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Abstract

Experiments that assign intact groups to treatment conditions are increasingly common in
social research. In educational research, the assigned groups are often schools. The design
of group randomized experiments requires knowledge of the intraclass correlation
structure to compute the statistical power and sample sizes needed to achieve adequate
power. This working paper provides a compilation of intraclass correlation values of
academic achievement and related covariate effects that could be used for planning group
randomized experiments in education. It also provides variance component information
that is useful in planning experiments involving covariates. The use of these values to
compute statistical power of group randomized experiments is illustrated as well.
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Intraclass Correlation Values for Planning Group Randomized Trials in Education 

 

Many social interventions operate at a group level by altering the physical or 

social conditions.  In such cases, it may be difficult or impossible to assign individuals to 

receive different intervention conditions.  In such cases, field experiments often assign 

entire intact groups (such as sites, classrooms, or schools) to the same treatment, with 

different intact groups being assigned to different treatments.  Because these intact 

groups correspond to what statisticians call clusters in sampling theory, this design is 

often called a group randomized or cluster randomized design.  Cluster randomized trials 

have been used extensively in public health and other areas of prevention science (see, 

e.g., Donner and Klar, 2000; and Murray, 1998).  Cluster randomized trials have become 

more important in educational research more recently, following increased interest in 

experiments to evaluate educational interventions (see, e.g., Mosteller and Boruch, 2002).  

Methods for the design and analysis of group randomized trials have been discussed 

extensively in Donner and Klar (2000),and  Murray (1998). 

The sampling of subjects into experiments via statistical clusters introduces 

special considerations that need to be addressed in the analysis.  For example, a sample 

obtained from m clusters (such as classrooms or schools) of size n randomized into a 

treatment group is not a simple random sample of nm individuals, even if it is based on a 

simple random sample of clusters.  Consequently the sampling distribution of statistics 

based on such clustered samples is not the same as those based on simple random 

samples of the same size.  For example, suppose that the (total) variance of a population 

with clustered structure (such as a population of students within schools) is σT
2, and that 
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this total variance is decomposable into a between cluster variance σB
2 and a within 

cluster variance σW
2, so that σT

2 = σB
2 + σW

2.   Then the variance of the mean of a simple 

random sample of size mn from that population would be σT
2/mn.  However, the variance 

of the mean of a sample of m clusters, each of size n from that population (with the same 

total sample size mn) would be [1 + (n – 1)ρ]σT
2/mn, where ρ = σB

2/(σB
2 + σW

2) is the 

intraclass correlation.  Thus the variance of the mean computed from a clustered sample 

is larger by a factor of [1 + (n – 1)ρ], which is often called the design effect (Kish, 1965) 

or variance inflation factor (Donner, Birkett, and Buck, 1981). 

 Several analysis strategies for cluster randomized trails are possible, but the 

simplest is to treat the clusters as units of analysis.  That is, to compute mean scores on 

the outcome (and all other variables that may be involved in the analysis) and carry out 

the statistical analysis as if the site (cluster) means were the data.  If all cluster sample 

sizes are equal, this approach provides exact tests for the treatment effect, but the tests 

may have lower statistical power than would be obtained by other approaches (see, e.g., 

Blair and Higgins, 1986).  More flexible and informative analyses are also available, 

including analyses of variance using clusters as a nested factor (see, e.g., Hopkins, 1982) 

and analyses involving hierarchical linear models (see e.g., Raudenbush and Bryk, 2002).  

For general discussions of the design and analyses of cluster randomized experiments see 

Murray (1998), Bloom, Bos, and Lee (1999), Donner and Klar (2000), Klar and Donner 

(2001), Raudenbush and Bryk (2002), Murray, Varnell, & Blitstein (2004), or Bloom 

(2005). 

Wise experimental design involves the planning of sample sizes so that the test 

for treatment effects has adequate statistical power to detect the smallest treatment effects 
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that are of scientific or practical interest.  There is an extensive literature on the 

computation of statistical power, (e.g., Cohen, 1977; Kraemer and Thiemann, 1987; 

Lipsey, 1990).  Much of this literature involves the computation of power in studies that 

use simple random samples.  However methods for the computation of statistical power 

of tests for treatment effects using the cluster mean as the unit of analysis (Blair and 

Higgins, 1986), analysis of variance using clusters as a nested factor (Raudenbush, 1997), 

and hierarchical linear model analyses (Sniders and Bosker, 1993) are available.  For all 

of these analyses, the noncentrality parameter required to compute statistical power 

involves the intraclass correlation ρ.  More complex analyses involving covariates require 

corresponding information (covariate effects or the conditional intraclass correlations 

after adjustment for covariates).  Thus the computation of statistical power in cluster 

randomized trials requires knowledge of the intraclass correlation ρ. 

Because plausible values of ρ are essential for power and sample size 

computations in planning cluster randomized experiments, there have been systematic 

efforts to obtain information about reasonable values of ρ in realistic situations.  One 

strategy for obtaining information about reasonable values of ρ is to obtain these values 

from cluster randomized trials that have been conducted.  Murray and Blitstein (2003) 

reported a summary of intraclass correlations obtained from 17 articles reporting cluster 

randomized trials in psychology and public health and Murray, Varnell, and Blitstein 

(2004) give references to 14 very recent studies that provide data on intraclass 

correlations for health related outcomes.  Another strategy for obtaining information on 

reasonable values of ρ is to analyze sample surveys that have used a cluster sampling 

design involving the clusters of interest.  Gulliford, Ukoumunne, and Chinn (1999) and 
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Verma and Lee (1996) presented values of intraclass correlations based on surveys of 

health outcomes.   

There is much less information about intraclass correlations appropriate for 

studies of academic achievement as an outcome.   Such information is badly needed to 

inform the design of experiments that measure the effects of interventions on academic 

achievement by randomizing schools (Schochet, 2005).  One compendium of intraclass 

correlation values based on five large urban school districts where randomized trials have 

been conducted has recently become available (see Bloom, Richburg-Hayes, and Black, 

2005).   The purpose of this paper is to provide a comprehensive collection of intraclass 

correlations of academic achievement based on national representative samples.   We 

hope that this compilation will be useful in choosing reference values for planning cluster 

randomized experiments. 

 

Dimensions of Designs Considered 

 Our analyses focused on intraclass correlations for designs involving assignment 

of schools to treatments.  Unfortunately, there is a wide variety of designs that might be 

used to study education interventions, and each of these designs may have its own 

intraclass correlation (or conditional intraclass correlation) structure.  To attempt to 

provide a reasonable coverage of the designs most likely to be of interest to researchers 

planning educational experiments, we considered four dimensions of intervention designs.  

The first dimension of the design is the grade level.  The second dimension of the design 

is what achievement domain (e.g., reading or mathematics) is the dependent variable.  

The third dimension of the design is the set of covariates that were used in the analysis, if 
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any.  Finally, the fourth dimension was the socioeconomic (SES) or achievement status 

of schools sampled in the overall population of schools.  These four dimensions of 

designs can vary independently.  We examined all possible combinations of them. 

 Grade level of students and achievement domain. We examined each grade level 

from Kindergarten through grade 12 and both mathematics and reading achievement at 

each grade level, with one exception.  The exception was reading achievement at grade 

11, for which data on a national representative sample was not available to us. 

 Covariates used in the design. We consider four data analysis models involving 

different covariate sets that we believe are likely to be of considerable interest to 

educational researchers.  The first, the unconditional model, involves testing of treatment 

effects with no covariates.  This is the minimal design, but one that is likely to be of 

interest in many settings where the researcher has little opportunity to collect prior 

information about the individuals participating in the experiment.   

The second model, which we call the conditional model, involves testing of 

treatment effects conditional on covariates that are ascriptive characteristics of students 

frequently invoked in models of educational achievement, namely gender, race/ethnicity, 

and socio-economic status.  This design may be appropriate when the researcher can 

obtain prior, contemporaneous, or retrospective data from administrative records 

(appropriate because these covariates are unlikely to change). 

The third model, which we call the residualized gain model, involves testing of 

treatment effects using pretest scores on the same achievement domain (mathematics or 

reading) as a covariate.  This design is likely to be considerably more powerful than the 

previous designs, but involves the additional cost of collecting another wave of test data 
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and the additional organizational burden of making that data collection in a timely 

manner. 

The fourth model, which we call the conditional residualized gain model, involves 

testing of treatment effects using the ascriptive characteristics of students (gender, 

race/ethnicity, and socio-economic status) and pretest scores on the same achievement 

domain as a covariates.  This design combines both of the sets of covariates in the 

previous design.  

 SES or achievement status of schools within their settings. Some experimenters 

undoubtedly wish to use a representative sample of schools within whatever setting they 

choose to study.  Consequently one population of schools we considered was the entire 

collection of schools within a setting. 

Researchers sometimes make decisions to carry out their studies in schools that lie 

within the middle range of outcomes, omitting schools that have had (or are reputed to 

have had) the very poorest and the very best outcomes, on the rationale that neither the 

very poorest schools nor the very best schools give a fair test of an intervention.  We 

operationalized this notion by ordering, on average achievement, the entire sample of 

schools in a setting and selecting the middle 80% of the schools in each setting, omitting 

the top and bottom 10% of the schools. 

 Some interventions are designed to be compensatory.  Experimenters 

investigating such interventions might choose only schools within a particular context 

that have low mean achievement or large numbers of low SES students to evaluate the 

intervention.  We operationalized low achievement by ordering, on average achievement, 

the entire sample of schools in a setting and selecting the lower 50% of the schools, 
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omitting the upper 50% of the schools.  We operationalized low SES by ordering, on 

proportion of students eligible for free of reduced price lunch, the entire sample of 

schools in a setting and selecting the upper 50% of the schools, omitting the bottom 50% 

of the schools. 

  

Datasets Used 

 The object of this paper is to estimate intraclass correlations and associated 

variance components for academic achievement in reading and mathematics for the 

United States and various subpopulations.  Consequently we relied on data from 

longitudinal surveys with national probability samples, all of which are described in 

detail elsewhere.  We chose longitudinal surveys because we wished to use achievement 

data collected in earlier years as pretest data for evaluating conditional intraclass 

correlation relevant for planning studies that would use a pretest as a covariate.  In some 

cases, more than one survey could have provided data on a given grade level.  In such 

cases, we report here results based on the survey with the largest sample size.   

