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Abstract

A common mistake in analysis of cluster-randomized trials is to ignore the effect of
clustering and analyze the data as if each treatment group were a simple random sample.
This typically leads to an overstatement of the precision of results and anticonservative
conclusions about the precision and statistical significance of treatment effects. This
working paper gives a simple correction to the t-statistic that would be computed if
clustering were (incorrectly) ignored. The correction is a multiplicative factor depending
on the total sample size, the cluster size, and the intraclass correlation p. The corrected t-
statistic has a student’s t-distribution with reduced degrees of freedom. The corrected
statistic reduces to the t-statistic computed by ignoring clustering when p = 0. It reduces
to the t-statistic computed using cluster means when p = 1. If 0 < p <1, it lies between
these two, and the degrees of freedom are between those corresponding to these two
extremes.
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Correcting a Significance Test for Clustering 

 

Field experiments often assign entire intact groups (such as sites, classrooms, or 

schools) to the same treatment group, with different intact groups assigned to different 

treatments.  Because these intact groups correspond to clusters, this design is often called 

a group randomized or cluster randomized design.  Several analysis strategies for cluster 

randomized trials are possible, but the simplest is to carry out a two stage analysis.  That 

is, to compute mean scores on the outcome (and all other variables that may be involved 

in the analysis) and carry out the statistical analysis as if the site (cluster) means were the 

data.  If all cluster sample sizes are equal, this approach provides exact tests for the 

treatment effect, but the tests may have lower statistical power than would be obtained by 

other approaches (see, e.g., Blair and Higgins, 1986).  More flexible and informative 

analyses are also available, including analyses of variance using clusters as a nested 

factor (see, e.g., Hopkins, 1982) and analyses involving hierarchical linear models (see 

e.g., Raudenbush and Bryk, 2002).  For general discussions of the design and analyses of 

cluster randomized experiments see Raudenbush and Bryk (2002), Donner and Klar 

(2000), Klar and Donner (2001), Murray (1998), or Murray, Varnell, & Blitstein (2004).   

A common mistake in analysis of cluster randomized trials is made when the data 

are analyzed as if the data were a simple random sample and assignment was carried out 

at the level of individuals.  This typically leads to an overstatement of the precision of 

results and consequently to anti-conservative conclusions about precision and statistical 

significance of treatment effects (see Murray, Hannan, and Baker, 1996).  This analysis 

can also yield misleading estimates of effect sizes and incorrect estimates of their 
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sampling uncertainty.  If the raw data were available, then reanalysis using more 

appropriate analytic methods is usually desirable.  

In some cases, however, the raw data is not available but it is desirable to be able 

to interpret the findings of a research report that improperly ignored clustering in the 

analysis.  This problem often arises in reviewing the findings of studies carried out by 

other investigators.  In particular, this problem has arisen in the work of the What Works 

Clearinghouse, a US Institute of Education Sciences funded project whose mission is to 

evaluate, compare, and synthesize evidence of effectiveness of educational programs, 

products, practices, and policies.  What Works Clearinghouse reviewers found that, in the 

first areas they were investigating, the majority of the high quality studies involved 

assignment to treatments by clusters, but most of those studies did not account for 

clustering in their evaluation of the statistical significance of treatment effects.  In this 

context, it would be desirable to be able to know how the conclusions about treatment 

effects might change if clustering were taken into account.  

The purpose of this paper is to provide an analysis of the effects of clustering on 

significance tests and confidence intervals for treatment effects.  First we derive the 

sampling distribution of the t-statistic under a clustered sampling model with equal 

cluster sample sizes.  The derivations provide some insight into the properties of 

suggestions that have appeared in the literature for adjusting significance tests for the 

effects of clustering.  Then we provide a generalization for unequal cluster sample sizes.  

This research provides a simple correction that may be applied to a statistical test that 

was computed (incorrectly) ignoring the clustering of individuals within groups.  The 

correction requires that a bound on the amount of clustering (in the form of an upper 



Correcting a Significance Test for Clustering   5 

bound on the intraclass correlation parameter) is known or that the intraclass correlation 

parameter can be imputed for sensitivity analysis.  We then derive confidence intervals 

for the mean difference based on the corrected test statistic.  Finally we consider the 

power of the corrected test. 

 

Model and Notation 

Let Yij
T (i = 1, …, mT; j = 1, …, ni

T) and Yij
C (i = 1, …, mC; j = 1, …, ni

C) be the jth 

observation in the ith cluster in the treatment and control groups respectively, so that there 

are mT clusters in the treatment group and mC clusters in the control group, and a total of 

M = mT + mC clusters with n observations each.  Thus the sample size in the treatment 

group is  

 , 
1

TmT T
i

i
N n

=
= ∑

the sample size in the control group is 

 , 
1

CmC C
i

i
N n

=
= ∑

and the total sample size is N = NT + NC. 

 Let T
iY • (i = 1, …, mT) and C

iY • (i = 1, …, mC) be the means of the ith cluster in the 

treatment and control groups, respectively, and let TY•• and CY••  be the overall (grand) 

means in the treatment and control groups, respectively.  Define the (pooled) within-

treatment group variance S2 via 

2 2

1 1 1 12
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Suppose that observations within the treatment and control group clusters are 

normally distributed about cluster means µi
T and µi

C with a common within-cluster 

variance σW
2. That is 

2( , )T T
ij i WY N µ σ∼ , i =1, …, mT; j = 1, …, ni

T

and 

  i =1, …, m2( ,C C
ij i WY N µ σ∼ )

)B

)B

C; j = 1, …, ni
C. 

Suppose further that the clusters are random effects (for example they are considered a 

sample from a population of clusters) so that the cluster means themselves have a normal 

sampling distribution with means µ●T and µ●C and common variance σB
2.  That is  

2( ,T T
iµ N µ σ•∼ , i = 1, …, mT

and 

2( ,C C
iµ N µ σ•∼ , i = 1, …, mC. 

Note that in this formulation, σB
2 represents true variation of the population means of 

clusters over and above the variation in sample means that would be expected from 

variation in the sampling of observations within clusters.   

These assumptions correspond to the usual assumptions that would be made in the 

analysis of a multi-site trial by a hierarchical linear models analysis, an analysis of 

variance (with treatment as a fixed effect and cluster as a nested random effect), or a t-

test using the cluster means in treatment and control group as the unit of analysis. 

The Intraclass Correlation 

 Note that there are three different within-treatment group standard deviations, σB, 

σW, and σT, the latter defined by 
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 2 2 2
T B Wσ σ σ= + . 

In most educational data when clusters are schools, σB
2 is considerably smaller than σW

2. 

Obviously, if the between cluster variance σB
2 is small, then σT

2 will be very similar to 

σW
2.  The relation between these three variances, in particular the fact that σT ≠ σW gives 

rise to the statistical effects of clustering. 

 A parameter that summarizes the relationship between the three variances (and 

therefore the clustering effect) is called the intraclass correlation ρ, which is defined by 

 
2 2

2 2
B

B W T
ρ 2

Bσ σ
σ σ σ

= =
+

.        (2) 

The intraclass correlation is a measure of the effect of clustering in the data.  If ρ = 0 then 

σB
2 = 0 and there is no clustering.  If ρ = 1 then σW

2 = 0 and there is “complete clustering” 

in the sense that there is no within-cluster variability.  Note that in this notation and 

throughout the paper, ρ is a population parameter, not a sample estimate. 

Hypothesis Testing 

The object of the statistical analysis may be to test the statistical significance of 

the intervention effect, that is, to test the hypothesis 

H0: µ●T = µ●C. 

