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Abstract 

 

Average accuracy of jury verdicts for a set of cases can be studied empirically and 

systematically even when the correct verdict cannot be known.  The key is to obtain a 

second rating of the verdict, for example the judge’s, as in the recent study of criminal 

cases in the U.S. by the National Center for State Courts (NCSC).  That study, like the 

famous Kalven-Zeisel study, showed only modest judge-jury agreement. Simple estimates 

of jury accuracy can be developed from the judge-jury agreement rate; the judge’s verdict 

is not taken as the gold standard.  Although the estimates of accuracy are subject to error, 

under plausible conditions they tend to overestimate the average accuracy of jury verdicts.  

The jury verdict was estimated to be accurate in no more than 87% of the NCSC cases 

(which, however, should not be regarded as a representative sample with respect to jury 

accuracy).  More refined estimates, including false conviction and false acquittal rates, are 

developed with models using stronger assumptions.  For example, the conditional 

probability that the jury incorrectly convicts given that the defendant truly was not guilty (a 

“type I error”) was estimated at 0.25, with an estimated standard error (s.e.) of 0.07, the 

conditional probability that a jury incorrectly acquits given that the defendant truly was 

guilty (“type II error”) was estimated at 0.14 (s.e. 0.03), and the difference was estimated at 

0.12 (s.e. 0.08).  The estimated number of defendants in the NCSC cases who truly are not 

guilty but are convicted does seem to be smaller than the number who truly are guilty but 

are acquitted.  The conditional probability of a wrongful conviction, given that the 

defendant was convicted, is estimated at 0.10 (s.e. 0.03). 
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I.  INTRODUCTION 

 

Although it has long been known that juries sometimes make incorrect decisions 

(Borchard 1932), researchers have devoted relatively little attention to quantifying the error 

rate for jury verdicts.  The reasons for jury error are many, and can include misleading or 

incomplete evidence or testimony and failures in reasoning relating to complexity of 

evidence or the law.1  Use of DNA analysis after the trial has shown that incorrect 

decisions were made by juries even in cases where the death penalty was assigned.  Yet, 

such direct assessments of accuracy are not possible on a wide scale because only 

atypically is the correct verdict known, and it is difficult to generalize from those cases to 

the more typical cases where the correct verdict is not knowable.  Fortunately, statistical 

methods can be used to estimate the average accuracy of jury verdicts if a second 

assessment of the cases is available.  In the field of sample surveys, it is commonplace to 

estimate sampling accuracy even though the true value is not observed – the key is to use 

replication.  A similar approach can be taken to estimate the accuracy of jury verdicts 

when “replications” such as a judge’s decision on the cases are available.  Although 

judges’ verdicts are not routinely known, they have been recorded and studied in the 

famous work by Kalven and Zeisel (1966), The American Jury, and much more recently in 

the study of hung juries by the National Center for State Courts (NCSC), described in 

Hannaford-Agor et al. (2003). 

 

Jury accuracy refers to the average probability for a set of cases that the jury verdict is, in 

some sense, correct.  “Correct” can be interpreted in a variety of ways.  A “procedural 

viewpoint” considers a “correct” decision to be one which applies the legal standards 

correctly: if proof is not demonstrated to the standards prescribed by the law, the 

defendant should be acquitted.2  Thus, if a person tried for a crime truly committed the 

crime, but the evidence was lacking, the procedurally correct decision would be acquittal.  

This interpretation was adopted by S. D. Poisson (1837) in his early analysis of jury error; 

reviewing his work, Gelfand and Solomon (1973, 272) characterize the jury’s responsibility 
                                                 
1 In Speiser v. Randall, 357 U.S. 513, 525, the Supreme Court observed: "There is always in 
litigation a margin of error, representing error in factfinding . . ." The incompetence and/or 
inattention of judges and juries (drunk, asleep, poorly educated, bored) or the bias (racial prejudice, 
religious beliefs, social class bias, political views) are obviously also factors. 
2 'The meaning of "correct" application of legal standards is not perfectly obvious.  Not only is the 
law rife with unsettled legal issues, but even bedrock, established principles such as the "beyond a 
reasonable doubt" standard are subjective in application. 
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as deciding whether the defendant is “convictable” rather than guilty.  An alternative, 

“omniscient viewpoint”, holds that the correct decision is the one that would be reached by 

an impartial and rational observer with perfect information (including complete and correct 

evidence) and complete understanding of the law.  If the defendant committed the crime, 

the correct decision is guilt, regardless of the strength of evidence. Although this definition 

of correct decision could be ambiguous in certain settings involving legal complexities, 

where even experts would disagree, in many applications it could be precise enough.  This 

perspective has the advantage of being defined independently of the evidence and 

courtroom presentations, and conforms to popular notions of justice.   

 

The rate of agreement between jury’s verdict and judge’s verdict provides an important 

indicator of jury accuracy.  As discussed in Section II, the agreement rates for criminal 

cases excluding hung jury cases are similar for the Kalven-Zeisel and NCSC studies, at 

just under 80%.  Such an agreement rate is not cause for complacency, given that 

agreement by chance alone would exceed 60% for each study.   

