the randomly formed control groups in the non-experimental villages. Thus, the average effect 

for the experimental design inevitably fell below the local average treatment effect at the cutoff 

for the RDD. While the restricted sample likely reduced differences in average treatment effects, 

some discrepancy in causal quantities estimated surely remained.  

In Table 2, we summarize Buddelmeyer and Skoufias’ findings. We present the authors’ 

preferred experimental estimates – the “restricted sample” results – for the benchmark results, 

and estimates using six kernel functions for the RDD results. Overall, the RDD estimates 

confirmed the experimental findings that PROGRESA had little to no impact on boys’ and girls’ 

work activities in both rounds of follow-up. Close correspondence was also achieved for boys’ 



  Empirical tests of RDD 23

and girls’ school attendance in the second round of follow-up, but not for the first round, with 

RDD showing no significant program effects on school attendance and the experimental study 

showing positive and significant effects. Looking across all outcomes for both boys and girls, the 

rate of agreement for RDD and experimental estimates by pattern of statistical significance was 

over .80 in six of eight possible rounds, and if the first round of follow-up for school attendance 

is discounted, then close correspondence was achieved in every round. The authors write that if 

“one were to put aside, for the moment, the discrepancies observed in [the first round of follow-

up for school attendance], the performance of the RDD appears to be remarkably good.”  

The authors examined why the RDD produced such divergent results from the 

experimental design for the first follow-up round of school attendance. They found that 

increasing the bandwidth of the non-parametric estimators provided a partial explanation, with 

improved performance of the RDD estimator for girl’s school attendance, but not for boys. The 

authors then hypothesized that spillover effects may have contaminated the comparison group in 

the RDD study. Spillover might occur if noneligible households in treatment communities began 

altering their behavior by enrolling their children in school due to peer effects, expectation for 

benefit receipt, or any other reason. To test their hypothesis, the authors generated estimates 

using a variety of comparison groups (including those just above the cutoff in the experimental 

control villages), and found that spillover was a plausible explanation for the poor performance 

of the RDD estimates during the first round of follow-up, but that spillover effects had 

disappeared by the second round. They concluded that “it is the comparison group rather than the 

method itself that is primarily responsible for the poor performance of the RDD in [the first 

follow-up round].”  
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Black, Galdo and Smith (2005) 

 

The third direct comparison of experiment/RDD results is the most methodologically 

advanced and in our estimation, the strongest test of design types. Black, Galdo and Smith 

(2005) reanalyzed data from a job training program in Kentucky that assigned potential 

exhaustees of unemployment insurance with mandatory reemployment services such as job-

training and job-search workshops as a requirement for receiving benefits.  

The RDD analysis took advantage of the fact that individuals were assigned to job 

training based on a single score derived from a 140-item test predicting the likelihood of long-

term unemployment. The assignment scale used five years of administrative data on claimants’ 

past earnings, schooling, past job characteristics, prior unemployment receipt, prior welfare 

receipt, industry and occupation controls, and local economic and labor market conditions. For 

each local employment office in each week, new claimants were ranked by their assigned scores. 

Reemployment services were given to those with the highest scores, followed by those with the 

next highest scores until the slots for each office each week were filled. When offices reached 

their maximum capacity for claimants to receive employment services, and if there were two or 

more claimants with the same profiling scores, then random number generators were used to 

assign claimants into the treatment condition. Thus, only claimants with marginal profiling 

scores – the one at which the capacity constraint was reached in a given week and in a given 

local office – were randomly assigned into experimental treatment and control groups. This 

sampling procedure resulted in a true tie-breaking experiment and ensured that the RDD causal 

estimate was at the same average point on the assignment variable as the experiment, creating a 

more interpretable contrast of the two design types. 
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Following Rosenbaum’s (1987) suggestion, the authors also used two alternative 

comparison groups in the RDD to better identify program impacts. The “selection bias from 

above” estimates consisted of the RDD treatment group (group D in Figure 1) and the RDD 

comparison (group A) and experimental control (group C) groups, while the “selection bias from 

below” consisted of the RDD (group D) and experimental (group B) treatment groups and the 

RDD comparison group (group A). Within each RDD sample, the authors matched treated and 

untreated individuals conditional on week and local office. The potential number of regression 

discontinuity groups, from both above and below, was bounded by the total number of marginal 

profiling groups. Thus, the authors considered only RDD groups that had corresponding tie 

breaking groups in a given office for a given week, ensuring comparable samples between the 

experiment and RD. In all, 1222 and 742 claimants were in the experimental treated and control 

groups, and 46,313 and 8,631 claimants formed the RDD treatment and comparison groups. The 

large sample size for the RDD suggests that the authors were appropriately concerned about 

creating enough power in the RDD to detect treatment effects.  