Suppose that the researcher wishes to test the hypothesis and carries out the usual t- or F-

test.  The t-test involves computing the test statistic 

 
( T CN Y Yt

S
•• ••−

=
� )

,        (3) 

where S is the usual pooled within treatment group standard deviation defined in (1) and 
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The F-test statistic from a one-way analysis of variance ignoring clustering is of course F 

= t2.  If there is no clustering (that is, if ρ = 0), the test statistic t has Student’s t-

distribution with N – 2 degrees of freedom when the null hypothesis is true.  If there is 

clustering (that is if ρ ≠ 0) the test statistic has a different sampling distribution—one that 

depends on ρ, n, and m. 

 Note that this t-test (or the corresponding F-test) would not be computed if the 

analyst was properly addressing the clustered nature of the sample.  As we noted above, 

other analyses that would be appropriate include analyses that include the clusters as a 

factor nested within treatments, analyses that use a hierarchical linear model including 

clusters as level two units, or use cluster means as the units of analysis.  However, the 

objective of this paper is not to examine these analyses but to examine the effects of 

using (3) as a test statistic when the sample is a clustered sample. 

 

Some Theory 

 The main result of this paper is a derivation of the sampling distribution of the t-

statistic when ρ ≠ 0, from which a modified test statistic is derived.  However, it is useful 

to see why the t-statistic given in (3) does not have its nominal distribution under the null 

hypothesis when clustering is present.  By definition, a statistic T has Student’s t-

distribution with ν degrees of freedom if it can be written as  

 T U / V / ν=  

where U is a standard normal and V is a chi-square with ν degrees of freedom that is 

independent of U.  Note that the degrees of freedom of the t-statistic are determined by 

the degrees of freedom of the chi-square in the denominator. 
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Distribution of the t-statistic When ρ = 0 

When there is no clustering (that is when ρ = 0), the numerator of (3) has a normal 

distribution with standard deviation σT.  In other words, when the null hypothesis is true 

 T( )/T CN Y Y•• ••−� σ  

has the standard normal distribution.  Similarly, when there is no clustering (that is when 

ρ = 0), (N – 2)S2/σT
2 is distributed as a chi-square with (N – 2) degrees of freedom so that 

S2 is distributed as σT
2 times a chi-square with (N – 2) degrees of freedom.  In other words 

 S/σT

is distributed as the square root of a chi-square with (N – 2) degrees of freedom divided 

by its degrees of freedom.  Note that the scale factor σT, which occurs in both the 

numerator and the denominator, cancels so that the ratio, t, is scale free.   

Distribution of the t-statistic When ρ ≠ 0 

When ρ ≠ 0, neither the numerator nor the denominator of the t-statistic given in 

(3) has the same distribution as they do when ρ = 0.  We now indicate how the 

distribution of the numerator and denominator are different when ρ ≠ 0 and the cluster 

sample sizes ni
T and ni

C are all equal to n. 

 Distribution of the numerator of t when ρ ≠ 0. Assuming cluster samples sizes are 

equal to n and ρ ≠ 0, the numerator has a normal distribution with mean 0, but with a 

generally larger variance: σT
2[1 + (n – 1)ρ].  The factor [1 + (n – 1)ρ] is Kish’s (1965) 

design effect.  In other words, when ρ ≠ 0, and the null hypothesis is true 

 T( )/ 1 1T CN Y Y n ρ•• ••− + −( )� σ  

has the standard normal distribution. 
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 Distribution of the denominator of t when ρ ≠ 0. Assuming cluster samples sizes 

equal to n, and ρ ≠ 0, the expected value of S2 is no longer σT
2, but instead 

 { }2 2 2 22 21
2 2W B T

N n ( n )1 ρE S
N N

σ σ σ− −⎛ ⎞ ⎛= + = −⎜ ⎟ ⎜− −⎝ ⎠ ⎝
⎞
⎟
⎠

. 

Thus the scale factor necessary to standardize S is not σT.  We show in the Appendix that 

 
2

2 2 11
2T

hS
( n )ρ
N

σ −⎛ ⎞−⎜ ⎟−⎝ ⎠

 

has, to an excellent approximation, the chi-square distribution with h degrees of freedom, 

where  

 
2

2 2

[ 2 2 1 ]
2 1 2 2 2 1

N n ρh
N ρ n N n ρ N n ρ ρ

− − −
=

− − + − + − −
( ) ( )

( )( ) ( ) ( ) ( )
.   (4) 

Taking the partial derivative of h with respect to ρ, we see that h is a decreasing function 

of ρ.  If ρ = 0 and there is no clustering, h = (N – 2) and S has the nominal degrees of 

freedom as expected.  If ρ = 1 and there is complete clustering (no variability within 

clusters), then h = (M – 2) as expected (because the only variability is that between the M 

clusters).  If 0 < ρ < 1, then h is between (M – 2) and (N – 2) and its value reflects the 

effective degrees of freedom in S. 

These results imply that when ρ ≠ 0, S/σT is no longer distributed as the square 

root of a chi-square with (N – 2) degrees of freedom divided by its degrees of freedom, 

but 

 
2 11

2T

S
( n )ρ
N

σ −−
−
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is distributed as the square root of a chi-square with h degrees of freedom divided by its 

degrees of freedom.  

 The Sampling Distribution of the t-statistic When ρ ≠ 0 .The results in the 

previous section have three important implications for the t-statistic given in (3).  First, 

the scale factors necessary to standardize the numerator and denominator of t no longer 

cancel, therefore the ratio (the t-statistic given in equation 3) no longer has the t-

distribution.  Second, the degrees of freedom of S (and therefore t) are no longer (N – 2), 

but h.  Third, the statistic 

 T( )/ 1 1 ( )
2 11

2

T C T C

T

N Y Y n ρ N Y Yc c
Sn ρS

N

•• •• •• ••− + − − t= =
−

−
−

( )
( )/

� �σ

σ
 

has the t-distribution with h degrees of freedom, where c is a constant depending on N, n, 

and ρ that absorbs the ratios of the scale factors in numerator and denominator, which 

given by 

 2 2 1
2 [1 1 ]

( N ) ( n )ρc
( N ) ( n )ρ

− − −
=

− + −
 .       (5) 

Thus the statistic 

 tA = ct          (6) 

has the t-distribution with h degrees of freedom and can be thought of as a t-statistic 

adjusted for both for clustering effects on the mean difference and on the standard 

deviation. 

 Thus a two-sided test of the null hypothesis of equal group means consists of 

rejecting H0 if | tA | exceeds the 100α percent two-tailed critical value of the t-distribution 
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with h degrees of freedom.  The one sided test rejects H0 on the positive side if tA exceeds 

the 100α percent one-tailed critical value of the t-distribution with h degrees of freedom.   

 Note that if ρ = 0 so that there is no clustering, then c = 1 and h = N – 2.  That is, 

when ρ = 0, the test based on tA reduces to the usual t-test ignoring clustering.  When  

ρ = 1 and there is complete clustering, then c = 2( M ) /( N )2− −  and h = M – 2.  That 

is, when ρ = 1, and the test based on tA reduces to a t-test computed using the cluster 

means.  Note that throughout this section (and this paper), ρ is the population parameter, 

not a sample estimate.  