 

In this paper we show that an estimate of jury accuracy can be derived from the observed 

agreement rate even when the correct verdict is unknown.  In Section III, an estimator of 

jury accuracy is developed that has three components of error, survey error from 

estimating the agreement rate, specification error arising because differential accuracy 

between judge and jury is not observed and the dependence between judge and jury 

verdicts is not known, and identification error arising because we cannot distinguish 

correct agreement from incorrect agreement.  The specification error will be one sided, 

leading to overestimates of jury accuracy, provided that two conditions hold: (i)  errors in 

the judge’s and jury’s verdicts for a case are either statistically independent or positively 

dependent, and (ii) the judges’ verdicts are no less accurate on average than the juries’, 

even though for individual cases the judge’s verdict may be incorrect when the jury’s 

verdict is correct.  The identification error is similarly one-sided, always.  From the 

observed agreement rates, the probability of a correct verdict by the jury is estimated at 

87% for the NCSC cases and 89% for the Kalven-Zeisel cases.  Those accuracy rates 

correspond to error rates of 1 in 8 and 1 in 9, respectively.  The accuracy rates apply to 

both the “procedural” and the “omniscient” interpretations of correct verdict noted earlier.  

Caveat: the NCSC cases were not chosen with equal probabilities as a random sample, 

and the estimates of accuracy should not be generalized to the full caseload in the four 



 3

jurisdictions let alone to other jurisdictions.  The “optimistic” property of the estimator of 

accuracy holds under both interpretations of accuracy (process or outcome) so long as the 

conditions on dependence and differential accuracy of judge and jury apply.   

 

Two types of errors can be made in a criminal trial:  an innocent person can be convicted 

or a guilty person can be found not guilty.  In the language of statistical hypothesis testing, 

with innocence as the “null hypothesis”, the former is a type I error and the latter is a type 

II error.  That is, the jury commits a type I error if it convicts a person who truly is not guilty, 

and it commits a type II error if it acquits a person who truly is guilty.  The U.S. Constitution 

in effect requires that type I error rates be kept low, and type I errors are viewed as far 

worse than type II errors.3  Estimates of type I and type II error rates are developed with 

statistical models that explicitly allow for latent (unobserved) states for the correct verdict 

(guilty, not guilty).  Such an analysis was carried out by Gastwirth and Sinclair (1998, 

2004) for burglary and auto-theft cases in Kalven-Zeisel study, using the Hui-Walter  

(1980) methodology and invoking the assumption that the probabilities of type I and type II 

errors did not vary by type of crime.  In estimating probabilities of type I and type II errors 

in the NCSC cases, we exploit the availability of assessments of the strength of evidence 

(Section IV) in the NCSC cases and avoid the assumption of constancy of error rates by 

type of crime.  The analysis suggests, subject to limits of sample size and possible 

modeling error, that juries in the NCSC cases may have higher type I error rates than type 

II error rates but, since the correct verdict is more often “guilty” than “not guilty”, the juries 

                                                 
3 The leading case on the standard of proof in criminal cases, In re Winship, 397 U.S. 358 (1970), 
holding that the "reasonable doubt" standard is constitutionally-required, makes some observations 
on probabilities and the costs of error. The majority opinion by Justice Brennan, referring to 
reasonable doubt, says: 
  

It is a prime instrument for reducing the risk of convictions resting on factual error. 
The standard provides concrete substance for the presumption of innocence-that 
bedrock ‘axiomatic and elementary’ principle whose ‘enforcement lies at the 
foundation of the administration of our criminal law.’ . . .  

   
Justice Harlan’s concurring opinion observes:  
  

In a civil suit between two private parties for money damages . . . we view it as no 
more serious in general for there  to be an erroneous verdict in the defendant’s favor 
than for there to be an erroneous verdict in the plaintiff’s favor . . .  In a criminal case, 
on the other hand, we do not view the social disutility of convicting an innocent man 
as equivalent to the disutility of acquitting someone who is guilty. . . In this context, I 
view the requirement of proof beyond a reasonable doubt in a criminal case as 
bottomed on a fundamental value determination of our society that it is far worse to 
convict an innocent man than to let a guilty man go free.  
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commit fewer type I errors than type II errors.  Analysis also suggests that the judge is 

more accurate overall by a small amount, but the juries have smaller type I error rates than 

the judges.  (Section V) 

 

The importance of the accuracy of jury verdicts has long been known, but the possibility of 

estimating their accuracy on a large scale does not appear to have been widely 

appreciated. More empirical studies could be conducted to estimate and compare 

accuracy rates over time, across jurisdictions, for different kinds of cases, for consistency 

between demographic characteristics of defendant and jury, etc.  Recommendations for 

future work are presented (Section VI). 

 

 

II. MEASURING JUDGE-JURY AGREEMENT 

 

Empirical studies of  rates of agreement on verdict between judge and jury include the 

classic The American Jury by Kalven and Zeisel (1966), covering more than 3500 trials in 

47 states and Washington D.C. in 1954-1955 and 1958 and a recent study by Eisenberg 

et al. (2005) comparing the Kalven-Zeisel data with the NCSC data.  The NCSC data 

came from a convenience sample of four metropolitan areas chosen for various reasons: 

Los Angeles and Washington D.C. chosen because they had high rates of hung juries, 

Maricopa County (which includes Phoenix) in Arizona because it used an innovative 

procedure to allow judges to avoid hung juries, and the Bronx because it had a high 

volume of cases.  The NCSC study produced judge and jury data on 290 non-hung-jury 

trials for noncapital criminal cases in 2000-2001, selected with unequal rates from the four 

jurisdictions.  The unequal sampling rates imply that the results for the NCSC sample 

cases should be weighted if they are to generalize to the full caseload in the four 

jurisdictions.  No such weighting is employed in the present analysis, and the statistical 

inferences do not extend outside the cases in the NCSC study.4  The studies are important 

in that they surveyed the judges concerning their beliefs about the cases.  Judges were 

asked, among other things, “If you had decided this case in a bench trial, would you have 