When it was possible to estimate intraclass correlations for the same grade and 

achievement domain from more than one survey, we computed estimates from all surveys 

from which it was possible.  Generally, we found that the results agreed within sampling 

error.  The exception was that estimates from the second and third followups of the 

Prospects samples tended to be least consistent with other estimates.  This finding makes 

sense in light of two principles.   The first is that longitudinal studies suffer from attrition 

and lose their representative character over time, so that followup waves, and particularly 

second and third follow-ups, are no longer represent exactly the same population.  The 
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second is the more arguable principle that the Prospects study had larger differential 

(non-random) attrition than other longitudinal studies considered here (which seems to be 

supported by analyses of attrition). 

The results reported for Kindergarten, grade 1, and grade 3 were obtained from 

three waves of the Early Childhood Longitudinal Survey (ECLS).  The ECLS is a 

longitudinal study that obtained a national probability sample of Kindergarten children in 

1591 schools in 1998 and followed them through the fifth grade (see Tourangeau, et al., 

2005).   Achievement test data were collected in both Fall and Spring of Kindergarten 

and first grade, and in Spring only in third and fifth grades.  There was no data collection 

in second and fourth grade.  Thus Fall achievement test data collected in the same year 

could serve as a pretest in Kindergarten and first grades, while data collected in the 

Spring of the first grade served as pretest data for the third grade. 

The results reported for grade 2 were obtained from the first followup to the first 

grade (base year) sample and those reported for grades 4 to 6 were obtained from the 

three follow-ups of the third grade (base year) sample in the Prospects study, and the 

results in reading in grades 7 and 9 were obtained from the base year and the second 

followup of the seventh grade sample in the Prospects study.  Prospects was actually a set 

of three longitudinal studies, starting with (base year) national probability samples of 

children in 235, 240, and 137 schools, in grades 1, 3, and 7, respectively, conducted in 

1991 (for a complete description of the study design, see Puma, et al., 1997).  

Achievement test data was collected for three to four years thereafter for each sample.  

Thus the three prospects studies collected data in grades 1 (both Fall and Spring), 2, and 

3; grades 3, 4, 5, and 6; and 7, 8, and 9.  There was pretest data in the base year for grade 
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1, but no pretest data for the base years in grades 3 and 7.  For all years except the base 

year, the previous year’s achievement test data was used as a pretest and in grade 1 the 

test data collected in fall served as a pretest. 

The results reported on reading in grades 8, 10, and 12 and mathematics in grades 

10 and 12 were obtained from the National Educational Longitudinal Study of the Eighth 

Grade Class of 1988 (NELS: 88).  NELS: 88 is a longitudinal study that began in 1988 

with a national probability sample of eighth graders in 1050 schools and collected 

reading and mathematics achievement test data when the students were in grades 8, 10, 

and 12.  Thus no pretest data was available for grade 8, but for the grade 10 the grade 8 

data was used as a pretest and for grade 12 the grade 10 data was used as a pretest.   

Finally, the results on mathematics in grades 7, 8, 9, and 11 were obtained from 

the base year and follow-ups of the Longitudinal Study of American Youth (LSAY) (see 

Miller, et al., 1992).  The LSAY is a longitudinal study that began in 1987 with two 

national probability samples, one of seventh graders in and one of tenth graders in 104 

schools.  Data were collected on mathematics and science achievement each year for four 

years leading to samples from grades 7 to 12.  There was no pretest data in grade 7, but 

the previous year’s data served as the pretest for each subsequent year. 

 

Analysis Procedures 

 The data analysis was carried out using STATA version 9.1’s “XTMIXED” 

routine for mixed linear model analysis.  For each sample and achievement domain, 

analyses were carried out based on four different models, which we call the unconditional 

model, the residualized gain model, the conditional model, and the conditional 
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residualized gain model.  We describe these explicitly below in hierarchical linear model 

notation.   

The unconditional model. The unconditional model involves no covariates at 

either the individual or school (cluster) levels. The level-one model for the kth observation 

in the jth school can be written as 

0jk j jkY β ε= + , 

and the level two model for the intercept is 

0 00j jζβ π= + , 

where εjk is an individual-level residual and ζj is a random effect of the jth cluster (a level-

two residual).  The variance components associated with this analysis are σW
2 (the 

variance of the εjk) and σB
2 (the variance of the ζj).    

The residualized gain model. If pretest scores on achievement are available, they 

can be a powerful covariate and considerably increase power in experimental designs.  

The residualized gain model involves using the cluster-centered pretest score at the 

individual level and the school mean pretest score at the school level.  Thus the level-one 

model for the kth observation in the jth school can be written as 

0 1 ( )jk j j jk j jkY X Xβ β ε•= + − + , 

and the level two model for the intercept is 

0 00 01j jπ X ζβ π •= + + j , 

where Xjk is the achievement pretest score for the jth observation in the kth school, jX • is 

the pretest mean for the jth school, εjk is an individual-level residual and ζj is a random 

effect of the jth school (a level-two residual) and the covariate slope β1j was treated as 
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equal in all clusters (schools).   The variance components associated with this analysis are 

σAW
2 (the variance of the εjk) and σAB

2 (the variance of the ζj).   

The conditional model. Sometimes pretest scores are not available but other 

background information about individuals is available to serve as covariates.  The 

conditional model includes four covariates at each of the individual- and group- (cluster) 

level.  At the individual-level, the covariates are dummy variables for male gender and 

for Black or Hispanic status, and an index of mothers and father’s level of education as a 

proxy for socioeconomic status.  As recommended by Raudenbush and Bryk (2002), each 

of these individual-level covariates was group centered.  The school-level covariates were 

the means of the individual level variables for each school (cluster).  Therefore the level-

one model for the kth observation in the jth school can be written as 

0 1 2 3 4( ) ( ) ( ) ( )jk j j jk j j jk j j jk j j jk j jkY β G G β B B β H H β E Eβ ε• • •= + − + − + − + − +•  

where Gjk , Bjk, and Hjk, are dummy variables for male gender, Black, and Hispanic status, 

respectively, E is an index of mothers and father’s level of education (which is a proxy 

for family SES), and jG • , jB • , jH • , and jE • are the means of G, B, H, and E in the jth 

school (cluster).  The level-two model for the intercept is 

0 00 10 20 30 40j j j j j jβ π π G π B π H π E ζ• • • •= + + + + + , 

and the covariate slopes β1j, β2j, β3j, and β4j were treated as equal in all clusters (schools).  

The variance components associated with this analysis are σAW
2 (the variance of the εjk) 

and σAB
2 (the variance of the ζj).   

The residualized conditional model. The residualized conditional model combines 

the use of an achievement pretest and the individual characteristics of gender, minority 
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group status, and parent’s education as individual- and school-level covariates.  Therefore 

the level-one model for the kth observation in the jth school can be written as 

0 1 2 3 4 5( ) ( ) ( ) ( ) ( )jk j j jk j j jk j j jk j j jk j j jk j jkY β X X G G β B B β H H β E Eβ β ε• • • •= + − + − + − + − + − +•

where all of the symbols are defined as in the models above.  The level-two model for the 

intercept is 

0 00 10 20 30 50j j j 40 j j jβ π π X π G π B π H π E ζ• • • •= + + + + + + , 

and the covariate slopes β1j, β2j, β3j, β4j, and β5j were treated as equal in all clusters 

(schools).   The variance components associated with this analysis are σAW
2 (the variance 

of the εjk) and σAB
2 (the variance of the ζj).   

 

The Intraclass Correlation Data 

The (unconditional) intraclass correlation associated with the unconditional model 

described above is  

ρ = σB
2/[ σB

2 + σW
2] = σB

2/σT
2,        (1) 

where σT
2 = σB

2 + σW
2 is the (unconditional) total variance.  Note that the residuals εjk and 

ζj correspond to the within- and between-cluster cluster random effects in an experiment 

that assigned schools to treatments.  Consequently, the variance components associated 

with these random effects and the intraclass correlation corresponds to those in a cluster 

randomized experiment that assigned schools to treatments and analyzed the data with no 

covariates. 

In the three models involving covariate adjustment, the (covariate adjusted) 

intraclass correlation is  

ρA = σAB
2/[ σAB

2 + σAW
2] = σAB

2/σAT
2,       (2) 
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where σAT
2 = σAB

2 + σAW
2 is the (covariate adjusted) total variance.  Note that the residuals 

εjk and ζj correspond to the within- and between-cluster cluster random effects in an 

experiment that assigned schools to treatments and used the same covariates as were used 

in the models with covariates.  Consequently, the variance components associated with 

these random effects and the conditional intraclass correlation ρA correspond to those in a 

cluster randomized experiment that assigned schools to treatments and analyzed the data 

with these (individual and school mean) characteristics as covariates.   

 For each combination of design dimensions (that is for each grade level, 

achievement domain, covariate set, setting, and choice of SES/achievement status within 

setting) we estimated the intraclass correlation (or conditional intraclass correlation) via 

restricted maximum likelihood using STATA and computed the standard error of that 

intraclass correlation estimate using the result given in Donner and Koval (1982).  This 

resulted in 13 (grade levels) x 2 (achievement domains) x 4 (covariate sets) x 4 

(SES/achievement statuses within settings) = 416 intraclass correlation estimates (each 

with a corresponding standard error).    

For designs that employ covariates, we also provide values of  

ηB
2 = σAB

2/σB
2,          (3) 

the percent reduction in between-school variance and  

ηW
2 = σAW

2/σW
2,         (4) 

the percent reduction in within-school variance, respectively, after covariate adjustment.  

For designs involving covariates, these two auxiliary quantities (ηB
2 and ηW

2) are useful in 

computing statistical power.  Their use is illustrated in a subsequent section of this paper.   
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Two alternative parameters that contain the same information as ηB
2 and ηW

2 are 

RB
2 = 1 –  ηB

2  and RW
2 = 1 – ηW

2,  the proportion of between- and within-group variance 

explained by the covariate.  We chose to tabulate the η2 values instead of the R2 values 

because the relation of the η2 values to the noncentrality parameters used in power 

analysis is simpler.    