Both parametric and non-parametric procedures were used to generate RDD estimates for 

three outcomes – weeks receiving unemployment insurance (UI) benefits, amount of UI benefits 

received, and annual earnings. The parametric models included individual controls such as age, 

sex, race/ethnicity, and other variables not used in the profiling score. Cross-validation methods 

were employed to choose the appropriate order of the assignment variable. Since the authors 

assumed that assignment and outcome variables were not linearly related, they also presented 

three sets of non-parametric results: a simple local Wald estimator that took mean differences on 

raw outcome variables for “neighbors” at both sides of the discontinuity frontier, a smooth 

version of the Wald estimator that used multivariate kernel regressions to control for within-
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group effects, and a one-sided unconditional kernel estimator (Hahn, Todd, and van der Klaauw, 

2001) to address concerns about fuzziness at the discontinuity. The cutoff score varied by office 

and by week, and so treatment impacts were identified by first re-centering profiling scores to 

zero, and then by pulling the data together, weighting by the proportion of treatment units within 

each group. This design feature also had the advantage of allowing the authors to identify 

treatment effects over a frontier of discontinuity points, instead of at a single threshold.  

The experimental impacts were estimated by differencing the mean outcomes of treated 

and untreated individuals within each site and week that also included a RDD treatment and 

comparison group. Effects were then summed and weighted by the proportion of treated units in 

each marginal profiling group. The authors explain that the “experimental estimates can be 

thought as a weighted average of the estimates from many small randomized experiments” (pg. 

32).  

To assess comparability of results, the authors computed non-experimental bias by taking 

the difference between RDD and experimental impacts, and then by testing for significant 

differences in means. Because of space constraints, we present RDD estimates in Table 3 for 

only observations that were closest to the cutoff (+/- .05 from discontinuity), though the authors 

also presented estimates at +/- .10 from the cutoff, +/- .15 from the cutoff, and for the full 

sample. The authors found no significant differences between experimental and RDD results for 

any of the parametric estimates. Additional results showed that the parametric models yielded 

less biased results when the sample was restricted to observations closest to the cutoff. Bias for 

the outcomes “weeks receiving UI benefits”, “amount of UI benefits received”, and “annual 

earnings” increased from.04, $4, and $-70 at +/- .05 from the cutoff to -.85, $-161, and $-351 at 

+/-.15 from the cutoff. However, the level of bias varied with the sample used and the outcome 
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of interest. Estimates for the “selection bias from below” sample were generally less stable than 

results for the “selection bias from above” sample, and annual earnings estimates tended to 

exhibit large biases and were sensitive to the sample used.  

For the non-parametric results, two of the three estimators performed well while the third 

method, the simple Wald estimator, yielded biased estimates for all outcomes and for both RDD 

samples. Only .67 estimates using the simple Wald estimator (at +/- .05 from the cutoff) were not 

significantly different from their experimental benchmarks, prompting the authors to write that 

the poor performance “highlights the importance of using pre-treatment covariates in the 

estimation of the conditional mean counterfactual for the outcome of interest” (pg. 36). In 

general, the multivariate “smooth” kernel estimator and the one-sided local linear kernel “HTV” 

regressions achieved closer correspondences, with no significant differences found in .83 

instances using the smooth and HTV estimators. RDD estimates tended to diverge from their 

experimental benchmark for the outcome “amount of UI benefits received”, and for the 

“selection bias from below” sample in the multivariate kernel regressions.  

Similar to the parametric estimates, the degree of correspondence was greater the more 

the RDD study was restricted to cases around the cutoff, again reflecting the non-linear function 

relating assignment to outcome. Thus, we see statistical theory about RDD guiding the analyses 

and elucidating one condition where an experiment and RDD study can generate comparable 

causal conclusions irrespective of functional form—viz., at a very local average treatment effect 

around the cutoff, given a non-linear functional form. 