                                                 
4 Sampling weights were not available.  Sampling weights can be developed if sufficient information 
about the sampling rates and participation rates is available, but such information needs to be 
developed as the sample design is implemented and the survey is fielded.  Future judge-jury 
agreement studies should be designed to provide sampling weights. 
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rendered a verdict for the prosecution or for the defense?”  For detailed discussion of the 

data see Eisenberg et al. (2005) and Hannaford-Agor et al. (2003).5   

 

The overall rate of agreement between judge and jury, say !̂,  is 0.80 for criminal cases 

studied by Kalven and Zeisel and is 0.77 for the NCSC cases.  Those agreement rates are 

quite modest compared to what one would get by chance.  The rate of agreement one 

would get by chance is 0.62 (the same value for each dataset), given the observed 

proportions of cases classified by the judge as guilty or not guilty and the corresponding 

proportions by jury.6  A chance-corrected measure of agreement is Cohen’s “kappa” 

statistic, ",  which ranges from -1 (complete disagreement) to 0 (agreement at chance 

level) to +1 (perfect agreement).  The values of "  for the Kalven-Zeisel data and NCSC 

data are 0.47 and 0.38, which Fleiss (1981, 218) interprets as showing only fair to poor 

agreement beyond chance. 

 

 

                                                 
5 The NCSC study asked questions about a variety of counts, and the overall classification of the 
outcome as “guilty” or “not guilty” involved a number of steps.  The classifications used here are 
based on the coding for the Eisenberg et al (2005) analysis.  The instructions were kindly provided 
by Professor T. Eisenberg. 
6 To calculate the rate of chance agreement, say !chanceˆ , treat the guilty and not guilty rates for judge 
and for jury as fixed and consider classifications by judge and jury to be independent. E.g., the 
Kalven-Zeisel data in Table 1 give chanceˆ 0.321 0.165 0.679 0.835 0.62! # $ % $ # .  
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Table 1:  Distributions of Judge-Jury Agreement, Excluding Hung Jury Cases 

 

      Jury:  Not Guilty  Jury:  Guilty 

 

A.  Kalven and Zeisel Data 

Judge:  Not Guilty     14.2%      2.3% 

Judge:  Guilty      17.9%    65.6% 

 

B.  NCSC Data 

Judge:  Not Guilty     12.8%      5.5% 

Judge:  Guilty      17.6%    64.1% 

 

Note:  Panel A derives from the Kalven and Zeisel data, excluding hung jury cases (5.5% 

of cases).  Numbers computed from Eisenberg et al. (2005, Table 2).  Panel B is based on 

the NCSC data on 290 trials without hung juries.  Proportions were computed from counts 

in Eisenberg et al. (2005, Table 3).   

 

 

III. ESTIMATING ACCURACY FROM AGREEMENT 

 

A. The Relationship between Agreement and Overall Accuracy for the Jury 

 

The choices of verdicts by judge and jury can be represented by a simple yet 

comprehensive model. First we define notation. Consider a study having N  cases with a 

different jury for each case.  For case i  the judge’s probability of choosing a correct 

verdict is A
ip , the jury’s probability of choosing the correct verdict is B

ip .  Depending on 

one’s perspective, the values of A
ip  and B

ip  could all be 0 or 1, but they do not need to be.   

The probability that the judge and jury choose the same verdict (correctly or not) is !i .   

 

Kruskal (1988) cautioned against casually assuming independence holds.  If the judge and 

the jury for a case were to choose their verdicts independently, the probability of 

agreement would be & ' & '% ( (1 1 .A B A B
i i i ip p p p  The choices could be dependent, however, 

because both judge and jury are presented with the same courtroom evidence and to 
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some extent are subject to common community pressures and biases.  The difference 

between the actual probability of agreement and the probability that would hold if the 

choices were independent is denoted by ) ,i  that is, & ' & ') !# ( ( ( (1 1 .A B A B
i i i i i ip p p p 7  

Denote the averages for the N  cases in the study by  / ,A A
ii

p p N# *  / ,B B
ii

p p N# *  

/ ,ii
N! !# * / ,ii

N) )#*  and denote the differential accuracy between judge and jury 

by .A Bp p+ # (   If case i  is unusually difficult (or easy), one might find that both A
ip  and 

B
ip  are lower (or higher) than average.  To clarify this concept, define the covariance 

between judge’s and jury’s probability of being correct as & ' & ' / .A A B B
AB i ii

p p p p N, # ( (*   

In contrast to ,)  which reflects within-case dependencies for a verdict conditional on the 

probabilities of being correct, AB,  reflects linear dependence of the judges’ and juries’ 

probabilities of being correct.  Define the parameter -  to reflect the more general 

dependence, 2 .AB- ) ,# %   

 

The relation between the agreement rate and jury accuracy is shown explicitly by the 

mathematical identity  

 

! + - +# % ( % % (22( ) 2( 1) 1 .B Bp p      (1) 

 

This equation allows us to interpret -  as the excess agreement that is expected when 

independence is not present.  Equation (1) must be satisfied by any set of Bp , ! , - , and 

+  that occur in practice.  Not all values can occur; it is necessary that agreement be 

bounded below, ! - +. % ( 2(1 ) / 2.    