Note that each of the four analyses involved slightly different variables, and there 

were missing values on some of these variables in our survey data.  We decided to 

compute each analysis on the largest set of cases that had all of the necessary variables 

for the analysis in question.  This means that each of the four analyses of a given dataset 

is computed on a slightly different set of cases.  Because the quantities ηW
2 and ηB

2 

involve a comparison of two different analyses (one with and one without a particular set 

of covariates), we believed it was important to make this comparison using estimates 

derived from exactly the same set of cases.  Consequently, for each of the analyses that 

involved covariates, we re-computed the estimates of the unadjusted variance 

components, σW
2 and σB

2, using only the cases that were used to compute the adjusted 

variance components σAW
2 and σAB

2 and used these particular estimates to compute the 

ηW
2 and ηB

2 values given here.   

Although we provide estimates of the standard errors of the intraclass correlations, 

they should be used with some caution for two reasons.  First, the distribution of 

estimates of the intraclass correlations is only approximately normal.  Second, not all of 

these values are independent of one another and it is not immediately clear how to carry 

out a formal statistical analysis of differences between estimates of intraclass correlations 

computed from the sample of individuals.  Never the less, we feel that these standard 
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errors are useful as descriptions of the uncertainty of the individual estimates of intraclass 

correlations. 

 

Results 

 We found that the intraclass correlations obtained in the nationally representative 

sample and the schools in middle 80% of the achievement distribution had intraclass 

correleations that were almost identical.  Consequently, we present results here only the 

intraclass correlation data from the entire national sample of schools, those in the upper 

half of the free and reduced price lunch distribution (low SES schools), and those in the 

lower half of the school mean achievement distribution (low achievement schools). 

 Mathematics achievement in the full population. Table 1 is a presentation of 

results from the entire national sample in mathematics.  The table is divided into four 

panels of three columns each, one panel for each of the four analyses described above.  

The data for each grade level is given in a different row.  In the row for each grade, the 

columns of each panel provide the estimates of the intraclass correlation (ρ), the standard 

error of the estimate of ρ (in parentheses after the estimate of ρ), and (for all but the 

unconditional model given in the first panel on the left hand side) estimates of ηB
2 and 

ηW
2.  For example, consider the data for the residualized unconditional model for grade 1, 

given in the third panel of the table.  On the row associated with grade 1, the values in the 

columns of the third panel (columns 8 to 11 of the table) are 125, 13.5, 177, and 376, 

respectively, which correspond to estimates of 0.125, 0.0135, 0.177, and 0.376 for ρA, the 

standard error of the estimate of ρA, ηB
2, and ηW

2. 
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Although there is a tendency of the intraclass correlations to be larger at lower 

grades, in general there are not large changes across adjacent grade levels.  Few of these 

differences exceed two standard errors of the difference.  A notable exception is the 

unadjusted intraclass correlation at grade 11, where the difference between grade 11 and 

either of the adjacent grades is about three standard errors of the difference.  None of the 

differences between adjusted intraclass correlations in adjacent grades is a large as three 

standard errors of the difference, but the values for grade 2 are somewhat higher (by over 

two standard errors of the difference) and those for grade 3 somewhat lower than those of 

adjacent grades. 

 The pattern of reduction of between and within-cluster (school) variances are 

generally quite different in these models.  Specifically, the conditional analyses typically 

reduced the between cluster variance to one-half to one-quarter of its value in the 

unconditional model (e.g., produced ηB
2 from 0.5 to 0.25), but typically reduced within-

cluster variance by 10% or less (e.g., produced ηW
2 values greater than 0.9).  The 

residualized analyses using pretest score as a covariate typically resulted in larger 

reductions in between-cluster variance (e.g., produced ηB
2 values from 0.3 to 0.1), but 

typically also reduced within-cluster variance by a much larger amount than the 

conditional model (e.g., produced ηW
2 values from 0.25 to 0.5).   Different patterns of 

variance reduction have quite different implications for statistical power, even if they 

correspond to the same adjusted intraclass correlation (see the section on power 

computation in models with covariates).    

 Reading achievement in the full population. Table 2 is a presentation of results 

from the entire national sample in reading, organized in the same way as Table 1 which 
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reported results for mathematics.  The intraclass correlation and adjusted intraclass 

correlation values in reading are generally quite similar to those in mathematics.   As in 

mathematics, there is a tendency of the intraclass correlations in reading to become 

smaller at higher grades, but the changes across adjacent grade levels are often larger.  

The results for grade 9 are particularly inconsistent with (having larger values of the 

intraclass correlations than) the results from either grade 8 or grade 10.  The results from 

grade 2 are also somewhat different (having smaller values of the intraclass correlations 

than) the results from either grade 1 or grade 3.  Several of these differences exceed three 

standard errors of the difference.  Few of the other differences exceed two standard errors 

of the difference.   

 There is less consistency in reading than in mathematics among the adjusted 

intraclass correlations for the three models involving covariates.  However the general 

pattern of reduction in between- versus within-cluster variance was similar in reading and 

in mathematics.  That is, there was somewhat greater reduction in between-cluster 

variance and much greater reduction in within-cluster variance in the residualized model 

than in the conditional model.   

 Mathematics achievement in low SES schools. Table 3 is a presentation of results 

in mathematics computed for the schools in the bottom half of the school SES 

distribution (operationalized by proportion of students eligible for free or reduced price 

lunch).  There appears to be a slight tendency for the intraclass correlation values in this 

sample to be a bit smaller than those reported in Table 1 for the entire national population, 

a tendency that does not hold for the conditional (adjusted) intraclass correlations.  The 

pattern of variation in the mathematics intraclass correlations and conditional intraclass 
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correlations across regions, urbanicity of school setting, and regions crossed with 

urbanicity in the low SES school sample was similar to that in all schools.      

Reading achievement in low SES schools. Table 4 is a presentation of results in 

mathematics computed for the schools in the bottom half of the school SES distribution 

(operationalized by proportion of students eligible for free or reduced price lunch).  As in 

the case of mathematics, there appears to be a slight tendency for the intraclass 

correlation values in this sample to be a bit smaller than those reported in Table 2 for the 

entire national population, a tendency that does not hold for the conditional (adjusted) 

intraclass correlations.  The pattern of variation in the reading intraclass correlations and 

conditional intraclass correlations across regions, urbanicity of school setting, and regions 

crossed with urbanicity in the low SES school sample was similar to that in all schools.     

 Mathematics achievement in low achievement schools. Table 5 is a presentation of 

results in mathematics computed for the schools in the bottom half of the distribution of 

school mean mathematics achievement.  The intraclass correlation values in this sample 

are considerably smaller than those reported in Table 1 for the entire national population, 

a tendency that also holds for the conditional (adjusted) intraclass correlations.  There is 

some variation of intraclass correlations across grade levels, but only the difference 

between grades 4 and 5 is larger than two standard errors of the difference.  In general the 

intraclass correlations at Kindergarten through grade 4 range from about 0.09 to 0.13, in 

grades 5 through 7 they range from about 0.05 to 0.08, and in grades 8 through 12 they 

range from 0.075 to 0.085. 

The use of covariates resulted in a much smaller reduction in both between- and 

within-school variances in this sample than in the unrestricted sample.  Specifically, the 
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conditional analyses typically reduced the between-school variance to no less than one-

half of its value in the unconditional model (e.g., produced ηB
2 from 0.5 to 0.8), but 

typically reduced within-cluster variance by 5% or less (e.g., produced ηW
2 values greater 

than 0.95).  The residualized analyses using pretest score as a covariate typically (but not 

always) resulted in modestly larger reductions in between-cluster variance (e.g., produced 

ηB
2 values from 0.3 to 0.8), but typically reduced within-cluster variance by a larger 

amount than the conditional model (e.g., produced ηW
2 values from 0.5 to 0.8).   Thus we 

find that the intraclass correlation is smaller in this sample, but the explanatory power of 

pretest and other covariates is also smaller.  These two tendencies have opposite effects 

on statistical power.  The smaller intraclass correlation generally leads to larger statistical 

power but the smaller explanatory power of covariates generally leads to larger statistical 

power, one partially offsetting the effects of the other. 

Reading achievement in low achievement schools. Table 6 is a presentation of 

results in mathematics computed for the schools in the bottom half of the distribution of 

school mean reading achievement.  As in the case of mathematics, the intraclass 

correlation values in this sample are considerably smaller than those reported in Table 2 

for the entire national population, a tendency that also holds for the conditional (adjusted) 

intraclass correlations.  

There is some variation of intraclass correlations across grade levels.  The 

intraclass correlation in grade 9 is larger (by over three standard errors of the difference) 

than that in either of the adjacent grades.  Similarly the intraclass correlation in grade 1 is 

more than two standard errors greater than that in Kindergarten, but less than two 

standard errors of the difference from that in grade 2.   None of the other differences 
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between grades is this large in comparison to their uncertainty.  In general the intraclass 

correlations at grades Kindergarten through 4 range from about 0.10 to 0.14, in grades 5 

through 8 they range from about 0.06 to 0.07, and in grades 10 through 12 they are about 

0.05. 

As in the case of mathematics, the use of covariates resulted in a much smaller 

reduction in both between- and within-school variances in this sample than in the national 

sample.  Specifically, the conditional analyses typically reduced the between-school 

variance to no less than one-half of its value in the unconditional model (e.g., produced 

ηB
2 from 0.5 to 0.8), but typically reduced within-cluster variance by 5% or less (e.g., 

produced ηW
2 values greater than 0.95).  The residualized analyses using pretest score as a 

covariate typically (but not always) resulted in modestly larger reductions in between-

cluster variance (e.g., produced ηB
2 values from 0.3 to 0.8), but typically reduced within-

cluster variance by a larger amount than the conditional model (e.g., produced ηW
2 values 

from 0.5 to 0.8).   Thus we find, as in the case of mathematics, that the intraclass 

correlation is smaller in this sample, but the explanatory power of pretest and other 

covariates is also smaller, one of these differences partially offsetting the effects of the 

other on statistical power. 