Finally, it is worth reviewing the features that make Black, Galdo, and Smith’s (2005) 

study the strongest test of RDD we have found. First, the randomized experiment and the RDD 

studies appear to be implemented well and analyzed correctly, with p-values for the test of 
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difference in means between the experiment and control groups showing no difference on almost 

all covariates in the experiment and significant differences between groups in the RDD. The use 

of three different types of non-parametric estimators addressed concerns about functional form in 

the RD, and the one-sided local linear kernel estimator is perhaps the best known method for 

handling fuzzy discontinuity if one wants to avoid assumptions about the relationship between 

assignment and outcome variables (Hahn, Todd, and van der Klaauw, 2001). Second, the authors 

went great lengths to ensure comparability between the RDD and experimental samples, using 

data only when there were claimants in both the RDD and experimental conditions in the same 

office during the same weeks. Third, the tie-breaking experiment imbedded within the RDD 

design allowed for the same treatment effects to be identified in both designs. Finally, the 

authors explicitly tested for statistical differences between experimental and RDD means using 

bootstrapped standard errors. In all, we regard Black, Galdo and Smith’s study as being highly 

successful in meeting most of our criteria for a fair test of design types.  

 

Discussion 

 

What are we to make of these three within-study comparisons of experimental and RDD 

estimates? Generally, the studies were good examples of a within-study comparison, albeit not 

perfect ones. All created the intended contrast between assignment at random and by a cutoff 

score; all succeeded in ruling out the most obvious temporal and spatial third variable confounds 

with design type; all involved experiments that were apparently well conducted, though the 

pretest mean difference in PROGRESA at the individual-level (but not at the village-level) raises 

some minor doubts that are partially laid to rest by the difference-in-differences estimates. And 
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we have taken pains to show the degree of experiment/RDD concordance in results in terms of 

both causal estimates and statistical significance patterns. 

Less reassuring is that none of the studies took pains to render analysts of the RDD data 

blind to the results of the experiment. This is a very important requirement, the more so when 

sample sizes are small or when the functional forms are not linear and parallel on each side of the 

cutoff. The first case is exemplified by Aiken et al. (1998). Even though pretest writing scores 

were in the RDD model, the sample sizes of 122 and 118 per cutoff score is quite small for 

estimating functional form well. And their ANCOVA analysis makes strong assumptions about 

linearity that are not easily tested under the conditions of the study. We wonder whether the 

analysis would have stopped where it did had there been no experimental estimate against which 

to validate the RDD results obtained? And had there been further analyses, possibly non-

parametric ones, would they have created alternative estimates that added to the uncertainty 

about the size or presence of a causal impact? Consider Black et al. (2005) next. The non-

linearity they found rightly induced them to try non-parametric analyses. Using multiple 

samples, smoothers, and bandwidths, they generated many RDD effect sizes that are quite 

variable (see Table 3). While there is some guidance as to which smoothers and bandwidths are 

to be preferred, it is far from perfect and one wonders to what extent the researchers’ judgments 

as to which estimates are to be preferred were partly conditioned by knowledge of the 

experimental results.  

Also not totally reassuring is that two of the studies failed to estimate the treatment effect 

at the same point on the assignment variable, thus confounding method type and the causal entity 

estimated. Black et al. (2005) were commendably careful to estimate identical quantities, 

conducting their randomized experiment symmetrically around the cutoff. Aiken et al. (1998), 
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however, did not. They estimated their experimental average treatment effect at a point just 

below the cutoff that defines the local average treatment effect in RDD. In Buddelmeyer & 

Skoufias (2003), the discrepancy in causal entities estimated would have been even greater, 

given that families selected by need in treatment villages were inevitably more materially 

disadvantaged than families at the cutoff for PROGRESA. But the analysts recognized this 

potential confound and so reconfigured their experiment to give an adjusted estimate closer to 

the cutoff. But even so it could not have been at the cutoff. Every treated person in the treated 

villages had to score below the cutoff to be in the reconfigured experiment, as did all those in the 

control villages who would have been treated had they lived in a treatment village. Thus, each 

contrast group in the experiment had to fall below the cutoff. We can surmise from the results 

that this particular confounds played at best a minor role in biasing RDD results. Otherwise, the 

results would not have been so similar by design type. This correspondence of results despite a 

clear confound is surely because the average and local average treatment effects were tested at 

very close though not identical points. Achieving different estimates for each case would have 

required an abrupt non-linearity in the causal function beginning at a point immediately below 

the cutoff. By shrinking the difference in where the two effects were estimated, the chance of 

spurious effects in the RDD studies of Aiken et al. and Buddelmeyer & Skoufias were reduced, 

but not necessarily eliminated.  