 

We can solve (1) for  the jury accuracy rate Bp  but in doing so we confront an 

“identification problem” (Manski 1995).  The problem arises because agreement occurs 

when the judge and jury are both correct or are both incorrect, and unless we use outside 

knowledge we cannot know  whether agreement occurs mostly because judge and jury 

                                                 
7 The parameter )i is Lehmann's (1966) measure of positive quadrant dependence for a two-by-two 
table that shows correct or incorrect decision by judge and jury. If the probabilities A

ip , B
ip , and !i  

take only the values 0 or 1, then ) # 0.i  



 8

both tend to be correct or both tend to be incorrect. That is, on the basis of agreement 

alone we cannot distinguish jury accuracy, ,Bp  from inaccuracy, (1 .Bp     

We can represent the identification error mathematically.  Equation (1) is quadratic in ,Bp  

with roots, & '+ ! - +# ( ( ( ' ( % 2.5 1 2( 1B
lowp  and & '+ ! - +# ( % ( ' ( % 2.5 1 2( 1B

highp .  

At least one of the roots must be between 0 and 1 because Bp  must equal one of the 

roots and / /0 1.Bp  The root B
highp  is the same distance above +( '.5(1  as the root B

lowp  

is below.  To resolve the dilemma of which root equals ,Bp  we will choose the larger root 

constrained to not exceed 1, namely 0 1min ,1B
highp , knowing that jury accuracy may be 

overstated.  The overstatement is equal to the identification error, defined here as 

0 1 (min ,1 .B B
highp p   The identification error is non-negative.  If Bp  is actually equal to B

lowp , 

then Bp  does not exceed either B
highp or 1 and so the identification error is positive.  The 

only other alternative is that Bp  is equal to the larger root, and in that case the 

identification error is 0. 

 

B.  An Estimator of Jury Accuracy 

 

To obtain an estimator of jury accuracy, we substitute the observed agreement rate !̂  for 

!  in the formula for B
highp  and constrain the result so that it conforms to constraints on Bp .  

(Thus, the estimator may not exceed 1 nor may it fall below the value that would result  !  

were equal to its lower bound of - +% ( 2(1 ) / 2. )  The estimator may be written as an 

explicit function of !̂ , - , and+ ,  

 

       

+ ! -

! - + + ! - + + ! - +

+ ! - +

% 2 (3
44# ( % ( ' ( % ( / ( / %5
4 ( ( 2 (46

2 2

2

ˆ1 if 1

ˆ ˆ ˆ( , , ) 0.5(1 2( 1 )  if (1 ) / 2 1  

ˆ0.5(1 )                     if (1 ) / 2.

f    (2) 

 

If we do not know the values of +  and - , we set them to 0 in (2).  Our estimator of Bp  for 

the NCSC data and Kalven-Zeisel data is thus !#ˆ ˆ( ,0,0).Bp f   
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The estimator ˆBp  is subject to three kinds of error, identification error, survey error and 

specification error.  Identification error can be shown to equal ! - + (( , , ) .Bf p   Survey error 

includes sampling error, nonresponse error, response error, data processing error, and all 

other errors that may cause !̂  to differ from !.  The survey error is equal to 

! - + ! - +(ˆ( , , ) ( , , ).f f   The specification error is equal to ! ! - +(ˆ ˆ( ,0,0) ( , , )f f  and reflects the 

incorrect choices of +  and - .  The total error in the estimate is ! (ˆ( ,0,0) Bf p , which 

equals the sum of identification error, survey error, and specification error. 

 

The following considerations make it plausible that specification error is non-negative and, 

as a result, that the estimator ˆBp  tends to overstate accuracy.  The consequences of 

using the wrong value of -  are easily seen, because mathematically ! - +ˆ( , , )f  decreases 

or remains the same as -  increases.  For substantive insight, consider the two 

components of - ) ,# % . 782 AB  The common environment and overlap in exposure to 

evidence and questioning make it plausible that .) . 7  Although i)  could be negative for 

cases where juries perceive the judges’ preferences for a particular verdict and react in the 

opposite direction, that is probably the exception rather than the rule.  It is also plausible 

that, on average, cases that are more difficult for the judge are also more difficult for the 

jury, and thus , . 0.AB   Together, these casual observations suggest that - . 7  for both 

the “procedural” and the “omniscient” interpretations of correct verdict (Section I).  The 

consequences of using the wrong value of +  are also easily seen, because  ! - +ˆ( , , )f  

decreases or remains the same as +  increases.  It is plausible that even though some 

judges’ verdicts less accurate than some juries’, the judges are more accurate on average, 

both for statistical and non-statistical reasons.  Statistical analyses discussed in Section 

V.B yielded estimates of +  of 0.02 and 0.05 for the NCSC cases, with standard errors 

respectively estimated at 0.06 and 0.05.  Similarly, Gastwirth and Sinclair (1998, 63) 

estimated +  to be 0.17 for burglary and 0.15 for auto-theft cases in the Kalven-Zeisel 

study.  Judges may have more information about the defendant and see more evidence 

than juries, further supporting the plausibility of + . 0  for the “omniscient” interpretation of 

correct verdict.  Judges’ greater experience and knowledge of the law also support the 

plausibility of + . 0  for the “procedural” interpretation of correct verdict. Thus, it is 
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plausible that both - . 7  and + . 0  and hence specification error is non-negative.8  We 

also know that identification error is non-negative.  It is plausible, then, that together the 

identification error and specification error contribute an upward bias (if any) in ˆBp  and, if 

the observed agreement rate !̂  has expected value approximately equal to the actual rate 

! , the estimator ˆBp  will if anything tend to overstate accuracy (under either the 

“procedural” or “omniscient” interpretation of correct verdict).  