 

Minimum Detectable Effect Sizes 

 One way to summarize the implications of these results for statistical power is to 

use them to compute the smallest effect size for which a target design would have 

adequate statistical power.  This effect size is often called the minimum detectable effect 

size (MDES), see Bloom (1995) and Bloom (2005).  In computing the MDES values 
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reported in this paper, we used the value 0.8 with a two-sided test at significance level 

0.05 as the definition of adequate power.  We considered designs with no covariates and 

with pretest as a covariate at both the individual and group level.  We considered both 

reading and mathematics achievement as potential outcomes.  Finally we considered a 

balanced design with a sample of size of n = 60 per school with m = 10, 15, 20, 25, or 30 

schools randomized to each treatment group. 

 Table 7 gives the minimum detectable effect sizes based on parameters given in 

Tables 1 and 2 that were estimated from the full national sample.  Perhaps the most 

obvious finding is that the corresponding MDES values for mathematics and reading are 

quite similar.  With no covariates, the MDES values typically exceed 0.60 for m = 10 and 

typically exceed 0.35 even for m = 30.  However the use of pretest as a covariate reduces 

the MDES values to less than 0.40 for m = 10 and 0.20 or less for m = 30.  Although 

there is no universally adequate standard for evaluating the importance of effect sizes, 

applying Cohen’s (1977) widely used labels of 0.20 as small and 0.50 as medium would 

imply that an experiment randomizing m = 10 schools to each treatment should be 

adequate to detect effects of “medium” size and that an experiment randomizing m = 30 

schools to each treatment should be adequate to detect effects of “small” size.   

Table 8 gives the minimum detectable effect sizes based on parameters given in 

Tables 3 and 4 that were estimated from the national sample of low SES schools.  These 

results are remarkably similar to those in Table 7.  

 Table 9 gives the minimum detectable effect sizes based on parameters given in 

Tables 5 and 6 that were estimated from the national sample of schools in the lower half 

of the achievement distribution.  Because the unconditional intraclass correlations are 
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lower, the MDES values for designs with no covariates are smaller.  However because 

the covariates are less effective in reducing between and with-school variance in this 

sample, the MDES values with pretest as a covariate are not always smaller than in the 

national sample of all schools.  With no covariates, the MDES values typically less than 

0.50 for m = 10 and less than 0.30 for m = 30.  However the use of pretest as a covariate 

typically reduces the MDES values to about 0.30 for m = 10 and 0.20 or less for m = 30.   

 

Using the Results of this Paper to Compute Statistical Power 

 of Cluster Randomized Experiments 

 

 In this section, we illustrate the use of the results in this paper to compute the 

statistical power of cluster randomized experiments.  Consider the two treatment group 

design with q (0 ≤  q < M – 2) group-level (cluster-level) covariates and p (0 ≤ p < N – q 

– 2) individual-level covariates in the analysis.  Note that we specifically include the 

possibility that there are 0 (no) covariates at a given level.  For example a design with p = 

1 and q = 1 might arise, for example, if there was a pretest that was used as an individual-

level covariate and cluster means on the covariate were used as a group level covariate.  

We assume also that the individual-level covariate has been centered about cluster means.  

The structural model for Yijk, the kth observation in the jth cluster in the ith treatment might 

be described in ANCOVA notation as  

 ( )ijk Ai I ijk G ij A i j AijkY µ α γ= + + + + + +' 'θ x θ z ε , 

where µ is the grand mean, αAi is the covariate adjusted effect of the ith treatment, θI  = 

(θI1, …, θIp)’ is a vector of p individual-level covariate effects, θG = (θG1, …, θGq)’ is a 
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vector of q group-level covariate effects, xij is a vector of p group (cluster) centered 

individual-level covariate values for the jth cluster in the ith treatment, zij is a vector of q 

group-level (cluster-level) covariate values for the jth cluster in the ith treatment, γ(i)j is the 

random effect of cluster j within treatment i, and εAijk is the covariate adjusted within cell 

residual.  Here we assume that both of the random effects (clusters and the residual) are 

normally distributed. 

The analysis might be carried out either as an analysis of covariance with clusters 

as a nested factor or by viewing the model as a hierarchical linear model and using 

software for multilevel models such as HLM.  In multilevel model notation, it would be 

conventional to specify a level-one (individual-level) model as  

0ijk j j ijk AijkY β ε= + +'β x , 

and a level-two (cluster-level) model for the intercept as 

0 00 01 02j A i ijTREATMENT ζβ π π= + + +'π z Aj , 

where TREATMENTi is a dummy variable for the treatment group, while the covariate 

slopes in βj would be treated as fixed effects (βj = θI), and ζAj is the random effect of the 

jth cluster (a level-two residual).  With the appropriate constraints on the ANCOVA 

model (i.e., setting αAi = 0 for the control group and constraining the mean of the γA(i)j’s to 

be 0), these two models are identical and there is a one to one correspondence between 

the parameters and the random effects in the two models.  That is, µ = π00, αAi = πA01, θG = 

π02, θI = βj (for all j), γA(i)j = ζAj (with a suitable redefinition of the index j), and εAijk 

identical in both models.   The variance components associated with this analysis are σAW
2 

(the variance of the εAijk) and σAB
2 (the variance of the ζj), where the A in the subscript 

denotes that these variance components are adjusted for the covariate. 
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 The intraclass correlations. Note that if in the experiment, schools were sampled 

at random, students were sampled at random within schools, and q = p = 0, then  ρ = 

σB
2/[σB

2 + σW
2] is exactly the intraclass correlation that would obtain in a survey that 

sampled first schools and then students at random.  Similarly, if there are covariates in 

the experiment, schools were sampled at random, students were sampled at random 

within schools, and q ≠ 0 or p ≠ 0, then  ρA = σAB
2/[σAB

2 + σAW
2] is exactly the adjusted 

intraclass correlation that would obtain in the analysis of the survey (with appropriate 

covariates) that sampled first schools and then students at random. 

 

Hypothesis Testing 

The object of the statistical analysis is to test the statistical significance of the 

intervention effect, that is, to test the hypothesis 

H0: αA1 – αA2 = 0 

or equivalently 

 H0: πA01 = 0. 

The ANCOVA t-test statistic is 

 1 2( A A
A

A

m Y Yt
S
•• ••−

=
) ,       (5) 

where is as defined above,m 1AY •• and 2AY •• are the adjusted means, SA is the pooled within-

treatment-groups adjusted standard deviation of cluster means, and the subscript A is 

used to connote that the means and standard deviation are adjusted for the covariates. The 

F-test statistic from a one-way analysis of covariance using cluster means is of course 

 2AB
A A

AC

MSF
MS

= = t .        (6) 
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In this case MSAB = 2
1 2( A Anm Y Y•• ••− )  and MSAC = nSA

2, where SA is the pooled within-

treatment-groups standard deviation of the covariate adjusted cluster means (the standard 

deviation of the level-two residuals).  If the null hypothesis is true, the test statistic tA has 

Student’s t-distribution with M – q – 2 degrees of freedom.  Equivalently, the test statistic 

FA has the central F-distribution with 1 degree of freedom in the numerator and M – q – 2 

degrees of freedom in the denominator when the null hypothesis is true. 

 When the null hypothesis is false, the test statistic tA has for this analysis has a 

noncentral t-distribution with M – q – 2 degrees of freedom and noncentrality parameter 

 
[ ]

1
1 1 1 1

A1 A2 A
A

AT A A

mn mnδλ
σ n ρ n ρ

−
= =

+ − + −

( )
( ) ( )

α α ,   (7) 

where δA = (αA1 – αA2)/σAT.   

Alternatively (and equivalently), the F-statistic has the noncentral F-distribution 

with 1 degree of freedom in the numerator and M – q – 2 degrees of freedom in the 

denominator and noncentrality parameter 

 
2

2

( )
[1 ( 1) ]

A1 A2
A

AT A

mnω
n ρ

α α
σ

−
=

+ −
. 

 For the purposes of power computation, the expression (7) is not convenient, 

because the minimum effect size of interest is likely to be known in units of the 

unadjusted standard deviation rather than the adjusted standard deviation, that is we are 

more likely to know δ = (α1 – α2)/σT rather than δA = (αA1 – αA2)/σAT .  In a randomized 

experiment, covariate adjustment should not affect the treatment effect parameter, so that 

αA1 – αA2 = α1 – α2, but the covariate adjustment necessarily affects the standard deviation.  

This is true even if the covariates operate at only one level of the design.  Because 
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2 2 2
AT AB Aσ σ σ= + W , a covariate adjustment at the individual-level will affect σAT

2 via 

σAW
2 and a covariate adjustment at the cluster-level will affect σAT

2 through σAB
2. 

 To express λA in terms of δ, we need only express σAT in terms of σT.  A direct 

derivation shows that  

   
[ ]

2 2 2

2 2

( )( ) 1
1 ( 1) 1 ( 1)

B W B AA1 A2 T
A

T AT A B W

mn mn
σ n ρ n ρA

η η η ρα α σλ δ
σ η η
⎛ ⎞ + −−

= =⎜ ⎟ + − + −⎝ ⎠
.   (8) 

 An alternative, but equivalent, expression of λA that is considerably more 

revealing involves ηB
2, ηW

2, and the unadjusted intraclass correlation ρ.  This expression 

is 

 
( )2 2 2

1
A

W B W

mn
nη η ρ

λ δ
η

=
+ −

.      (9) 

Note that the quantity [ηW
2 + (nηB

2 – 1)ρ] is analogous to [1 + (n – 1)ρ], Kish’s design 

effect.  We see that [ηW
2 + (nηB

2 – 1)ρ] reduces to [1 + (n – 1)ρ] in the analysis without 

covariates (because ηW
2 = ηB

2 = 1) and (9) reduces to the expression given, for example in 

Blair and Higgins (1986) for the t-test conducted using cluster means as the unit of 

analysis. 