 One immediate application of the results in this paper is to study the rejection rate 

of the unadjusted t-test.  While it is well known that the unadjusted t-test has a rejection 

rate that is often much higher than nominal (see, e.g., Murray, Hannan, and Baker, 1996), 

previous studies have relied on simulation to study this test.  The sampling distribution of 

tA provides an analytic expression for the rejection rates of the unadjusted t-test under the 

cluster sampling model.  Let t(ν, α) is the level α two-sided critical value for the t-

distribution with ν degrees of freedom.  Then the usual unadjusted t-test rejects if 

|t| > t(N – 2, α).  Because tA = ct has the t-distribution with h degrees of freedom under the 

null hypothesis, the rejection rate of the unadjusted test is 

 [ ]{ }2 1 F t((  - 2) )c N ,α , h− , 

where F[x, ν] is the cumulative distribution function of the t-distribution with ν degrees of 

freedom.  Computations with this expression (not reported in this paper) are very 

consistent with the empirical rejection rates obtained in our simulations. 

 

Accuracy of the Approximation 
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 The method used to obtain the approximate sampling distribution of S (and 

therefore tA) in this paper has proven quite accurate in other situations, such as the 

construction of tests in repeated measures analysis of variance (e.g., Geisser and 

Greenhouse, 1958).  To verify that it is also accurate in this situation, an extensive 

simulation study was carried out. The number of clusters was varied from mT = mC = m = 

2 to m = 20 in each treatment group, and the sample size n per cluster was varied from n 

= 2 to n = 100.  For each value of n and m, values of ρ from ρ = 0.00 (in which case the 

test ignoring clustering is correct) to ρ = 0.40 were examined.  For each combination of n, 

m, and ρ examined, a total of 10,000 replications were generated, yielding a standard 

error of about 0.0022 for the simulated ejection rate of the test at the nominal 0.05 level.   

 The results suggested, as expected, that the unadjusted test provided poor control 

of Type I Errors, with actual rejection rates much higher than nominal.  The results also 

suggested that the adjusted test based on tA had actual significance levels that were 

indistinguishable (within the error of the simulation) from nominal.  That is, the 

significance levels of the test based on tA (and therefore the confidence intervals 

described in this paper) are quite accurate (provided, of course, that ρ is known).  

Additional simulations (not reported here) suggest that power calculations based on the 

noncentral t-distribution are also quite accurate. 

Table 1 provides a selection of the empirical significance levels for the unadjusted 

t-test (ignoring the effects of clustering) and for the adjusted t-test based on tA for selected 

values of n and mT = mC = m.   The number of clusters varies from m = 2 to m = 20 in 

each treatment group, and the sample size n per cluster is varied from n = 2 in top panel 

of the table to n = 100 in the bottom panel of the table.  For each value of n and m (that is, 
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for each panel of the table), there is a different value of ρ on each row, varying from ρ = 

0.00 (in which case the test ignoring clustering is correct) to ρ = 0.40.  For each value of 

n and ρ, the empirical rejection rates for the nominal 0.10, 0.05, and 0.01 level unadjusted 

t-tests that ignore the effects of clustering (that is, tests that reject the null hypothesis if | t 

| exceeds the t critical value with 2nm - 2 degrees of freedom) are given in columns 4, 5, 

and 6.  The empirical rejection rates for the nominal 0.10, 0.05, and 0.01 level tests based 

on tA (that is, tests that reject the null hypothesis if | tA | exceeds the t critical value with h 

degrees of freedom) are given in columns 7, 8, and 9.  The value of the correction factor c 

and the adjusted degrees of freedom h are given in columns 10 and 11.  (The details of 

the computations are given in the appendix.)  

 Examining the rejection rates for the unadjusted t-test (that ignores clustering) 

demonstrates why it is important to correct for its effects.  For example with when the 

cluster sample size is relatively large (as it often is in educational studies where the 

clusters are schools), the effects of clustering on the unadjusted t-test are profound.  For 

example, when m = 5, n = 20, and ρ = 0.10, the nominal 0.05 level test has an actual 

significance level of 0.253, 500% of the nominal level, and the nominal 0.01 level test 

has an actual significance level of 0.133 (1300% of its nominal level).  The empirical 

rejection rates of the adjusted test are all quite near the nominal level. 

 

Relation to Previous Work 

The sampling distribution of tA derived in this paper provide some insight about 

other approaches to testing mean differences in clustered samples.  Kish (1965) suggested 

multiplying S (or, equivalently, dividing the t-statistic) by the square root of the design 
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effect (the square root of [1 + (n – 1)ρ]) to remove the effect of clustering on the 

numerator of the t-statistic.  The resulting statistic is 

(
1 1

T C

K
N Y Yt

S n
)
ρ

•• ••−
=

+ −( )

�
.        (7) 

However because this statistic is does not correct for the fact that the scale factor 

necessary to standardize S is not σT, the sampling distribution of tK is not a t-distribution 

but a constant times a t-distribution with h degrees of freedom, namely 

 
2 11

2

A
K

tt
( n )ρ
N

=
−

−
−

.        (8) 

If ρ ≠ 0 the denominator of (8) is less than one, so tK > tA.  However note that 

2 1 11 1 1
2 1

( n )ρ ρ m
N m mn
− ⎛− = − −⎜− −⎝ ⎠

− ⎞
⎟       (9) 

so that the denominator of (8) will be quite close to 1 unless m is small and ρ is large.  

For example, if ρ = 0.1 n = 50 and m = 2, the denominator of (8) is about 0.975, but if n = 

50 and m = 10, the denominator is 0.990.  Therefore the sampling distribution of tK is 

approximately a t-distribution with h degrees of freedom.   

 While many several authors have advocated the use of tK (or its generalizations) 

as a test statistic, Hannan, et al. (1994) noted that “the choice of df for the adjusted test 

remains the subject of considerable debate”(p. 93). The results of this paper shed some 

light on the implication of various choices of degrees of freedom used for the selection of 

critical values.  We can rewrite h in a somewhat more revealing form 
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 ( ) [ ]

22 11
22

2 1 4
1 1

2

( n )ρ
Nh N

N ( n )ρ
( n )ρ

N

⎧ ⎫−⎛ ⎞⎪ ⎪−⎜ ⎟⎪ ⎪−⎝ ⎠= − ⎨ ⎬
⎧ ⎫− − −⎪ ⎪+ − ⎨ ⎬⎪ ⎪−⎩ ⎭⎩ ⎭

. 

This expression shows that h is essentially the nominal degrees of freedom (N – 2) 

multiplied by a correction factor, which is the fraction in brackets.  The numerator of this 

fraction is the square of the term given in (9) which is typically close to 1.  The 

denominator of the fraction is almost (but not quite) the design effect 1 + (n – 1)ρ.  

Therefore the value of h should be similar, but not identical, to (N – 2)/[1 + (n – 1)ρ].  For 

small values of ρ, (N – 2)/[1 + (n – 1)ρ] is usually smaller than h, but this need not be so 

for large values of ρ.   

A test based on tK with critical values based on (N – 2) degrees of freedom. Blair 

and Higgins (1986) have been interpreted as saying that critical values of tK could be 

evaluated using the usual (N – 2) degrees of freedom.  (In fact, they made the claim not 

about tK, but about a test statistic they derived based on generalized least squares 

analysis.)  Let t(ν, α) be the level α two-sided critical value for the t-distribution with ν 

degrees of freedom.  If ρ ≠ 0, then h < (N – 2), so it follows that t(N – 2, α) < t(h, α).  