 

C.  Empirical Estimates of Jury Accuracy 

 

Estimates of jury accuracy based on ˆBp  are 0.87 for the NCSC cases and 0.89 for the 

Kalven-Zeisel cases.  These are optimistic estimates if, as discussed above, the judge is 

at least as accurate as the jury + . 7'(  and the dependence is non-negative - . 7'( .  

Table 2 shows those estimates along with estimates based on alternative choices of +  

and -  in (2).  For example, if + # 0.10  and - # 0 , the estimates of accuracy drop by 

about 0.05 for both the NCSC and the Kalven-Zeisel cases, to 0.82 and 0.84, respectively. 

The probability of correct decision by judge is obtained by adding +  to probability for jury. 

 

                                                 
8 If + 2 0  but - . 0  for a set of cases,  ˆBp  provides an optimistic estimate of the judges’ accuracy. 
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  Table 2:  Alternative Estimates of the Probability of a Correct  

  Jury Decision, Given that the Jury Reached a Decision. 

+
- # 7'(

 

 
-

+ # 7'(  
ˆ 0.769! #  

(NCSC) 

ˆ 0.798! #  

(Kalven-Zeisel) 

-0.25 -0.250 1.00 1.00 

-0.20 -0.200 0.98 1.00 

-0.10 -0.090 0.92 0.94 

 0.00    0.000  0.87 0.89 

 0.10  0.065 0.82 0.84 

 0.20  0.115 0.78 0.80 

 0.25  0.137 0.76 0.78 
 

  Note:  Estimates of probabilities are based on (2).   

 

It is remarkable and perhaps important to note that the two datasets lead to such similar 

ˆBp  estimates despite the wide separation in time, the growth in the use of plea bargaining 

to reduce caseload, different demographic mixes of defendants, changes in available 

prison space.  Whether this similarity indicates a coincidence or a stability or robustness of 

the judicial system is unclear, however, as the geographic areas differed between the two 

studies and the sample selection processes differed; see Eisenberg et al. (2005, 173) for 

further discussion. 

 

D.  Considerations of Sampling Error and Generalizability 

 

It is not easy to generalize empirical findings of accuracy for the NCSC and Kalven-Zeisel 

studies to other sets of cases, past or current.  The sample sizes in the NCSC study were 

not proportional to caseloads in the jurisdictions and analyses from the 290 cases should 

not be generalized to all cases in the four areas unless either weighting or statistical 

controlling for area is used.  In the current analysis, we do not seek to generalize to the full 

caseload for the four jurisdictions in the NCSC study.  Furthermore, the four jurisdictions 

were not chosen to be representative of all jurisdictions, and generalization beyond the 

four jurisdictions in the study is not justified.  In order to generalize from the NCSC study, 
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one would need additional studies showing similar results, so that one could feel some 

confidence that the accuracy rates were stable.   

 

Although the data for the studies cannot be viewed as coming from a random sample of n  

cases, we can still get some insight into sampling variability by calculating the standard 

error as if simple random sampling had been used.  A convenient method for estimating 

the standard error for a statistic calculated from a simple random sample is the jackknife 

method, which omits one case at a time, recalculates the statistic of interest, and 

estimates the standard error as the square root of 1 1/ n(  times the sum of squared 

deviations of the resulting values about their average (Efron and Tibshirani 1993, 136).  

The estimated standard error for ˆBp  is less than 0.01 for the Kalven-Zeisel data and less 

than 0.02 for the NCSC data.  These standard errors may be viewed as providing 

optimistic bounds on the variation one might get from replicating the studies under similar 

conditions.  If one had random samples of judges, one would calculate the jackknife 

estimate of standard error by omitting the data from one judge at a time; such estimates of 

standard error tend to be larger than those computed under the assumption of simple 

random sampling of cases.  In any event, the standard errors are only suggestive for the 

estimates from the Kalven-Zeisel and NCSC studies, since random sampling was not 

used to develop the studies.  Nor do the standard errors reflect the effect of nonresponse 

or other nonsampling errors.  Rather, the standard errors can be used as measures of the 

sensitivity of the estimates to changes in the data. 

 

 

IV. STRENGTH OF EVIDENCE  

 

A decision by the judge or jury to acquit could indicate belief that the defendant did not 

commit the crime or, alternatively, it could indicate that proof was not demonstrated 

beyond a reasonable doubt.  A possible way to distinguish between the two is to classify 

cases according to the strength of evidence. Question 12 of Sample II (Kalven and Zeisel 

1966, 532) asked the judge.  

 
From the factual evidence in the case was the defendant’s guilt or innocence  
1 ! very clear? 
2 ! a close question whether or not he was guilty beyond a reasonable doubt? 
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Looking at a subset of Kalven-Zeisel data, Gastwirth and Sinclair (2004, 171-172) found 

that judge and jury agreed in 614 of 675 cases where the judge rated the evidence “clear” 

but agreed in only 307 of 516 cases where it was “close”, so the odds of agreement were 

almost 7 times greater for the clear cases than the close cases.   

 

The NCSC study asked jurors and judges to mark an answer on a 7 point scale to the 

following question.   