We illustrate the use of the t-statistic.  The power of the one-tailed test at level α 

is  

 p1 = 1 – H[c(α, M – q – 2), (M – q – 2), λA]     (10) 

where c(α, ν) is the level α one-tailed critical value of the t-distribution with ν degrees of 

freedom [e.g., c(0.05,10) = 1.81], and H(x, ν, λ) is the cumulative distribution function of 

the noncentral t-distribution with ν degrees of freedom and noncentrality parameter λ. 

The power of the two-tailed test at level α is  
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p2 = 1 – H[c(α/2, M – q – 2), (M – q – 2), λA] + H[–c(α/2, M – q – 2), (M – q – 2), λA] (11) 

 

Using Power Tables and Power Calculation Software 

 Many tabulations (e.g., Cohen, 1977) and programs (e.g., Borenstein, Rothstein, 

and Cohen, 2001) are available for computing statistical power from designs involving 

simple random samples, but tables for computing power from the independent-groups t-

test are the most widely available.   Following Cohen’s framework, such tables typically 

provide power values based on sample sizes N1
T and N2

T (often assumed to be equal for 

simplicity) and effect size ∆T, where the superscript T indicates that these quantities are 

what is used in the power tables.  The calculations on which they are based translate the 

sample sizes and effect size into degrees of freedom νT and noncentrality parameter λT in 

order to compute statistical power.  In the case of the two sample t-test they do so via 

 νT = N1
T +  N2

T  – 2 

and 

  T TNλ = ∆T , 

where  

1 2

1 2

T T
T

T T

N NN
N N

=
+

. 

Tables like Cohen’s (or the corresponding software) can be used to compute the power of 

the test used in the case of clustered sampling by judicious choice of sample sizes and 

effect size.  We have to enter the table with a configuration of sample sizes and a 

synthetic effect size (here called the operational effect size) that will yield the appropriate 

degrees of freedom and noncentrality parameter.   
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 If the actual numbers of clusters assigned are m1 and m2, then entering the power 

table with sample sizes N1
T = m1 – q and N2

T = m2 yields νT = (m1
T + m2

T – 2) = M – q – 2, 

the correct degrees of freedom for the test.  Of course, many other combinations of 

sample sizes will also yield the correct degrees of freedom as well and will yield 

equivalent results as long as the operational effect size is modified in a corresponding 

manner.  The relevant operational effect size using our choice of degrees of freedom is  

 
[ ] ( )

2 2 2

2 2 2 2 2

( ) 1
1 ( 1)

T B W B A
T T

B W A W B W

mn mn
N n ρ N nη η ρ

η η η ρδ δ
η η η

+ −
∆ = =

+ − + −
,  (12) 

where δ is the unadjusted effect size,  ρ is the unadjusted intraclass correlation, and ηB
2  

and ηW
2 are defined in (5) and (6) above.  If the analysis makes a covariate adjustment at 

the cluster level the ηB
2 is the appropriate value given in the tables of this paper, but if the 

analysis makes no covariate adjustment at the cluster level (that is q = 0), then ηB
2 ≡ 1.  

Similarly, if the analysis makes a covariate adjustment at the individual (within–cluster) 

level the ηW
2 is the appropriate value given in the tables of this paper, but if the analysis 

makes no covariate adjustment at the individual level (that is if p = 0), then ηW
2 ≡ 1.    

Note that the value of ∆T given in (13) is appropriate because, when this is multiplied 

by TN , it yields the noncentrality parameter λA given in (12).  Using ρ or ρA, the cluster 

sample size n, and the variance ratios ηB
2 and ηW

2 to compute operational effect size 

makes it possible to compute statistical power and sample size requirements for analyses 

based on clustered samples using these tables and computer programs designed for the 

two group t-test. 

 

Example with No Covariates at Either Level  



Intraclass correlations in education   31 
 

Consider an experiment that will randomize m1 = m2 = 10 schools to receive an 

intervention to improve mathematics achievement so that n = 20 students in each school 

would be part of the experiment.  There are no covariates at either individual or group 

level so that p = q = 0 and ηW
2 = ηB

2 = 1. The analysis will involve a two-tailed t-test with 

significance level α = 0.05.  Suppose that the smallest educationally significant effect size 

for this intervention is assumed to be δ = 0.50.  Suppose further that the schools were 

chosen to attempt to be represent first graders nationally.     

Entering Table 1 on the first row for grade 1 and the panel for the unconditional 

model (columns 3 to 5) gives the intraclass correlation for first graders as ρ =  0.228.  

Then the variance inflation factor is  

 1 + (20 – 1)(0.228) = 5.332, 

so that the noncentrality parameter from (4) is 

 
0.50 (10 / 2)20

2.165
5.332

λ = = . 

Using (6) and the noncentral t-distribution function, (for example the function NCDF.T in 

SPSS), with M – 2 = 18 degrees of freedom, c(0.05/2, 18) = 2.101, and λ = 2.165, we 

obtain a two-sided power of p2 = 1 –  0.467 + 0.000 = 0.53. 

 Alternatively, we could compute the power from tables of the power of the t-test 

such as those given by Cohen (1977).  To do so, we first compute the operational effect 

size given in (8) as 

 0.50 20 0.968
5.332

T∆ = = . 

Cohen’s tables give the statistical power in terms of sample size (in each treatment group) 

and effect size.  Examining Cohen’s (1977) Table 2.3.5, we see that the operational effect 
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size of 0.968 is between tabled effect sizes of 0.8 and 1.0.  Entering the Table with 

sample size N1
T = N2

T = 10, we see that a power of 0.39 is tabulated for the effect size of 

∆T = 0.80 and a power of 0.56 is tabulated for an effect size of ∆T = 1.00.  Interpolating 

between these two values we obtain a power of 0.53 for ∆T = 0.97. 

 Note that in this case (and many others) the operational effect size for the tests 

based on clustered samples is larger than the actual effect size (in this case 0.97 versus 

0.50).  This does not mean that the power of the test for the design based on the clustered 

sample is larger than that based on a simple random sample with the same total sample 

size.  The reason is that the test using the clustered sample has many fewer degrees of 

freedom in the error term.  For example, a test based on an effect size of ∆T = 0.50 and a 

simple random sample of nm = (10)(20) = 200 in each group would have power 

essentially 1.0. 

 

Example with Pretest as a Covariate at Both Individual and Cluster Level 

Consider an experiment that will randomize m1 = m2 = 10 schools to receive an 

intervention to improve first grade reading achievement and that n = 20 students in each 

school would be part of the experiment.  An analysis of covariance will be used with 

pretest as a covariate at both individual and school level (so that p = q = 1) using a two-

tailed test with significance level α = 0.05.  Suppose that the smallest educationally 

significant effect size for this intervention is δ = 0.25.  Suppose further that the schools 

were chosen to attempt to be representative of first graders nationally.   

  Entering Table 2 on the first row for grade 1 and the panel for the unconditional 

model (columns 3 to 5) gives the intraclass correlation for first graders as ρ = 0.239.   
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Entering Table 2 on the second row for grade 1 and the panel for the residualized 

unconditional model (columns 9 to 11) gives the between- and within-school variance 

ratios after covariate adjustment as ηB
2 = 0.210 and ηW

2 = 0.360.    Then the variance 

inflation factor is  

 0.360 + [(20)(0.210) – 0.360](0.239) = 1.2778, 

so that the noncentrality parameter from (15) is 

 
0.25 (10 / 2)20

2.211.
1.278Aλ = =  

Using (17) and the noncentral t-distribution function, (for example the function NCDF.T 

in SPSS), with M – 2 – 1 = 17 degrees of freedom, c(0.05/2, 17) = 2.110, and λA = 2.211, 

we obtain a two-sided power of p2 = 1 –  0.450 + 0.000 = 0.55. 

 Alternatively, we could compute the power from tables of the power of the t-test 

such as those given by Cohen (1977).  Because there is q = 1 covariate at the school level 

N1
T = m1 – 1 = 10 – 1 = 9 and N2

T = m2 = 10. Because Cohen’s tables give the statistical 

power in terms of equal sample sizes (in each treatment group), we will need to 

interpolate between sample sizes N1
T = N2

T = 9 and N1
T = N2

T = 10.  Here we compute 

= (10 x 10)/(10 + 10) = 5.  Note that the operational effect size depends on N1
T and N2

T, 

so we have to compute a different value of ∆T for each of the sample sizes between which 

we will interpolate.  For N1
T = N2

T = 9, = (9 x 9)/(9 + 9) = 4.50 and the operational 

effect size is 

m

TN

(4.5)(20) 10.25 1.043
5 1.2778

T∆ = = . 

For N1
T = N2

T = 10, = (10 x 10)/(10 + 10) = 5.0 and the operational effect size is  TN



Intraclass correlations in education   34 
 

(5)(20) 10.25 0.989
5 1.2778

T∆ = = . 

Examining Cohen’s (1977) Table 2.3.5 we see that the effect size ∆T = 1.04 is 

between tabled values of effect size of 1.0 and 1.2.  Entering the Table with sample size 

N1
T = N2

T = 9, we see that a power of 0.51 is tabulated for the effect size of ∆T = 1.0 and a 

power of 0.67 is tabulated for an effect size of ∆T = 1.2.  Interpolating between the two 

power values (0.51 and 0.65) for N1
T = N2

T = 9, we obtain a power of 0.54 for ∆T = 1.04. 

This value (0.54) corresponds to the power associated with the effect size of δ = 0.25 and 

a test based on 16 degrees of freedom.   

Examining Cohen’s (1977) Table 2.3.5 again we also see that the effect size ∆T = 

0.99 is between tabled values of effect size of 0.8 and 1.0.  Entering the Table with 

sample size N1
T = N2

T = 10, we see that a power of 0.39 is tabulated for the effect size of 

∆T = 0.80 and a power of 0.56 is tabulated for an effect size of ∆T = 1.00.  Interpolating 

between the two power values (0.39 and 0.56) for N1
T = N2

T = 10, we obtain a power of 

0.55 for ∆T = 0.99. This value (0.55) corresponds to the power associated with the effect 

size of δ = 0.25 and a test based on 18 degrees of freedom.   