Moreover, tK > tA, so that, when the null hypothesis is true, the rejection rate of a test that 

rejects if |tK| > t(N – 2, α) must be greater than α.  The two-tailed rejection rate of such a 

test is  

)
2 12 1 F t( 2 1

2
( n )ρN ,α , h
N

⎧ ⎫⎡ ⎤−⎪ − − −⎨ ⎢ −⎪ ⎪⎣ ⎦⎩ ⎭

⎪
⎬⎥ ,     (10) 

where F(x, ν) is the cumulative distribution function of the t-distribution with ν degrees of 

freedom.  Columns 7 and 8 of Table 2 show the degrees of freedom and the rejection rate 
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of the nominal α = 0.05 level test based on tK using (N – 2) degrees of freedom for m = 2, 

5, and 10, n = 10, 25, and 100, and ρ = 0.10 and 0.20.  These values show that the actual 

rejection rate of the test increases with ρ and n and decreases with m (as expected, since 

N – 2 > h).  However unless the number m of clusters is small, the actual level of the test 

is only slightly larger than the nominal (not exceeding 0.07 for n ≤ 100 and ρ ≤ 0.30.  

However unless m is very small, the elevation in significance level is not large.  In other 

words, the test is liberal, but only slightly so. 

  A test based on tK with critical values based on (M – 2) degrees of freedom. 

Donner and Klar (2000, p. 115) state that tK, could be used with critical values based on 

(M – 2) degrees of freedom.    However because h > (M – 2), it follows that t(M – 2, α) > 

t(h, α).  Although tK > tA, the rejection rate of a test that rejects if |tK| > t(M – 2, α) is 

generally less (and often much less) than α.  The two-tailed rejection rate of such a test is  

2 12 1 F t( 2 ) 1
2

( n )ρM ,α , h
N

⎧ ⎫⎡ ⎤−⎪ − − −⎨ ⎢ −⎪ ⎪⎣ ⎦⎩ ⎭

⎪
⎬⎥ ,     (11) 

where F(x, ν) is the cumulative distribution function of the t-distribution with ν degrees of 

freedom.  Columns 9 and 10 of Table 2 show the degrees of freedom and the rejection 

rate of the nominal α = 0.05 level test based on tK using (M – 2) degrees of freedom for m 

= 2, 3, 4, 5, and 10, n = 10, 25, and 100, and ρ = 0.10 and 0.20.  These values show that 

the rejection rate is much lower than nominal when the number of clusters is small (as 

expected since M – 2 << h).  In other words, the test is very conservative. 

 A test based on tK with critical values based on (N – 2)/[1 + (n – 1)ρ] degrees of 

freedom. Skinner, Holt, and Smith (1989) suggested that tK could be used with critical 
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values based on degrees of freedom adjusted by the design effect, that is with           

(N – 2)/[1 + (n – 1)ρ] degrees of freedom.  This test has a rejection rate of 

2 12 1 F t((  - 2)/[1 + (  - 1) ] ) 1
2

( n )ρN n ρ ,α , h
N

⎧ ⎫⎡ ⎤−⎪ ⎪− −⎨ ⎬⎢ ⎥−⎪ ⎪⎣ ⎦⎩ ⎭
,   (12) 

where F(x, ν) is the cumulative distribution function of the t-distribution with ν degrees of 

freedom.  Columns 12 and 13 of Table 2 show the degrees of freedom and the rejection 

rate of the nominal α = 0.05 level test based on tK using (N – 2)/[1 + (n – 1)ρ] degrees of 

freedom, which is remarkably close to the nominal rejection rate for a wide variety of 

values of n, m, and ρ. 

 A test with degrees of freedom based on uncertainty of the estimate of ρ. A 

different approach to computing degrees of freedom was suggested by Hannan, Murray, 

Jacobs, and McGovern (1994) and elaborated by Blitstein, Hannan, Murray, and by 

Shadish (2005) and Blitstein, Murrray, Hannan, and Shadish (2005).  They were 

concerned that external estimates of ρ were themselves subject to sampling uncertainty 

and wanted to take that into account in their choice of degrees of freedom.  They noted 

that the if ρ was estimated from a total of k clusters each with a sample size of n, then the 

approximate variance of the analysis of variance estimate of ρ was given by Donner and 

Koval (1982) as 

 
2 22 1 [1 1 ]

1 1
( ρ ) ( n )ρˆV( ρ )

n( n )( k )
− + −

=
− −

. 

Hannan et al. noted that the equation could be solved for (k – 1), the degrees of freedom 

between groups used to estimate ρ.  They denoted this estimate by df*, namely 

 
2 22 1 [1 1 ]

1
( ρ ) ( n )ρdf *

ˆn( n )V( ρ )
− + −

=
−

       (13) 
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and suggested that df* could be used as the degrees of freedom to compute critical values 

for a test based on tK.   

 It is unclear how to evaluate the effectiveness of this estimate analytically.  

However we note that if the external estimate of ρ is very precise (as it may be if 

computed from sample surveys with large sample sizes), df* can be very large, easily 

exceeding the total sample size of the study to which it is applied.  In this case, Hannan et 

al. would suggest placing an upper bound on df* of N – 2. 

 Studies of models with two levels of nesting. Murray, Hannan, and Baker (1996) 

used simulations to study the performance of analysis of variance F-tests in a model with 

two nested factors.  They were particularly concerned with the effects of using critical 

values defined by numbers of degrees of freedom different than those conventionally 

used.  They investigated a different sampling model than that in this paper (with two 

levels of clustering rather than the one level of clustering in this paper), but some of their 

results are similar.  They found, as expected, that the rejection rate of an approximation to 

the usual F-test that ignores clustering (a test approximating the square of what is called 

in this paper the unadjusted t) is much higher than nominal, with rejection rates similar to 

those found in this paper.  They also found that tests using the conventional degrees of 

freedom give close to nominal results.  Given the differences in both the data generation 

model and the statistics computed, other results of theirs are more difficult to compare 

with those in this paper. 

 

 Unequal Cluster Sample Sizes 
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 When cluster sample sizes are unequal, the expression for the sampling 

distribution of the t-test statistic from clustered samples and is considerably more 

complex. In this section we give the sampling distribution of the usual t-statistic and a 

statistic that is adjusted for the effects of clustering when cluster sample sizes are not 

equal.  These expressions may be of use when cluster sample sizes are unequal and are 

reported explicitly.  They also give some insight about what single “compromise” sample 

size might give most accurate results when substituted into the equal sample size 

formulas for rough approximations. 

Distribution of the numerator of t when ρ ≠ 0. The numerator of (3) has a normal 

distribution with mean 0 and variance [1 1 ] 2
Tn ρ+ −( )� σ , where n is given by �

( ) ( )2 2

1 1= == +
∑ ∑

T Cm m
C T T C

i i
i i

T C

N n N n
n

N N N N
� .      (14) 

In other words, 

 T( )/ 1 1T CN Y Y n ρ•• ••− + −( )� �σ , 

has the standard normal distribution.  Note that when all of the cluster sample sizes ni
T 

and ni
C are equal to n, then = n. n�

 Distribution of the denominator of t when ρ ≠ 0. The expected value of S2 is  

 { }2 2 2 11
2

U
T

( n )ρE S
N

σ
−⎛ ⎞= −⎜ ⎟−⎝ ⎠

, 

where Un is given by 

 
( ) ( )2 2

1 1
2 2

T Cm mT C
i i

i i
U T

n n
n

N N
= == +
∑ ∑

C .       (15) 
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Note that when all of the cluster sample sizes ni
T and ni

C are equal to n, then Un = n.  We 

show in the Appendix that 

 
2

2 2 11
2

U
T

hS
( n )ρ

N
σ −⎛ ⎞−⎜ ⎟−⎝ ⎠

 

has the chi-square distribution with h degrees of freedom, where  

 [ ]2
2 2

2 2 1

2 1 2 2 1
U

U
U

( N ) ( n )ρ
h

( N )( ρ ) Aρ ( N n )ρ( ρ )

− − −
=

− − + + − −
,    (16) 

where the auxiliary constant A is defined via A = AT + AC and  

 
( ) ( ) ( ) ( )

( )

2
2 2 2

1 1 1
2

2
= = =

⎛ ⎞
+ −⎜ ⎟
⎝ ⎠=

∑ ∑ ∑
T T Tm m m

T T T T T
i i

i i iT

T

N n n N n
A

N

3

i

, 

and           (17) 

 
( ) ( ) ( ) ( )

( )

2
2 2 2

1 1 1
2

2
= = =

⎛ ⎞
+ −⎜ ⎟
⎝ ⎠=

∑ ∑ ∑
C C Cm m m

C C C C C
i i

i i iC

C

N n n N n
A

N

3

i

. 