 
All things considered, how close was this trial? 

                   1  2  3  4  5  6  7 

Evidence strongly favored prosecution       O O O O O O O      Evidence strongly favored defense 

 

We follow Eisenberg et al (2005, 186) in interpreting the response as an assessment of 

the net strength of evidence for conviction, where a response of 1-2 indicates strong, 3-5 

indicates medium, and 6-7 indicates weak evidence for conviction.  The interpretation is 

reasonable but not perfect – a respondent who perceived the both sides’ evidence as 

weak might be inclined to mark a middle box (3 or 4), which we would misinterpret as 

medium evidence.  In this sense, the Kalven-Zeisel question seems clearer.  Further, the 

strength of evidence is reported for the trial as a whole and not necessarily for the count 

relating to the verdict being analyzed.  Jurors on the same case varied in their ratings.  To 

obtain a single jury rating of evidence for a case, we used the averages of the jurors 7-

point scale ratings as calculated by Eisenberg et al (2005).  The judge’s and jury’s 

assessments of the evidence as strong, medium, or weak matched only 56% of the time, 

and agreement was poor as indicated by 0.22" #  (Underlying data are in Eisenberg et al 

(2005, Table 3) and in Table 3, below).  It is plausible that the evaluations of evidence are 

comparative and that judges and juries compare to different standards.  It can be argued 

that evidence of guilt in most criminal cases is strong because prosecutors want to keep 

their conviction rates high and will avoid going to trial with weak evidence.  Judges see 

several (often many) criminal cases.  Therefore, a case rated weak may nonetheless have 

evidence of guilt that is legally sufficient.  Figure 1 shows that judges convicted in 98% of 

the 112 cases they rated as having strong evidence for conviction, they convicted in more 

than three quarters (78%) of the 149 cases they rated as having medium evidentiary 

strength, and they convicted in one quarter (26%) of the 25 cases where they rated the 

evidence for conviction as weak.  The basis for jurors’ comparative judgments about 
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evidence is less clear (television?), and juries convicted in 88% of the 96 cases they rated 

as having strong evidence for conviction, they convicted in 60% of the 148 cases they 

rated as having medium evidentiary strength, and they convicted in 22% of the 29 cases 

where they rated the evidence for conviction as weak.  The data on strength of evidence is 

critically important for fitting statistical models with latent classes, as discussed in the next 

section. 

 

Figure 1.  Conviction Rates in NCSC Cases by Judges’ and Juries’ Assessments of 

Strength of Evidence for Conviction.   
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V.  PROBABILITY MODELS WITH LATENT CLASSES 

 

A. Log-linear Models 

 

The correct or true (but unobserved) state of a case will be denoted by ,U  the decision or 

classification by the judge will be denoted by ,A  and that by the jury by .B   Each of ,U ,A  

and B  can take the values 0,1,  corresponding to “not guilty” and “guilty”, respectively.   

The judge’s assessment of evidentiary strength is denoted by C  and the jury’s by D ; 

each of C and D  can take values 1 (weak), 2 (medium), and 3 (strong).  Table 3 provides 

the empirical frequency distribution of cases by attribute patterns including evidentiary 

strength. 

 

         Table 3:  Distribution of NCSC Cases by Observed Attribute Patterns 

 
Count 

 
A 

 
B 

 
C 

 
D 

   
Count 

 
A 

 
B 

 
C 

 
D 

         
7 0 0 1 1   0 1 0 1 1
6 0 0 1 2   0 1 0 1 2
0 0 0 1 3   0 1 0 1 3
8 0 0 2 1   6 1 0 2 1

15 0 0 2 2   26 1 0 2 2
0 0 0 2 3   1 1 0 2 3
0 0 0 3 1   2 1 0 3 1
0 0 0 3 2   11 1 0 3 2
0 0 0 3 3   1 1 0 3 3
1 0 1 1 1   0 1 1 1 1
2 0 1 1 2   3 1 1 1 2
2 0 1 1 3   2 1 1 1 3
1 0 1 2 1   1 1 1 2 1
7 0 1 2 2   41 1 1 2 2
1 0 1 2 3   36 1 1 2 3
0 0 1 3 1   2 1 1 3 1
1 0 1 3 2   36 1 1 3 2
0 0 1 3 3   52 1 1 3 3

 
A is judge’s classification as guilty (1) or not guilty (0) and B is jury’s.  C is judge’s 
assessment of strength of evidence (1 = weak, 2 = medium, 3 = strong) and D is 
jury’s assessment. 
  

 

We will consider various probabilities.  Generally, the notation X
xp  will denote the 

probability that ,X x#  XY
xyp  will denote the probability that both X x#  and ,Y y#  and 
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X Y
x yp !
!  will denote the conditional probability that X x#  given that .Y y#   Thus, the 

probability that U u#  is denoted by U
up , for 0,1U # , and we have 0 11 .U Up p# %  Note that 

U
up  depends on the mix of cases.  The conditional probability that A a#  given U u#  is 

denoted by A U
a up !
! , the conditional probability that B b#  given U u#  is denoted by !

! ,B U
b up  

and the conditional probability that A a#  and B b#  given that U u#  is denoted by .AB U
a b up !
!   

The probability that the judge’s decision is correct for a case with correct status u  is ,A U
u up !
!  

and the corresponding probability that the jury’s decision is correct is .B U
u up !
!  Thus, the 

probabilities of type I errors are 1 0
A Up !
! and 1 0 ,B Up !