To obtain the power associated with an effect size of δ = 0.25 and a test based on 

17 degrees of freedom we must interpolate once again between these two values, we 

obtain a power value for N1
T = 9 and N2

T = 10 of p2 = 0.55. 

It is worth noting that if no covariates had been used at either level of this analysis 

(that is if p = q = 0 and therefore ηB
2 = ηW

2 = 1), the power would have been 0.17.  If the 

pretest as a covariate had been used only at the individual level (that is if p = 1 and q = 0 

and ηB
2 = 1, but ηW

2 = 0.360), the power would have increased to 0.18.  But if the pretest 

had been used as a covariate only at the school level (that is if p = 0 and q = 1 and ηW
2 = 1, 
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but ηB
2 = 0.210), the power would have increased to 0.43.  This illustrates the fact that 

covariates at the (group) cluster level can have far more impact on the power than 

covariates at the individual level. 

Conclusions 

 

The values of intraclass correlations and variance components presented in this 

paper provide some guidance for the selection of intraclass correlations for planning 

cluster randomized experiments that have samples as diverse as the nation as a whole and 

those using low SES schools.  These values suggest somewhat larger values of the 

intraclass correlation (roughly 0.15 to 0.25) may be appropriate than the 0.05 to 0.15 

guidelines that have sometimes been used.  The guideline of 0.05 to 0.15 is more 

consistent with the values of covariate adjusted intraclass correlations we found.   

In using these values, it is important to keep in mind that these analyses do not 

separately estimate the between-district and between-state components of variance.  

Therefore these two components of variance are included here as part of the between-

school variance.  This is desirable if the values are to be used in connection with designs 

that involve schools from several districts or states.  However if the design involves 

schools from only a single district or state, the estimates reported here may overestimate 

the relevant intraclass correlations to some degree.  Unfortunately, it is unclear just how 

much of an impact this may have.  There are also likely to be some impact on the 

effectiveness of the covariates in explaining between- and within-school variation.  It is 

possible that the somewhat greater between-school variation leads to a larger intraclass 
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correlation, but also a larger covariate effect so that these impacts partially cancel one 

another in their effects on statistical power. 

A more detailed compilation is available from the authors providing values for 

regions of the country, settings with different levels of urbanicity, and regions crossed 

with levels of urbanicity.  However it is important to recognize that there may be a 

tradeoff between bias (estimating exactly the right value of the intraclass correlation in a 

particular context) and variance (the sampling uncertainty of that estimate).  The variance 

of the intraclass correlation estimate is driven primarily by the number of clusters (in this 

case, schools).  While intraclass correlations we computed in a particular region and 

setting are more specific and therefore likely to have less bias as estimates of the 

intraclass correlation in an experiment that is to be conducted within a particular region 

and context, the sample size used to estimate the intraclass correlations is smaller and 

thus the estimate is subject to greater sampling uncertainties.  Our analyses suggest that, 

while there is often statistically significant variation in intraclass correlations between 

regions and settings, the magnitude of this variation is typically small.  Thus it is not 

completely clear whether more specific estimates are always better (more accurate) for 

planning purposes. 

Although we anticipate that the principal use of the results given in this paper will 

be for planning randomized experiments in education that assign schools (rather than 

individuals) to treatments, there  are other potential applications.  One involves the use of 

information external to an experiment to adjust the degrees of freedom of significance 

tests in designs involving group randomization, called the df* method by its originators 

(see Murray, Hannan, and Baker, 1996).  While the originators of this method caution 



Intraclass correlations in education   37 
 

that it is important that users should have good reasons to assume that any external 

estimates used should estimate the same intraclass correlation as that in the experiment, 

there may be situations in which data from this compilation meets that assumption.  

Because they are based on relatively large samples, the intraclass correlation estimates 

reported in this paper tend to have small standard errors.  Consequently, if they are 

thought to be appropriate for use in a particular df* computation, they should 

substantially increase the degrees of freedom used in the test for treatment effects. 

A second potential application is to evaluate whether the conclusions of statistical 

analyses that incorrectly ignored clustering might have changed if those significance tests 

had taken clustering into account.  Hedges (in press a) has shown how to compute the 

actual significance level of the usual t-statistic when it has been computed from clustered 

samples (by incorrectly ignoring clustering).  The computation of this actual significance 

level depends on ρ.  The values in this compilation provide some guidelines on values of 

ρ that might be used for sensitivity analyses to see if a conclusion about the statistical 

significance of a treatment effect might not have held if clustering had been taken into 

account.  

A third potential application involves the computation of standardized effect size 

estimates and their standard errors in group randomized trials.  There are several 

approaches to the computation of effect size estimates in multilevel designs, but in some 

cases, computation of estimates and the computation of standard errors requires 

knowledge of ρ (see, Hedges, in press b).  In cases where the report of the experiment 

itself does not include information that can be used to compute an estimate of ρ, this 

compilation may provide some idea of a range of plausible values to incorporate into 
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sensitivity analyses used in connection with effect sizes from experiments that assign 

schools to treatment. 
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Table 1. Intraclass correlations and variance components for mathematics achievement: All schools 
 

    
Unconditional 

Model     Conditional Model
Residualized Unconditional 

Model   Residualized Conditional Model

Grade           ICC (SE)   ICC (SE) ηB
2 ηW

2 ICC (SE) ηB
2 ηW

2 ICC (SE) ηB
2 ηW

2 
                   

K  243   

   

   

   

   

   

   

          

   

   

(9.8)  110 (7.2) 384 920 107 (6.7) 143 379 102 (7.3) 143 371
   

 
   

  
     

 
     

 
   

1 228 (9.8) 101 (13.8) 386 921 125 (13.5) 177 376 119 (14.9) 186 373
   

 
   

  
     

 
     

 
   

2 236 (19.4) 148 (16.4) 564 912 185 (17.9) 324 495 169 (18.6) 322 489
   

 
   

  
     

 
     

 
   

3 241 (10.4) 102 (8.6) 361 912 130 (8.3) 195 406 113 (9.0) 175 387
   

 
   

  
     

 
     

 
   

4 232 (19.6) 133 (15.3) 565 934 170 (17.1) 321 515 140 (16.9) 296 502
   

 
   

  
     

 
     

 
   

5 216 (17.9) 127 (14.5) 558 928 160 (15.9) 368 494 170 (18.1) 421 481
   

 
   

  
     

 
     

 
   

6 264 (19.4) 174 (42.1) 883 931 139 (14.8) 260 498 194 (47.8) 458 525
   

 
   

  
             

7 191 (33.0) 88 (19.1) 362 904 --
 

--
 

--
 

--
 

 --
 

--
 

--
 

--
    

 
   

  
     

8 185 (31.5) 122 (24.9) 567 916 106 (22.2) 178 347 106 (22.8) 179 340
   

 
   

  
     

 
     

 
   

9 216 (32.3) 122 (25.2) 477 903 99 (22.6) 105 276 80 (20.4) 85 264
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10
 

         

   

   

234 (10.0) 67 (5.8) 220 908 66 (5.7) 81 351 62 (5.6) 76 345
  
 

   
  

     
 

     
 

   
11

 
 138 (28.3) 45 (14.4) 261 879 92 (21.9) 165 270 75 (19.9) 131 261
  
 

   
  

     
 

     
 

   
12 239 (10.9) 69 (6.8) 218 898 38 (5.1) 25 202 34 (5.4) 24 199

                                     
Note: All values in this table are multiplied by 1,000.   Thus an intraclass correlation listed as 243 is 0.243. 
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Table 2. Intraclass correlations and variance components for reading achievement: All schools 
 

    
Unconditional 

Model   Conditional Model   
Residualized Unconditional 

Model  
Residualized Conditional 

Model 

Grade   ICC (SE)   ICC (SE) ηB
2 ηW

2       ICC (SE) ηB
2 ηW

2 ICC (SE) ηB
2 ηW

2 
                   

K  233
 

    
          

    
         

    
          

    
          

    
         

    
           

    
           

             
          

              
          

    
        

(9.7)  144
 

(8.4) 566
 

919
 

 166 (8.6) 258
 

379
 

165
 

(9.4) 268
 

361
 

1  239
 

(10.0)
 

  118
 

(14.9) 392
 

916
 

 167 (15.7) 210
 

360
 

145
 

(16.5) 201
 

349
 

2  204
 

(17.9)
 

  109
 

(13.5) 441
 

890
 

 80 (10.3) 170
 

478
 

56 (9.6) 113
 

445
 

3 
 

 271
 

(10.8)
 

  89 (8.2) 259
 

921
 

 135 (8.6) 241
 

522
 

83 (8.1) 159
 

521
 

4 
 

 242
 

(19.9)
 

  88 (11.6) 296
 

900
 

 123 (13.6) 188
 

460
 

101
 

(13.7) 158
 

451
 

5  263
 

(19.5)
 

  61 (9.3) 202
 

899
 

 113 (12.6) 170
 

435
 

85 (11.9) 133
 

418
 

6  260
 

(19.2)
 

  65 (33.3) 366
 

924
 

 72 (9.8) 118
 

490
 

25 (31.3) 89
 

578
 

7 174
 

 (20.0)
 

36 (9.2) 185
 

903
 

-- --
 

--
 

--
 

-- --
 

--
 

8 
 

197
 

(8.5) 51 (4.1) 207
 

915
 

-- --
 

--
 

--
 

-- --
 

--
 

9 
 

 250
 

(25.5)
 

  186
 

(24.5) 576
 

889
 

 314 (29.5) 651
 

541
 

322
 

(32.7) 575
 

525
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10
 

         
           

    

183
 

(8.9) 63 (5.6) 283
 

907
 

63 (5.6) 144
 

471
 

59 (5.5) 133
 

462
 

12  174 (9.5)  53 (6.1) 252 909 55 (5.8) 108 383 50 (6.1) 101 382
                                     

Note: All values in this table are multiplied by 1,000.   Thus an intraclass correlation listed as 233 is 0.233. 
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Table 3. Intraclass correlations and variance components for mathematics achievement: Low SES schools 
 