Note that when the ni
T and ni

C are all equal to n, A = n(N - 2n), Un = n, and (16) reduces 

to (4). 

 It follows that the statistic 

   T( )/ 1 1 ( )
2 11

2

T C T C

U U
U

T

N Y Y n ρ N Y Yc c
Sn ρS

N

•• •• •• ••− + − −
= =

−
−

−

( )
( )/

� ��σ

σ
t  

has Student’s t-distribution with hU degrees of freedom, where cU is a constant depending 

on N, ,n� Un , and ρ that absorbs the ratios of the scale factors in the numerator and the 

denominator, which is given by 
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 2 2 1
2 [1 1 ]

U
U

( N ) ( n )ρc
( N ) ( n )ρ

− − −
=

− + −�
.      (18) 

 

Thus  

tAU = cU t          (19) 

is a t-statistic adjusted for the effects of clustering in the case of unequal cluster sample 

sizes.  When the cluster sample sizes ni
T and ni

C are all equal to n, cU reduces to c, hU 

reduces to h, and tAU reduces to tA.  

 Thus the two-sided test of the null hypothesis of equal group means consists of 

rejecting H0 if | tAU | exceeds the 100α percent two-tailed critical value of the t-

distribution with hU degrees of freedom.  The one sided test rejects H0 on the positive 

side if tAU exceeds the 100α percent one-tailed critical value of the t-distribution with hU 

degrees of freedom.   

Confidence Intervals 

 Confidence intervals based on the standard error of the mean difference and using 

the critical values used in the test based on t assuming simple random sampling will not 

be accurate when ρ ≠ 0 and the cluster size exceeds n = 1.  That is, the actual probability 

content of these confidence intervals will usually be smaller than nominal (the confidence 

intervals will be too short).  The corrected t-statistic tA (or tAU)can be used to obtain 

confidence intervals that will have the correct probability content.   

 A 100(1 – α) percent confidence interval for µT – µC is given by 

      t( ) t( )T C T C T C(Y Y ) α,h S / c N µ µ (Y Y ) α ,h S / c N•• •• •• ••− − ≤ − ≤ − +� � ,    (20) 
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where c is the constant defined in (5) if cluster sample sizes are equal or (18) if they are 

unequal and t(α;ν) is the 100α percent two-sided critical value of the t-distribution with ν 

degrees of freedom (e.g., if α = 0.05 and ν = 120, then t(α, ν) = 1.98). 

 

Example 

 The application that motivated this work was the synthesis of studies of the 

effectiveness of middle school mathematics curricula carried out as part of a broader 

program of syntheses by the US Institute of Education Sciences What Works 

Clearinghouse.  This review encountered several studies that sampled and assigned to 

treatments at the cluster level, but ignored the clustering in their reports of significance 

tests.  One of these studies was an evaluation of the Connected Mathematics curriculum 

reported by Ridgway, et al. (2002), which compared the achievement of mT = 18 

classrooms of 6th grade students who used connected mathematics with that of mC = 9 

classrooms in a comparison group that did not use connected mathematics.  In this quasi-

experimental design the clusters were classrooms.  The cluster sizes were not identical 

but the average cluster size in the treatment groups was NT/mT = 338/18 = 18.8 and NC/mC 

162/18 = 18.0 in the control group.  Here we treat the cluster sizes as if they were equal 

and choose n = 18 as a slightly conservative sample size and a total sample size of N = 

486. The mean difference between treatment and control groups is TY•• - = -1.5, the 

pooled within-groups standard deviation S = 2.436.  Although it was not a probability 

sample, the sample was drawn from sites located in all regions of the country (west, 

midwest, and east) and it was intended to be representative.  The compendium of 

intraclass correlations computed from national probability samples (Hedberg, Santana, 

CY••



Correcting a Significance Test for Clustering   24 

and Hedges, 2004), gives a national value of ρ = 0.264 for sixth grade mathematics 

achievement (with a sampling standard error of 0.019).   

The analysis carried out by the investigators ignored clustering.  Comparing the 

mean of all of the students in the treatment with the mean of all of the students in the 

control group using a conventional t-test leads to an unadjusted t value of t = 6.40, which 

is highly statistically significant compared with a critical value based on (N – 2) = 486 – 

2 = 484 degrees of freedom.  Computing the constant c used to adjust the t-statistic using 

ρ = 0.241, we obtain 

486 2 2 18 1 0 264 0 423
486 2 [1 18 1 0 264 ]

( ) ( )( . )c .
( ) ( )( . )

− − −
= =

− + −
, 

so that the adjusted t-statistic tA = (0.423)(6.40) = 2.71.   

 Computing the degrees of freedom h, we obtain 

 

2

2 2

[ 486 2 2 18 1 0 264] 225 29
486 2 1 0 264 18 486 36 0 264 2 36 0 264 1 0 264

h
N

− − −
= =

− − + − + − −
( ) ( ) . .

( )( . ) ( ) . ( )( . )( . )
. 

Comparing 2.71 with the critical values of the t-distribution with 225.3 degrees of 

freedom, we obtain a two-tailed p-value of p = 0.0073.  This value is still statistically 

significant, albeit less so than the (incorrect) test based on the unadjusted p-value.   

 By varying the value of ρ that is used to compute tA, we can see how large a value 

of ρ would be required to yield a test statistic that was statistically insignificant at the α = 

0.05 significance level.  We see that the test based on tA would remain significant unless  

ρ > 0.50, a value that seems extremely implausible.  Therefore it seems that, even though 

the statistical analysis used in this study did not take clustering into account, an analysis 

that did so would also have found statistically reliable evidence of treatment effects. 
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 Note that the t-statistic adjusted only for the effect of clustering on the numerator 

would be quite similar, namely tK = 2.83.  The nominal degrees of freedom (486 – 2) 

divided by the design effect (5.49) yields an estimated degrees of freedom of 88.2, which 

is quite different from h = 225.3, but this difference in degrees of freedom has relatively 

small impact on the significance level.  Evaluating the p-value of tK using the t-

distribution with 88.2 degrees of freedom we obtain p = 0.0076. 

To compute the 95 percent confidence interval for the mean difference, note that 

t(0.05; 225.3) = 1.971.  Then using (20) we obtain the 95 percent confidence interval  

(1 971)(2 436) (1 971)(2 436)2 59 1 5 1 5 0 41
[0 423] 108 [0 423] 108

T C. . . .. . µ µ . .
. .

− = − − ≤ − ≤ − + = − , 

which is an interval of width 2.10.  Comparing this to the confidence interval that would 

be computed ignoring clustering, (-1.96 to -1.04) which has width 0.92, we see that the 

confidence interval which ignores clustering is considerably (and erroneously) narrower 

than that using tA, which takes clustering into account. 

  

Power Considerations 

 The power of any statistical test and its power relative to alternative tests that 

might be used are major considerations.  The t-test corrected for clustering presented in 

this paper is likely to be used in situations where there is no obvious alternative (that is in 

situations where only a data summary such as a t-statistic computed ignoring clustering is 

available).  However, it is still useful to compare the power of this test with alternatives 

that could be used if more data were available.   