!  and the probabilities of type II errors are 

0 1
A Up !
! and 0 1 .B Up !

!  These probabilities are related to the overall probabilities of correct 

decision defined in Section III.A,  0 0 0 1 1 1
A A U U A U Up p p p p# %! !

! !  and  0 0 0 1 1 1 .B B U U B U Up p p p p# %! !
! !   

  

Table 3 showed attribute patterns involving the four observable attributes, , , , ;A B C D   we 

want to consider the unobserved attribute U  as well.  The probability that case i  has  the 

set of attributes & ', , , ,i i i i iU A B C D  equal to & ', , , ,u a b c d  is denoted by U ABCD
u a b c d ip .  There are 

72 possible patterns of attributes, allowing for true state .U   We approximate the 

probability that a case has one of the 72 possible patterns of attributes by a hierarchical 

log-linear model of the form  

 

  
log

.

U ABCD U A B C D UA UB
u a b c d i u a b c d ua ub

UC UD AC BD CD UAC UBD
uc ud ac bd cd uac ubd

p 9 : : : : : : :

: : : : : : :

# % % % % % % %

% % % % % % %
  (3a) 

 

Use of log-linear models to model agreement is not new (Agresti 1992; 2002); the idea is  

that the logarithm of the expected proportion of cases with a given an attribute pattern can 

be represented by a linear regression model.  We impose the conventional constraints 

(Haberman 1979; 1988, p.196)  U
u

u
: #*  A

a
a
: #* UA

ua
u
:# #*"   

UA
ua

a
: #* 0.UBD UBD UBD

ubd ubd ubd
a b d
: : :# # # #* * *"  The constraints do not affect the estimates 

of the probabilities.  The interaction parameters UA
ua:  and UB

ub:  explicitly allow for 

dependence of the judge’s classification and the jury’s classification on the true state.  

Similarly, the parameter AC
ac:  allows for dependence between the judge’s classification and 
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judge’s rating of the strength of evidence and BD
bd:  allows for analogous dependence on 

the jury side; the parameters UAC
uac:  and UBD

ubd:  allow that dependence to vary with the true 

state .U   The parameter CD
cd:  allows for dependence between the judge’s rating and the 

jury’s rating of the strength of evidence. The model assumes that the judge’s verdict ( A ) is 

conditionally independent of the jury’s verdict ( B ) given the assessments of strength of 

evidence ( ,C D ) and the true state .U   Note that this is an oversimplification, in that it 

ignores dependence induced by strong but misleading evidence, for example.  

Assignments of attributes to cases are assumed to occur independently across cases.   

The model was fitted to the data in Table 3 using the DNEWTON program of Haberman 

(1988); standard errors were obtained by jackknifing one case at a time, as discussed in 

Section III.D.  

 

The limited sample size of the NCSC data, especially in the context of latent class models 

such as (3a), can lead to large standard errors for estimates of probabilities of interest.  

For the data at hand, we can attempt to obtain smaller standard errors by looking at sub-

models of (3a) – i.e., models obtained by restricting additional parameters in (3a) to be 

zero – that fit the data in Table 3 about as well as (3a) despite having fewer parameters.  

A simplified version of model (3a) omits three-way interactions among the true state, 

judge’s classification, and judge’s assessment of strength of evidence and among the true 

state, jury’s classification, and jury’s assessment of strength of evidence.  That is, the 

model is given by (3a) but with the restrictions that 

 

     0.UAC UBD
uac ubd: :# #     (3b) 

 

Under this model, the standard errors of the estimates decrease or remain the same, while 

the overall fit to Table 3 is almost as close as for model (3a).  In light of model checking 

discussed below, the model (3b) may be viewed as providing estimates that are not any 

more biased than those under model (3a).  Although this statement may seem weak, the 

fact is that no model will be perfectly correct, and hence estimates from any model may be 

biased to some degree.  Three other sub-models of (3a) were considered, labeled (3c)-

(3e), along with an additional model, labeled (4), that included an additional latent variable 

for strength of evidence; none of those models was found to be satisfactory for the NCSC 

data, as discussed in Section V.D, below. 
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B.  Estimated Probabilities of Correct Verdict 

 

Table 4 summarizes the results of fitting the various models.  The estimates of 

probabilities should be considered only for models (3a) and (3b); results for the other 

models are presented for completeness, because the models might be relevant for future 

datasets.  The estimated probability of a correct decision by the jury ( ˆBp ) ranges from 0.83 

(0.03) to 0.85 (0.04); estimated standard errors are in parentheses.  The estimated 

probability of correct decision by the judge ( ˆ Ap ) is slightly higher, ranging from 0.87 to 0.88 

with estimated standard errors of 0.04.  The estimated difference in accuracy rates, 

ˆ ˆB Ap p( , is alternatively estimated at  0.02 (0.06) and 0.05 (0.05) under models (3a) and 

(3b), respectively.  Overall, the data suggest, that Bp  for the NCSC study is around 84% 

and that the judges are a bit more accurate on average than the juries.  Given the 

limitations of the data, standard errors, and the uncertainty of the model specifications, the 

estimates cannot be viewed as conclusive.  Recall from Section III.D that the standard 

errors are based on an assumption of simple random sampling, which might yield 

standard errors that are too small. 