Good within-study comparisons should also involve contrasting a technically good 

experiment with a technically good example of the type of non-experiment under analysis—in 

this case, RDD. Aiken et al. (1998) were in some senses lucky to obtain the correspondences 

they did, given their small sample sizes, use of a simple ANCOVA, and failure to examine cases 

of fuzzy allocation in detail. Buddelmeyer & Skoufias’ (2003) analysis was not as sophisticated 
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(nor as clear) as Black et al.’s (2005) with respect to the range and appropriateness of smoothers 

and bandwidths selected. Instead, the authors’ chose to focus their analyses on examining six 

different types of kernel estimates, which the non-parametric literature has already shown to be a 

secondary concern after bandwidth selection (Pagan & Ullah, 1999). They found few instances 

of mis-allocation in the RDD data, but because Mexican officials’ insisted that families were 

assigned into treatment conditions beyond what scores indicated, additional steps to ward against 

fuzziness might have been warranted.  

As stated earlier, we regard Black, Galdo, and Smith’s (2005) comparison to be the 

highest quality and most technically sophisticated of the three studies presented. However, their 

findings emphasized a distinct limitation in the state of the art in RDD studies without functional 

forms that are parallel and linear or lacking a pretest measure of the outcome that assesses pre-

intervention functional form. Current theory for choosing smoothers and bandwidths is not very 

specific, and this leads to the need for multiple sensitivity tests that do not always add light. 

Indeed, Black et al. (2005)’s findings varied by the particular choices made, and an analyst who 

generated fewer options might have selected those most distant from the experimental estimate 

and thus have concluded that the RDD study was biased. Of course, some analytic practices 

seem a priori superior and so are to be preferred today, like the Hahn, Todd and van der 

Klauuw’s (2001) one-sided local linear estimator. Other procedures are more dubious and Black 

et al. may only have used them in exploratory fashion, as with the simple Wald estimator that led 

to the most discrepant results (see Table 3). The point is that it will not be easy to recommend the 

best analysis without stronger theory and evidence about which non-parametric procedures to 

prefer when pretests and parallel and linear regressions are absent. One might argue that the 

resulting uncertainty about which causal estimate or estimates to pick in RDD is well deserved, 
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given the real uncertainty about how to smooth functional forms and select bandwidths. But it is 

a source of uncertainty one would not experience with an experiment, and it makes the results of 

any one RDD study less credible than it might otherwise be.  

The limitations of these studies aside, there was still considerable correspondence 

between the experimental and RDD results. It was not perfect, of course, even within the 

probabilistic parameters that condition the level of correspondence to be expected. In 

Buddlemeyer & Skoufias (2003), the experiment and RDD study differed in the first year school 

outcomes for both boys and girls, and in Black et al. (2005), the broader bandwidths and the 

simple Wald estimator produced less concordance between the experiment and RDD. 

Buddelmeyer and Skoufias argued that the discordance was due to bandwidth choice and 

spillover effects in the comparison, and one can easily construct rationales for why broader 

bandwidths and simple Wald estimators performed worse than the other estimators in Black et al. 

(2005).  

Even so, we are impressed by the level of correspondence achieved despite 1). the 

limitations of the studies as within-study comparisons, 2). each study being multi-year, multi-

outcome, multi-context and involving highly complex treatments, and 3). the studies taking place 

in the largest state university in the USA, in Mexican villages, and in job training centers 

throughout Kentucky. There was ample opportunity in each case for many slings and arrows of 

outrageous implementation to have influenced sources of both error and bias that could have 

accumulated in opaque ways to create larger discrepancies between the experimental and RDD 

results. But this was not the case. The RDD estimates proved to be robust across all these factors. 

While it might not be theoretically exciting to show that experimental and RDD estimates are 

concordant, given that each should produce unbiased estimates, it is distinctly promising to show 
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that each of them produces similar estimates in each of three cases involving complex studies in 

which many things can go awry for reasons of inadequate analyst theoretical knowledge, the 

logistical realities of all complex empirical work, and the state of the art limitations of RDD 

methodology.  The three studies examined here suggest the robust ability of well- (but not 

perfectly-) analyzed RDD studies to recreate the results of experiments.  

This is a promising finding that will achieve even greater solidity with more within-study 

comparisons that observe the seven criteria for such studies that are outlined in this paper. It will 

be easy to achieve analyst blinding, the estimation of identical causal quantities, the use of 

pretest measures of functional form, and greater discipline in the choice of smoothers and 

bandwidths for those cases where RDD regressions are not linear and parallel. The difficulty 

comes with the limited state of the art in non-parametric regression, the major impediment to 

comparing good experiments with good RDD studies. We hope that one side effect of this paper 

will be to get empirically oriented scholars to go out and do the better comparisons of 

experimental and RDD studies that we think are needed to be sure that RDD studies will 

generate mostly unbiased causal inferences in the hurly-burly of actual research life where all 

designs are implemented with some degree of imprecision and where there is no experiment to 

act as an external validation criterion. This paper adds an empirical component to the existing 

theoretical warrant for RDD; and within-study comparisons that are only slightly better will 

cement this empirical component and create from it an additional warrant for using RDD in 

cause-probing social research, including evaluations of public-sector policies and programs. 
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Table 1: Comparison of experimental and RDD estimates from Aiken et al. (1998)  
 