    
Unconditional 

Model     Conditional Model
Residualized Unconditional 

Model   
Residualized Conditional 

Model 

Grade   ICC     ICC (SE) ηB
2 ηW

2       ICC (SE) ηB
2 ηW

2 ICC (SE) ηB
2 ηW

2 
                   

K  218    

    

    

    

    

    

    

           

     

    

(10.8) 108 (8.4) 420 912 114 (8.0) 176 378 108 (8.8) 171 368
   

 
   

 
     

 
     

 
   

1 223 (11.3) 88 (15.3) 352 924 116 (15.0) 179 382 108 (16.7) 181 380
   

 
   

 
     

 
     

 
   

2 200 (19.7) 151 (18.5) 686 912 184 (19.7) 364 481 172 (20.9) 360 473
   

 
   

 
     

 
     

 
   

3 208 (11.7) 107 (10.8) 450 910 127 (9.8) 220 393 115 (11.2) 206 371
   

 
   

 
     

 
     

 
   

4 217 (21.3) 144 (18.5) 702 934 184 (20.3) 388 522 159 (21.1) 386 505
   

 
   

 
     

 
     

 
   

5 182 (18.3) 125 (16.4) 677 933 170 (18.5) 458 492 179 (21.2) 527 484
   

 
   

 
     

 
     

 
   

6 249 (21.0) 176 (43.7) 1000 940 134 (16.0) 270 493 239 (51.0) 612 502
   

 
   

 
             

7 195 (34.0) 87 (19.3) 350 906 --
 

--
 

--
 

--
 

 --
 

--
 

--
 

--
       

 
     

8 185 (32.0) 120 (24.9) 558 919 116 (24.0) 193 341 116 (24.5) 194 333
   

 
   

 
     

 
     

 
   

9 177 (33.9) 39 (15.9) 198 921 82 (23.8) 102 274 48 (18.4) 64 265
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10         

    

    

174 (11.5) 67 (7.6) 316 908 63 (7.4) 113 355 60 (7.4) 108 349
   

 
   

 
     

 
     

 
   

11 134 (34.8) 58 (21.5) 331 869 126 (33.9) 239 266 111 (32.3) 179 248
   

 
   

 
     

 
     

 
   

12 172 (12.5) 65 (8.8) 324 896 37 (6.7) 38 200 41 (7.6) 45 195
                                     
Note: All values in this table are multiplied by 1,000.   Thus an intraclass correlation listed as 218 is 0.218. 
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Table 4. Intraclass correlations and variance components for reading achievement: Low SES schools 
 

    
Unconditional 

Model     Conditional Model
Residualized Unconditional 

Model   
Residualized Conditional 

Model 

Grade   ICC (SE)   ICC (SE) ηB
2 ηW

2       ICC (SE) ηB
2 ηW

2 ICC (SE) ηB
2 ηW

2 
                   

K  215 
 

(10.8)  144
 

(9.8) 617
 

910
 

 168 (10.1) 307
 

397
 

 166 (11.1) 314
 

377
            

  
           

  
           

            
  

            
  

            
  

            

               

          
  

           

1  227 
 

(11.5)  118
 

(17.5) 383
 

919
 

 152 (17.3) 196
 

366
 

145 (19.3) 199
 

357
 

2  181 
 

(18.4)  119
 

(15.9) 533
 

891
 

 66 (10.1) 155
 

484
 

50 (10.3) 108
 

449
 

3  223 
 

(12.0)  98 (10.5) 355
 

908
 

 123 (9.8) 267
 

495
 

 85 (10.3) 197
 

493
 

4  214 
 

(20.9)  96 (14.2) 385
 

896
 

 138 (16.7) 253
 

471
 

113 (17.1) 217
 

467
 

5  230 
 

(20.6)  61 (10.7) 246
 

905
 

 123 (15.0) 222
 

440
 

89 (14.0) 165
 

420
 

6  221 
 

(19.9)  59 (32.6) 500
 

920
 

 70 (10.7) 137
 

494
 

23 (27.4) 125
 

576
 

7  173 
 

(23.4)  52 (13.6) 230
 

908
 

 -- -- -- -- -- -- -- -- 

8  137 
 

(10.2)  57 (6.4) 361
 

905
 

 -- 
 

-- -- 
 

-- 
 

-- 
 

-- -- 
 

-- 
 

9  236 
 

(31.9)  131
 

(26.5) 410
 

897
 

 213 (32.6) 412
 

538
 

231 (38.1) 363
 

524
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10  131 
 

(9.9)  56 (7.0) 381
 

905
 

 47 (6.6) 163
 

470
 

 47 (6.7) 166
 

463
             

12  131 (11.0)  44 (7.6) 297 906 50 (7.4) 134 367 41 (7.6) 118 365
                                     

Note: All values in this table are multiplied by 1,000.   Thus an intraclass correlation listed as 215 is 0.215. 
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Table 5. Intraclass correlations and variance components for mathematics achievement: Low achievement schools 
 

  
Unconditional 

Model     Conditional Model
Residualized 

Unconditional Model   
Residualized Conditional 

Model 

Grade ICC (SE)   ICC (SE) ηB
2 ηW

2  ICC (SE) ηB
2 ηW

2   ICC (SE) ηB
2 ηW

2

                  
K 113      

      

    

    

    

     

   

          

     

     

(8.6) 44 (8.0) 347 959 73 (7.7) 382 612 64 (9.2) 329 625
                  

1 89 (8.7) 53 (17.3) 556 969 85 (15.8) 506 568 68 (18.5) 459 594
                  

2 111 (14.6) 67 (14.2) 804 982 92 (14.3) 480 641 88 (17.5) 635 675
                  

3 102 (10.4) 50 (11.0) 503 976 77 (9.8) 411 554 69 (11.9) 411 553
                  

4 134 (15.7) 81 (14.8) 864 989 127 (16.8) 709 796 101 (18.8) 815 826
                  

5 59 (10.0) 41 (11.1) 811 981 80 (12.8) 838 767 75 (15.6) 888 784
     

  
     

 
     

 
   

6 82 (12.8) 78 (41.7) 1000 924 98 (14.6) 1000 771 147 (54.1) 1000 660
     

  
     

 
     

 
   

7 45 (14.6) 37 (13.8) 794 982 -- -- -- -- -- -- -- --
                  

8 85 (22.7) 73 (21.5) 876 958 67 (19.8) 552 685 56 (18.9) 486 666
                  

9 81 (23.8) 66 (22.6) 790 953 56 (20.7) 429 558 54 (21.3) 418 550
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10       

     

       

76 (8.2) 50 (7.9) 641 972 65 (8.5) 622 752 65 (8.8) 641 736
                  

11 81 (24.0) 42 (18.4) 531 930 85 (25.0) 525 502 72 (24.1) 466 484
                  

12 80 (9.7) 51 (9.9) 626 962 42 (8.4) 234 443 50 (10.0) 288 448
                                   
Note: All values in this table are multiplied by 1,000.   Thus an intraclass correlation listed as 113 is 0.113. 
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Table 6. Intraclass correlations and variance components for reading achievement: Low achievement schools 
 

  
Unconditional 

Model     Conditional Model
Residualized Unconditional 

Model  
Residualized Conditional 

Model 

Grade          ICC (SE)  ICC (SE) ηB
2 ηW

2 ICC (SE) ηB
2 ηW

2 ICC (SE) ηB
2 ηW

2 
                  

K       

       

       

       

       

    

    

           

           

       

104 (8.5) 79 (9.4) 817 948 118 (9.5) 807 712 111 (11.3) 843 707
                  

1 142 (10.3) 66 (18.4) 472 967 158 (19.7) 592 529 129 (22.3) 572 539
                  

2 109 (14.3) 92 (16.1) 816 967 38 (9.2) 278 783 32 (11.9) 219 780
                  

3 139 (11.4) 80 (12.3) 494 972 75 (10.0) 381 649 57 (12.0) 301 670
                  

4 103 (13.4) 66 (13.3) 694 978 90 (13.9) 557 717 94 (18.1) 629 742
     

  
     

 
     

 
   

5 71 (11.0) 27 (9.4) 477 978 85 (13.2) 764 727 57 (13.9) 707 734
     

  
     

 
     

 
   

6 58 (10.7) 66 (39.3) 1000 966 56 (11.1) 734 794 25 (29.7) 395 855
     

  
     

 
     

 
   

7 63 (11.8) 76 (20.4) 954 968 -- -- -- -- -- -- -- --
     

  
     

 
     

 
   

8 70 (6.5) 44 (5.7) 636 978 -- -- -- -- -- -- -- --
                  

9 154 (22.7) 221 (31.1) 987 964 216 (28.4) 1000 853 292 (36.2) 1000 873
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10        

    

50 (7.2) 44 (7.7) 882 961 50 (7.9) 895 848 56 (8.4) 949 831
     

  
     

 
     

 
   

12 47 (8.4) 36 (9.1) 774 956 46 (8.5) 663 684 50 (9.9) 792 685
                                  
Note: All values in this table are multiplied by 1,000.   Thus an intraclass correlation listed as 104 is 0.104. 
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Table 7. Minimum detectable effect sizes with power 0.80 and n = 60 as a function of m: All schools 
 
      Mathematics Achievement  Reading Achievement 
Grade Covariates m = 10    m = 15 m = 20 m = 25 m = 30m = 10 m = 15 m = 20 m = 25 m = 30

K  none 0.67 0.54 0.46 0.41 0.38  0.66 0.53 0.46 0.41 0.37
      
  

      
  

      
  

      
  

      
  

      
  