 Two of those alternatives are a t-test performed on cluster means (that is using the 

cluster as the unit of analysis)(see, e.g., Barcikowski, 1981) and a generalized least 
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squares (GLS) analysis computed using a known value of ρ to parameterize the error 

covariance matrix (see Blair and Higgins, 1986).  Note that both of these alternatives 

require more information than the test given here, although they may be computed 

without complete reanalysis of the data.  The analysis based on cluster means requires 

knowledge of either the cluster means or the mean difference between treatment and 

control groups and the standard deviations of the cluster means within treatment groups.  

The generalized least squares analysis proposed by Blair and Higgins also requires 

knowledge of cluster means (or their within-treatment group standard deviations), but in 

addition requires knowledge of the within-cluster standard deviations (or equivalent 

summary statistics). 

 These two tests provide a useful standard of comparison.  The test based on 

cluster means is the most powerful exact test when ρ is unknown, while the test based on 

generalized least squares is the most powerful exact test when ρ is known..   

 The test statistic used in all three analyses (based on the results in this paper, and 

the two alternatives requiring more data) have noncentral t-distributions with the same 

noncentrality parameter, 

 1
1 1

T C

T

N µ - µλ
σ n ρ

=
+ −

( )
( )

�
�

,      (21) 

but different degrees of freedom [(N - 2), h, or (M – 2), respectively], when the null 

hypothesis is false.  It is known that power is an increasing function of degrees of 

freedom for a fixed noncentrality parameter.  Because the analysis based on generalized 

least squares that was suggested by Blair and Higgins has (N – 2) degrees of freedom and 

(N – 2) ≥ h ≥ (M – 2), it should provide the most powerful test if ρ is known and the raw 

data are available.  Because the analysis based on group means has (M – 2) degrees of 
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freedom, it should always provide the least powerful of the three tests.  Because the test 

based on tA has h degrees of freedom, it should have power in between the other two tests.  

However, because the dependence of the power function on degrees of freedom (for a 

fixed noncentrality parameter) is slight when degrees of freedom are 30 or more, the 

difference in the power of these three tests need not be substantial.   

 Table 2 gives the power of each of the three tests in some illustrative situations 

when µT – µC = 1.0σT, and the last column is the ratio of the power of the test proposed 

here to that of the test based on generalized least squares.  This table illustrates that when 

the number of clusters is small, the adjusted t-test is considerably more powerful than the 

test using cluster means as the unit of analysis, but the power advantage decreases as the 

number of clusters increases.  However it is important to remember that the test based on 

cluster means is the most powerful test if ρ is unknown.  That is, the power advantage of 

the GLS test and the adjusted t-test depends on having a known value of ρ.  While the 

adjusted t-test is slightly less powerful than the GLS test, it is very nearly as powerful.   

 

Using Results of This Paper 

 It is unusual for the value of ρ to be known exactly.  However, the results in this 

paper may be useful even if exact values of ρ are not available.  One major use of these 

results is to judge (when we cannot carry out a reanalysis) whether a plausible amount of 

clustering would dramatically change the findings reported from an analysis that ignored 

clustering.  For this purpose it may be enough to know an upper bound on the value of ρ.  

Alternatively, it may be sufficient to have reasonable bounds for ρ in order to carry out a 
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sensitivity analysis to determine whether the results change qualitatively across the 

reasonable range of ρ values. 

 Because it is essential to know values of ρ for power and sample size 

computations in planning cluster randomized experiments, there have been systematic 

efforts to obtain information about reasonable values of ρ in realistic situations.  For 

example chapter 5 of Donner and Klar (2000) provide references to many reports of 

intraclass correlations for health outcomes.  Some information about reasonable values of 

ρ comes from cluster randomized trials that have been conducted.  For example, Murray 

and Blitstein (2003) reported a summary of intraclass correlations obtained from 17 

articles reporting cluster randomized trials in psychology and public health and Murray, 

Varnell, and Blitstein (2004) give references to 14 very recent studies that provide data 

on intraclass correlations for health related outcomes.  Other information on reasonable 

values of ρ comes from sample surveys that use clustered sampling designs. For example 

Gulliford, Ukoumunne, and Chinn (1999) and Verma and Lee (1996) presented values of 

intraclass correlations based on surveys of health outcomes.  Hedberg, Santana, and 

Hedges (2004) presented a compendium of several hundred intraclass correlations for 

reading and mathematics academic achievement computed from national probability 

samples at various grade levels.  This later compendium provides national values for 

intraclass correlations as well as values for regions of the country and subsets of regions 

differing in level of urbanicity. 

 It is particularly important to use external values of ρ with considerable caution, 

because the value of ρ has substantial influence on the results of analyses.  In particular, it 

would be difficult to justify the use of the methods described in this paper using estimates 
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of ρ obtained from small samples (small numbers of clusters) because those estimates are 

likely to be subject to considerable sampling error.  Similarly, it would be difficult to 

justify the use of external estimates of ρ, even from large sample sizes if those estimates 

were not based on a similar sampling strategy, with similar populations, and similar 

outcome measures.  If raw data were available, reanalysis would be preferable to the use 

of methods described in this paper.  However, to the extent that external values of ρ can 

be justified, the methods suggested in this paper can provide a means of adjusting results 

of a study that ignored clustering for the probable effects of clustering as an alternative to 

discarding the results of that study altogether. 

 

Conclusion 

 Cluster randomized trials are increasingly important in education and the social 

and policy sciences.  However these trials are often improperly analyzed by ignoring the 

effects of clustering on significance tests.  Reanalysis using more appropriate methods 

(such as multilevel statistical methods) is obviously desirable.  However, when 

conclusions must be drawn from published reports (using t- or F-tests that ignore 

clustering), corrected significance levels and confidence intervals can be obtained if the 

intraclass correlation is known or plausible values can be imputed.  Such procedures 

provide reasonably accurate significance levels and are suitable for bounds on the results.   

 The theory given in this paper can also be used to study alternative suggestions 

for adjusting t-tests for clustering.  Such analyses show that a test based on Kish’s 

statistic tK gives quite conservative results when critical values are obtained using degrees 

of freedom based strictly on the number of clusters.  A test based on tK has rejection rates 
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that are generally close to nominal (but not always strictly conservative) when critical 

values are obtained using degrees of freedom adjusted for the design effect.   

 This paper considered only t-tests under a sampling model with one level of 

clustering.  Educational experiments sometimes involve additional levels of clustering 

that would be desirable to include in the statistical analyses (such as classrooms within 

schools of schools within school districts).  The generalization of the methods used in this 

paper to more designs with additional levels of nesting and more complex analyses would 

be desirable. 
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Appendix 

 

Derivations with the Equal Cluster Sample Sizes 

 Under the model the sampling distribution of the numerator of (3) is normal with 

mean T CN µ - µ(� )and variance σW
2 + nσB

2 = σT
2[1 + (n - 1)ρ].  The square of the 

denominator of (3), can be written as 

 2

2
SSBC SSWCS

N
+

=
−

,        (22) 

where SSBC is the pooled sum of squares between cluster means within treatment groups, 

and SSWC is the pooled sum of squares within clusters.  Therefore SSWC/σW
2 has a chi-

squared distribution with (N – M) degrees of freedom, where M = mT + mC.  Similarly 

 2
W B

SSBC
n+ 2σ σ

         (23) 

has a chi-squared distribution with (M – 2) degrees of freedom.   