Outcome 
Experimental 

estimates RDD estimates  Correspondence 

 
Effect 
size SE SAT (ES) ACT (ES)  

Rate of agreement by 
pattern of effect size 

direction 

Rate of agreement by 
pattern of statistical 

significance 
TSWE 0.59* 0.32 0.49* 1.00 0.50 
Writing 
assessment 0.16 0.02 0.22 1.00 1.00 
N Treatment 39 35 46   
N Control 69 87 72   

 
* Significant treatment effect at .05 level. 
RDD estimates in bold indicate lack of correspondence between RDD and experimental estimates in terms of statistical significance. 
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Table 2: Comparison of experimental and RDD estimates from Buddelmeyer & Skoufias (2003)  
 

Outcome 
Experimental 

estimate RDD estimates  Correspondence 

  Uniform Biweight Epanechnik Triangular Quartic Guassian 

Rate of agreement by 
pattern of statistical 

significance ~

Boys         
School attendance 1 0.07* .02 .01 .01 .01 .01 .01 0.00 
School attendance 2 0.10* .05 .07* .07* .07* .07* .06* 0.83 
Work participation 1 -0.01 .01 .00 .00 .00 .00 .01 1.00 
Work participation 2 -0.04 -.03 -.03 -.03 -.03 -.03 -.03 1.00 
Girls         
School attendance 1 0.08* .04 .04 .04 .04 .04 .05* 0.17 
School attendance 2 0.10* .08* .11* .10* .11* .11* .08* 1.00 
Work participation 1 0.00 .01 .00 .00 .00 .00 -.01 1.00 
Work participation 2 -0.03 -.02 -.03 -.03 -.03 -.03 -.03 1.00 
N Treatment 
Boys 
Girls 

 
3301 
2941 

3301 
2941  

N Control 
Boys 
Girls 

 
1952 
1863 

1563 
1378  

 
* Significant treatment effect at .05 level. 
~ Rate of agreement by pattern of statistical significance was calculated by looking at instances of correspondence in the pattern of 
statistical significance between experimental estimates and for each RDD estimates using the six different kernel functions. 
biweight, epanechnik, triangular, quartic, and guassian).  
RDD estimates in bold indicate lack of correspondence between RDD and experimental estimates in terms of statistical significance.
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 Table 3: Comparison of experimental and RDD estimates from Black, Galdo, and Smith (2005)  
 
Outcome Exp  RDD estimates+  Correspondence 

  RDD estimate at +/- .05 from discontinuity # +

Rate of agreement by 
statistically significant diff in 

EXP & RDD means 
Selection bias from above Estimate Para Smooth HTV Wald Para Smooth HTV Wald 
Weeks receiving UI  -1.85 -1.81 -2.1 -2.04 -0.97 
Amount of UI benefits -7.3 -3.3 -12.3 190.7 414.7 
Annual earnings 1338 1268 745 2659 1051 
Selection bias from below      
Weeks receiving UI  -1.92 -2.12 -2.65 -2.43 -1.75 
Amount of UI benefits -22.9 -242.9 49.1 -18.9 200.1 
Annual earnings 1376 160 943 55 830 

1.00 .83 .83 .67 

N Treatment 1222 46,313     
N Control 742 8,631     

 

# We present only the RD estimates that were closest to the cutoff (+/- .05 from discontinuity), though Black, Galdo, and Smith (2005) 
also present estimates at +/-10 from the discontinuity, +/- from the discontinuity, and for all units. RD estimates in bold indicate 
significant mean differences between experimental and RD estimates using bootstrapped standard errors for the test statistic. Rate of 
agreement was calculated by looking at the number of significant differences between experimental and RD estimates at +/- .05 from 
the discontinuity. 
+ The parametric estimator is referred to as “Para.” The three non-parametric estimators are referred to as the following: “smooth” for 
the smoothed version of the Wald estimator that uses multivariate kernel regressions to control for within-group effects; “HTV” for 
one-sided unconditional kernel estimator recommended by Hahn, Todd, and van der Klaauw (2001); and “Wald” for the simple Wald 
estimator; 



 40

 

 
 