      
  

 pretest
  

0.27
 

0.22
 

0.19
 

0.17
 

0.15
 

0.34
 

0.28
 

0.24
 

0.21
 

0.19
 

1  none 0.66 0.53 0.45 0.40 0.37  0.67 0.54 0.46 0.41 0.37
 pretest
  

0.29
 

0.23
 

0.20
 

0.18
 

0.16
 

0.32
 

0.25
 

0.22
 

0.19
 

0.18
 

2  none 0.67 0.53 0.46 0.41 0.37  0.62 0.50 0.43 0.38 0.35
 pretest
  

0.39
 

0.31
 

0.27
 

0.24
 

0.22
 

0.27
 

0.22
 

0.19
 

0.17
 

0.15
 

3  none 0.67 0.54 0.46 0.41 0.38  0.71 0.57 0.49 0.44 0.40
 pretest
  

0.31
 

0.25
 

0.21
 

0.19
 

0.17
 

0.36
 

0.29
 

0.25
 

0.22
 

0.20
 

4  none 0.66 0.53 0.45 0.41 0.37  0.67 0.54 0.46 0.41 0.38
 pretest
  

0.38
 

0.31
 

0.26
 

0.24
 

0.21
 

0.31
 

0.25
 

0.21
 

0.19
 

0.17
 

5  none 0.64 0.51 0.44 0.39 0.36  0.70 0.56 0.48 0.43 0.39
 pretest
  

0.39
 

0.32
 

0.27
 

0.24
 

0.22
 

0.30
 

0.24
 

0.21
 

0.19
 

0.17
 

6  none 0.70 0.56 0.48 0.43 0.39  0.70 0.56 0.48 0.43 0.39
 pretest
  

0.37
 

0.30
 

0.25
 

0.23
 

0.21
 

0.26
 

0.21
 

0.18
 

0.16
 

0.15
 

7  none 0.60 0.48 0.42 0.37 0.34  0.58 0.46 0.40 0.36 0.32
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 pretest
  

-- -- -- -- -- --
 

--
 

--
 

--
 

--
  

8  none 0.60 0.48 0.41 0.37 0.33  0.61 0.49 0.42 
 

0.38 0.34
 pretest
  

0.26
 

0.21
 

0.18
 

0.16
 

0.15
 

--
 

--
 

--
 

--
 

--
 

9  none 0.64 0.51 0.44 0.39 0.36  0.68 0.55 0.47 0.42 0.38
 pretest
  

0.22
 

0.18
 

0.15
 

0.14
 

0.12
 

0.55
 

0.44
 

0.38
 

0.34
 

0.31
 

10  none 0.66 0.53 0.46 0.41 0.37  0.59 0.47 0.41 0.36 0.33
 pretest
  

0.21
 

0.17
 

0.14
 

0.13
 

0.12
 

0.25
 

0.20
 

0.17
 

0.15
 

0.14
 

11  none 0.52 0.42 0.36 0.32 0.29 -- -- -- -- --
 pretest
  

0.22
 

0.18
 

0.15
 

0.14
 

0.13
 

--
 

--
 

--
 

--
 

--
 

12  none 0.67 0.54 0.46 0.41 0.37  0.58 0.46 0.40 0.36 0.32
    pretest 0.13 0.10 0.09 0.08 0.07  0.21 0.17 0.15 0.13 0.12
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Table 8. Minimum detectable effect sizes with power 0.80 and n = 60 as a function of m: Low SES schools 
 
      Mathematics Achievement  Reading Achievement 
Grade Covariates m = 10    m = 15 m = 20 m = 25 m = 30m = 10 m = 15 m = 20 m = 25 m = 30

K  none 0.64 0.51 0.44 0.39 0.36  0.64 0.51 0.44 0.39 0.36
      
  

      
  

      
  

      
  

      
  

      
  

      
  

 pretest
  

0.28
 

0.23
 

0.19
 

0.17
 

0.16
 

0.36
 

0.29
 

0.25
 

0.22
 

0.20
 

1  none 0.65 0.52 0.45 0.40 0.36  0.65 0.52 0.45 0.40 0.37
 pretest
  

0.29
 

0.23
 

0.20
 

0.18
 

0.16
 

0.30
 

0.24
 

0.21
 

0.18
 

0.17
 

2  none 0.62 0.49 0.42 0.38 0.34  0.59 0.47 0.41 0.36 0.33
 pretest
  

0.38
 

0.30
 

0.26
 

0.23
 

0.21
 

0.25
 

0.20
 

0.17
 

0.16
 

0.14
 

3  none 0.63 0.50 0.43 0.39 0.35  0.65 0.52 0.45 0.40 0.36
 pretest
  

0.31
 

0.24
 

0.21
 

0.19
 

0.17
 

0.35
 

0.28
 

0.24
 

0.21
 

0.19
 

4  none 0.64 0.51 0.44 0.39 0.36  0.64 0.51 0.44 0.39 0.36
 pretest
  

0.41
 

0.33
 

0.28
 

0.25
 

0.23
 

0.33
 

0.27
 

0.23
 

0.20
 

0.19
 

5  none 0.59 0.47 0.41 0.36 0.33  0.66 0.53 0.45 0.40 0.37
 pretest
  

0.40
 

0.32
 

0.28
 

0.25
 

0.23
 

0.32
 

0.26
 

0.22
 

0.20
 

0.18
 

6  none 0.68 0.55 0.47 0.42 0.38  0.65 0.52 0.44 0.40 0.36
 pretest
  

0.37
 

0.29
 

0.25
 

0.22
 

0.20
 

0.26
 

0.21
 

0.18
 

0.16
 

0.15
 

7  none 0.61 0.49 0.42 0.37 0.34  0.58 0.46 0.40 0.35 0.32
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 pretest
  

-- -- -- -- -- --
 

--
 

--
 

--
 

--
  

8  none 0.60 0.48 0.41 0.37 0.33  0.52 0.42 0.36 
 

0.32 0.29
 pretest
  

0.27
 

0.22
 

0.19
 

0.17
 

0.15
 

--
 

--
 

--
 

--
 

--
 

9  none 0.58 0.47 0.40 0.36 0.33  0.67 0.53 0.46 0.41 0.37
 pretest
  

0.20
 

0.16
 

0.14
 

0.12
 

0.11
 

0.43
 

0.35
 

0.30
 

0.27
 

0.24
 

10  none 0.58 0.46 0.40 0.36 0.32  0.51 0.41 0.35 0.31 0.29
 pretest
  

0.21
 

0.17
 

0.15
 

0.13
 

0.12
 

0.23
 

0.18
 

0.16
 

0.14
 

0.13
 

11  none 0.52 0.41 0.36 0.32 0.29 -- -- -- -- --
 pretest
  

0.26
 

0.21
 

0.18
 

0.16
 

0.14
 

--
 

--
 

--
 

--
 

--
 

12  none 0.58 0.46 0.40 0.35 0.32  0.51 0.41 0.35 0.31 0.29
 pretest 0.13 0.11 0.09 0.08 0.08 0.21 0.17 0.14 0.13 0.12
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Table 9. Minimum detectable effect sizes with power 0.80 and n = 60 as a function of m: Low achievement schools 
 
      Mathematics Achievement    Reading Achievement     
Grade Covariates m = 10 m = 15 m = 20 m = 25 m = 30  m = 10 m = 15 m = 20 m = 25 m = 30

K  none 0.48 0.38 0.33 0.29 0.27 0.46 0.37 0.32 0.28 0.26
      
  

    
      
  

    
      
  

    
      
  

    
      
  

    
      
  

    
      
  

    

 pretest
  

0.31
 

0.25
 

0.21
 

0.19
 

0.17
 

0.41
 

0.33
 

0.28
 

0.25
 

0.23
 

1  none 0.43 0.35 0.30 0.27 0.24 0.53 0.42 0.36 0.32 0.30
 pretest
  

0.31
 

0.25
 

0.22
 

0.19
 

0.18
 

0.41
 

0.33
 

0.28
 

0.25
 

0.23
 

2  none 0.47 0.38 0.33 0.29 0.27 0.47 0.38 0.32 0.29 0.26
 pretest
  

0.34
 

0.27
 

0.23
 

0.21
 

0.19
 

0.28
 

0.22
 

0.19
 

0.17
 

0.16
 

3  none 0.46 0.37 0.32 0.28 0.26 0.52 0.42 0.36 0.32 0.29
 pretest
  

0.30
 

0.24
 

0.21
 

0.19
 

0.17
 

0.34
 

0.27
 

0.23
 

0.21
 

0.19
 

4  none 0.52 0.41 0.36 0.32 0.29 0.46 0.37 0.32 0.28 0.26
 pretest
  

0.44
 

0.35
 

0.30
 

0.27
 

0.25
 

0.35
 

0.28
 

0.24
 

0.22
 

0.20
 

5  none 0.37 0.29 0.25 0.23 0.21 0.39 0.32 0.27 0.24 0.22
 pretest
  

0.33
 

0.27
 

0.23
 

0.21
 

0.19
 

0.35
 

0.28
 

0.24
 

0.21
 

0.19
 

6  none 0.42 0.34 0.29 0.26 0.23 0.36 0.29 0.25 0.22 0.20
 pretest
  

0.41
 

0.33
 

0.28
 

0.25
 

0.23
 

0.32
 

0.25
 

0.22
 

0.19
 

0.18
 

7  none 0.33 0.27 0.23 0.20 0.19 0.38 0.3 0.26 0.23 0.21
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 pretest
  

-- -- -- -- --  -- -- -- -- --

8  none 0.42 0.34 0.29 0.26 0.24 0.39 0.31 0.27 0.24 0.22
  pretest 

  
0.32 

 
0.26 

 
0.22

 
0.20

 
0.18

 
 -- -- -- -- -- 

9  none 0.42 0.33 0.29 0.26 0.23 0.55 0.44 0.38 0.34 0.31
 pretest
  

0.28
 

0.23
 

0.19
 

0.17
 

0.16
 

0.55
 

0.44
 

0.38
 

0.33
 

0.30
 

10  none 0.41 0.33 0.28 0.25 0.23 0.34 0.28 0.24 0.21 0.19
 pretest
  

0.33
 

0.26
 

0.23
 

0.20
 

0.18
 

0.33
 

0.26
 

0.22
 

0.20
 

0.18
 

11  none 0.42 0.33 0.29 0.26 0.23 -- -- -- -- --
 pretest
  

0.30
 

 0.24
 

 0.21
 

0.19
 

0.17
 

--
 

--
 

--
 

--
 

--
 

12  none 0.41 0.33 0.29 0.25 0.23 0.34 0.27 0.23 0.21 0.19
 pretest 0.22 0.17 0.15 0.13 0.12 0.28 0.22 0.19 0.17 0.16

                           
 
 