 Thus S2 is a linear combination of independent chi-squares.  To obtain the 

sampling distribution of S2, we use a result of Box (1954), which gives the sampling 

distribution of quadratic forms in normal variables in terms of the first two cumulants of 

the quadratic form. Theorem 3.1 in Box (1954) implies that S2 is distributed to an 

excellent approximation as a constant g times chi-square with h degrees of freedom, 

where g and h are given by 

 
2

2

V{ }
2E{ }

Sg
S

=          (24) 

and 
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( )22

2

2 E{ }

V{ }

S
h

S
= ,        (25) 

where E{X} and V{X} are the expected value and the variance of X.  Therefore we have 

that S2/gh = S2/E{S2} is distributed as a chi-square with h degrees of freedom divided by 

h. 

 By the definition of the noncentral t-distribution (see, e.g., Johnson and Kotz, 

1970), it follows that  
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has the noncentral t-distribution with h degrees of freedom and noncentrality parameter 
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where c is given by  

 
{ }2 2

1 1
TE S

c
n ρ

=
+ −

/
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σ
        (26) 

and h is given by (25).  When µT – µC = 0 (and therefore λ = 0), the distribution is a 

central t-distribution with h degrees of freedom.   

 It follows from (22), and standard theory for expected mean squares in 

hierarchical designs (see, e.g., Kirk, 1995) that 

 { }2 2 2E
2W B

N nS
N

2σ σ−⎛ ⎞= + ⎜ ⎟−⎝ ⎠
 

and 

 
4 4
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Inserting these values for the mean and variance of S2 into (26) and (25), using the fact 

that ρσT
2 = σB

2 and (1 – ρ)σT
2 = σW

2, and simplifying gives the values we obtain for c 

given in (4) and h given in (5). 

 

Unequal Cluster Sample Sizes 

 When cluster sample sizes are unequal, expressions for the expressions for the 

constant c and degrees of freedom h are more complex.  A direct argument leads to 

 { } (
1

2
T C

T C
W BT C

N NY Y n
N N

)2σ σ
−

•• ••
⎛ ⎞

− = +⎜ ⎟⎜ ⎟+⎝ ⎠
V �      (27) 

where  is defined in (14).  Therefore the sampling distribution of the numerator of (3) is 

normal with mean

n�

T CN µ - µ(� )and variance σW
2 + σn� B

2 = σT
2[1 + (  - 1)ρ].   n�

 The expected value and variance of S2 can be calculated from the analysis of 

variance between clusters within the treatment groups.  When cluster sample sizes are 

unequal, the between and within cluster sums of squares are still independent, and the 

within cluster sum of squares has a chi-square distribution, but if ρ ≠ 1, the between 

cluster sum of squares does not have a chi-square distribution.  However because S2 is a 

quadratic form, Box’s theorem can be used to obtain the distribution of S2.  To obtain the 

expected value of S2, use the fact that  

 2

2

T T CSSBC SSWC SSBC SSWCS
N

+ + +
=

−

C

, 

where SSBCT and SSWCT and SSBCC and SSWCC are the sums of squares between and 

within clusters in the treatment and control groups, respectively.  Using the expected 
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values of the SSBC’s and SSWC’s given, for example, in equations 77 and 78 on page 70 

of Searle, Casella, and McCulloch (1992), we obtain 

 { }
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where Un is given in (15).  To obtain the variance of S2, we use the between clusters 

variance component estimates in the treatment and control groups 
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Then write S2 as a function of between and within cluster variance components 
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Therefore the variance of S2 is given by 
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where Cov{X, Y} is the covariance between X and Y.  Using expressions (95) and (102) 

for the variances of the variance component estimates and expression (96) for the 

covariance term from pages 74 and 75 of Searle, Casella, and McCulloch (1992), and 

simplifying yields  

 { }
4 2 2 4

2
2

2 2 2 2V
2 2 2

W U B W B( N n ) AS
N ( N ) ( N )
σ σ σ σ−

= + +
− − − 2 ,    (30) 

where A = AT + AC defined in (17).  Using expression (28) for the expected value and 

expression (29) for the variance of S2, inserting these values for the mean and variance of 

S2 into (26) and (25), using the fact that ρσT
2 = σB

2 and (1 – ρ)σT
2 = σW

2, and simplifying 

gives the values we obtain for cU given in (18) and hU given in (16). 

 

Simulations and Power Computations 

 The simulation was carried out by a Compac Visual FORTRAN program on a 

Dell Pentium IV computer.  Because the t-statistic is invariant under affine 

transformations of the data, we lose no generality in assuming that (under the null 

hypothesis) µi
T =  µi

C = 0 and σW = 1.  By the definition of ρ, σB
2 = ρσW

2/(1 – ρ).  The data 

analyzed in this simulation was generated based on 10,000 replications for each particular 

combination of n, m, and ρ values.  For each replication, two vectors of standard normal 
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deviates were generated using IMSL subroutine RRNOR.  The first, ε = (ε1, …, ε2nm) had 

2nm values and the second, α = (α1, …, α2m) had 2m values.  The elements of the vector ε 

were the individual level sampling errors.  Because σW
2 = 1, the elements of the vector α 

were transformed to yield the group effects with variance σB
2 by multiplying each 

element of α by ρ/(1- ρ) .  The YT and YC values were then created via 

 YT
ij = αi + εij, i = 1, ..., m;  j = 1, …, mn  

and  

 YC
ij = αi + εij,  i = m + 1, ..., 2m;  j =  mn + 1, …, 2mn. 

The data generated by the program was checked to determine that the observed within- 

and between-cluster variances, and the intraclass correlations generated were as expected.   

The t-statistic, adjusted t-statistic, and value of h were computed for each replication.  

The critical values of Student’s t-distribution were evaluated using IMSL subroutine TIN 

and the empirical rejection rates were the proportion of replications in which |t| exceeded 

the two-tailed critical value of the t-distribution with (N – 2) degrees of freedom or the 

proportion of replications in which |tA| exceeded the two-tailed critical value of the t-

distribution with h degrees of freedom. All power computations used subroutine TNDF to 

compute the distribution function of the noncentral t-distribution. 
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Table 1 
 
Actual Significance Levels of Tests Based on Unadjusted t and Adjusted t (tA) with 
Nominal Significance Levels of α = 0.10, 0.05, and 0.01 
 
      Unadjusted t-test   Adjusted t-test using tA       
   Nominal Significance Level  Nominal Significance Level    
n m ρ 0.1 0.05 0.01   0.1 0.05 0.01   c h 

2 2 0.00 0.103 0.052 0.010  0.103 0.052 0.010  1.000 6.0
2 2 0.05 0.105 0.051 0.011  0.096 0.046 0.009  0.968 6.0
2 2 0.10 0.113 0.062 0.016  0.097 0.051 0.011  0.937 5.9
2 2 0.20 0.134 0.070 0.017  0.091 0.046 0.010  0.882 5.8
2 2 0.30 0.164 0.095 0.024  0.103 0.050 0.010  0.832 5.5
2 2 0.40 0.194 0.118 0.033  0.104 0.049 0.009  0.787 5.0

             
20 5 0.00 0.102 0.051 0.010  0.102 0.051 0.010  1.000 198.0
20 5 0.05 0.245 0.167 0.070  0.103 0.051 0.010  0.713 190.5
20 5 0.10 0.338 0.253 0.133  0.100 0.048 0.010  0.582 170.5
20 5 0.20 0.455 0.372 0.240  0.094 0.048 0.009  0.448 118.5
20 5 0.30 0.541 0.465 0.337  0.096 0.050 0.010  0.375 77.0
20 5 0.40 0.585 0.513 0.391  0.095 0.046 0.009  0.328 50.6

             
2 20 0.00 0.103 0.047 0.009  0.103 0.047 0.009  1.000 78.0
2 20 0.05 0.116 0.060 0.012  0.107 0.054 0.010  0.975 77.8
2 20 0.10 0.117 0.059 0.012  0.099 0.048 0.009  0.952 77.2
2 20 0.20 0.135 0.073 0.020  0.100 0.050 0.011  0.911 75.0
2 20 0.30 0.150 0.089 0.025  0.102 0.052 0.011  0.874 71.5
2 20 0.40 0.166 0.097 0.030  0.098 0.049 0.010  0.841 67.1

             
100 2 0.00 0.100 0.050 0.011  0.100 0.050 0.011  1.000 398.0
100 2 0.05 0.511 0.437 0.303  0.102 0.050 0.011  0.405 351.8
100 2 0.10 0.626 0.560 0.445  0.095 0.048 0.010  0.295 256.2
100 2 0.20 0.732 0.684 0.589  0.096 0.048 0.008  0.208 114.8
100 2 0.30 0.784 0.746 0.670  0.100 0.050 0.010  0.166 55.1
100 2 0.40 0.820 0.786 0.724   0.105 0.052 0.009   0.140 29.6

Note: The standard error of the simulated rejection rates of tA are 0.0030, 0.0022, and 
0.0010 for 0.10, 0.05, and 0.01 nominal significance levels, respectively.



  

Table 2 
 
Rejection rates of tests based on tK using critical values based on different degrees of freedom 
 

                

Test Based 
on tK with 
(N - 2) df  

Test Based on tK 
with (M - 2) df   

Test Based on tK with     
(N - 2)/DEF df 

n m  c DEFa db   h  N - 2
  Rejection 

Rate M - 2
  Rejection  

Rate   (N - 2)/DEF
Rejection 

Rate 

ρ =
 

0.1        
10 2 0.708 1.90 0.976  36.0  38 0.055 2 0.0002  20.0 0.049
25 2 0.529 3.40 0.975  86.1  98 0.056 2 0.0001  28.8 0.049

100 2 0.295 10.90 0.975  256.2  398 0.056 2 0.0000  36.5 0.049
10 3 0.714 1.90 0.984  54.3  58 0.054 4 0.0085  30.5 0.049
25 3 0.533 3.40 0.984  125.9  148 0.054 4 0.0072  43.5 0.049

100 3 0.298 10.90 0.983  349.6  598 0.054 4 0.0067  54.9 0.049
10 4 0.717 1.90 0.988  72.6  78 0.053 6 0.0181  41.1 0.050
25 4 0.536 3.40 0.988  166.0  198 0.053 6 0.0167  58.2 0.050

100 4 0.299 10.90 0.988  447.1  798 0.053 6 0.0161  73.2 0.050
10 5 0.719 1.90 0.991  90.9  98 0.052 8 0.0247  51.6 0.050
25 5 0.537 3.40 0.990  206.2  248 0.052 8 0.0234  72.9 0.050

100 5 0.3 10.90 0.990  546.0  998 0.052 8 0.0228  91.6 0.050
10 10 0.722 1.90 0.995  182.6  198 0.051 18 0.0379  104.2 0.050
25 10 0.54 3.40 0.995  407.5  498 0.051 18 0.0372  146.5 0.050

100
 

10 0.301 
 

10.90 
 

0.995
 

  1045.7
  

 1998
 

0.051 18 0.0368  183.3 0.050
        

ρ = 0.2 
 
             

10 2 0.569 2.80 0.951  30.6  38 0.061 2 0.0003  13.6 0.049
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25 2 
 
 
 
 
 
 
 
 
 
 
 
 

0.394 5.80 0.950  60.7  98 0.062 2 0.0001  16.9 0.049
100 2 0.208 20.80 0.949  114.8  398 0.063 2 0.0001  19.1 0.049
10 3 0.579 2.80 0.968  44.9  58 0.057 4 0.0101  20.7 0.049
25 3 0.402 5.80 0.967  84.5  148 0.058 4 0.0087  25.5 0.050

100 3 0.212 20.80 0.966  147.7  598 0.058 4 0.0081  28.8 0.050
10 4 0.584 2.80 0.977  59.4  78 0.055 6 0.0201  27.9 0.050
25 4 0.405 5.80 0.975  109.3  198 0.056 6 0.0187  34.1 0.050

100 4 0.214 20.80 0.975  185.4  798 0.056 6 0.0181  38.4 0.050
10 5 0.587 2.80 0.981  74.1  98 0.054 8 0.0266  35.0 0.050
25 5 0.407 5.80 0.980  134.4  248 0.055 8 0.0254  42.8 0.050

100 5 0.215 20.80 0.980  224.3  998 0.055 8 0.0248  48.0 0.050
10 10 0.592 2.80 0.991  147.4  198 0.052 18 0.0391  70.7 0.050
25 10 0.411 5.80 0.990  261.3  498 0.052 18 0.0384  85.9 0.050

100 10 0.217 20.80 0.990   423.6   1998 0.052 18 0.0381   96.1 0.050
 
a. DEF = 1 + (n – 1)ρ, Kish’s design effect. 

b. 2 11
2

( n )ρd
N
−

= −
−
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Table 3  
Power of the Adjusted t-test Based on tA, GLS, and the Test Based on Cluster Means with 
the Ratio of the Power of the Test Based on tA to that Based on GLS when µT – µC = 1.0σT
 
 

      GLS Test   Adjusted t-test  
Test on Cluster 

Means   Power 
n m  Power       df Power h  Power df  Ratioa

ρ = 0.10             
10 2  0.609 38  0.607 36.0  0.265 2  1
25 2  0.766 98  0.765 86.1  0.336 2  1

100 2  0.856 398 0.855 256.2  0.393 2  1
10 3  0.789 58  0.788 54.3  0.566 4  1
25 3  0.910 148 0.909 125.9  0.703 4  1

100 3  0.959 598 0.959 349.6  0.790 4  1
10 4  0.893 78  0.893 72.6  0.771 6  1
25 4  0.968 198 0.968 166.0  0.889 6  1

100 4  0.990 798 0.990 447.1  0.943 6  1
10 5  0.949 98  0.948 90.9  0.887 8  1
25 5  0.990 248 0.989 206.2  0.962 8  1

100 5  0.998 998 0.998 546.0  0.986 8  1
10 10  0.999 198 0.999 182.6  0.998 18  1
25 10  1 498 1 407.5  1 18  1

100 10  1 1998 1 1045.7  1 18  1
 
ρ = 0.20             

10 2  0.453 38  0.449 30.6  0.201 2  0.99
25 2  0.538 98  0.533 60.7  0.230 2  0.99

100 2  0.590 398 0.585 114.8  0.248 2  0.99
10 3  0.624 58  0.620 44.9  0.424 4  0.99
25 3  0.714 148 0.710 84.5  0.490 4  0.99

100 3  0.765 598 0.761 147.7  0.531 4  0.99
10 4  0.752 78  0.748 59.4  0.609 6  1
25 4  0.832 198 0.829 109.3  0.689 6  1

100 4  0.872 798 0.870 185.4  0.734 6  1
10 5  0.841 98  0.839 74.1  0.745 8  1
25 5  0.905 248 0.903 134.4  0.819 8  1

100 5  0.934 998 0.932 224.3  0.858 8  1
10 10  0.988 198 0.987 147.4  0.979 18  1
25 10  0.996 498 0.996 261.3  0.992 18  1

100 10  0.998 1998 0.998 423.6  0.996 18  1
a. The ratio of the power of the adjusted t-test to that of the GLS test, rounded to two 
decimal places 
 