 

The jury appears to be more accurate than the judge when the true verdict was not guilty 

( 0 0 0 0ˆ ˆB U A Up p;! !
! ! ), although the standard errors are relatively large; the estimates of 

0 0 0 0ˆ ˆB U A Up p(! !
! !  under (3a) and (3b) are 0.19 (0.12) and 0.12 (0.10), respectively.  The 

estimates tentatively suggest that the type I error rate is lower for juries than judges.  

Conversely the judge appears to be more accurate when the true verdict was guilty 

( 1 1 1 1ˆ ˆA U B Up p;! !
! ! ); the estimates of 1 1 1 1ˆ ˆA U B Up p(! !

! !  are, respectively, 0.09 (0.05) and 0.12 (0.04).9  

These findings are not unexpected in light of the data in Table 1 showing juries more likely 

to acquit and judges more likely to convict. 
 

From the preceding estimates, it appears that type I error rates could be higher than type II 

error rates.  For example, the jury’s type I error rate is 1 0 0 0ˆ ˆ1B U B Up p# (! !
! !  and the jury’s type II 

                                                 
9 These standard error estimates are smaller than those for 0 0 0 0ˆ ˆB U A Up p(! !

! !  because the latter is based 
on a smaller effective sample size, since 0ˆ

Up /  0.28. 
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error rate is 0 1 1 1ˆ ˆ1B U B Up p# (! !
! ! , so the difference, type I error rate minus type II error rate, is 

estimated under the two models as 0.08 (0.09) and 0.12 (0.08), respectively.  If real, this 

finding runs counter to beliefs that juries should have higher type II error rates than type I.  

However, we estimate that juries commit fewer type I errors type II errors.  The distinction 

occurs because the estimates suggest that almost 3/4 of the defendants actually are guilty 

– models (3a) and (3b) estimate the proportion of cases that truly are not guilty as 0.27 

(0.05) and 0.28 (0.04), respectively.   
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Table 4.  Estimates of Probabilities Under Various Log-linear Models. (Estimated standard 

errors in parentheses)  

model  

statistic (3a) (3b) (3c) (3d) (3e) (4) 

0ˆ
Up  0.27 (0.05) 0.28 (0.04) 0.15   (0.03) 0.31 (0.04) 0.94   (0.17) 0.31 (0.12)

1ˆ
Up  0.73 (0.05) 0.72 (0.04) 0.85   (0.03) 0.69 (0.04) 0.06   (0.17) 0.69 (0.12)

ˆ Ap  0.87 (0.04) 0.88 (0.04) 0.91   (0.01) 0.86 (0.03) 0.25   (0.16) 0.85 (0.09)

ˆBp  0.85 (0.04) 0.83 (0.03) 0.82   (0.03) 0.85 (0.03) 0.34   (0.09) 0.83 (0.02)

ˆ ˆA Bp p(  0.02 (0.06) 0.05 (0.05) 0.09   (0.03) 0.01 (0.04) -0.09   (0.08) 0.02 (0.01)

0 0ˆ A Up !
!  0.61 (0.09) 0.63 (0.09) 0.85   (0.05) 0.57 (0.07) 0.20   (0.04) 0.57 (0.19)

1 1ˆ A Up !
!  0.97 (0.03) 0.98 (0.02) 0.93   (0.02) 0.99 (0.01) 0.99   (0.01) 0.98 (0.02)

0 0ˆ B Up !
!  0.80 (0.09) 0.75 (0.07) 0.94   (0.01) 0.75 (0.06) 0.31   (0.03) 0.73 (0.12)

1 0ˆ B Up !
!  0.20 (0.09) 0.25 (0.07) 0.06   (0.01) 0.25 (0.06) 0.69   (0.03) 0.27 (0.12)

1 1ˆ B Up !
!  0.87 (0.04) 0.86 (0.03) 0.80   (0.03) 0.89 (0.03) 0.78   (0.03) 0.88 (0.06)

0 1ˆ B Up !
!  0.13 (0.04) 0.14 (0.03) 0.20   (0.03) 0.11 (0.03) 0.22   (0.03) 0.12 (0.06)

1 0 0 1ˆ ˆB U B Up p(! !
! !  0.08 (0.09) 0.12 (0.08) -0.14   (0.05) 0.15 (0.06) 0.47   (0.05) 0.15 (0.02)

0 1ˆ U Ap !
!  0.13 (0.05) 0.13 (0.05) 0.03   (0.01) 0.17 (0.04) 0.92   (0.20) 0.16 (0.13)

0 1ˆ U Bp !
!  0.08 (0.04) 0.10 (0.03) 0.01 (0.005) 0.11 (0.03) 0.93   (0.19) 0.12 (0.09)

1 0ˆ U Ap !
!  0.13 (0.12) 0.07 (0.07) 0.34   (0.10) 0.05 (0.04) 0.005 (0.01) 0.08 (0.08)

1 0ˆ U Bp !
!  0.30 (0.09) 0.32 (0.09) 0.55   (0.09) 0.24 (0.07) 0.05   (0.12) 0.27 (0.02)

2L  a  4.87     5.27  21.99  53.27   52.56 22.00 
d.f. a 13----        16----  20----  20----   21---- 20---- 

entAIC a 
 2.5814     2.5711    2.5872    2.6499     2.6399   2.6167 

entBIC a 
 2.7276     2.6974    2.6869    2.7446     2.7329   2.7695 

ent a 
 2.5002     2.5010    2.5318    2.5895     2.5882   2.5318 

entGH a 
 2.5601     2.5677    2.5867    2.6429     2.6399   2.5749 

See text for explanation of notation and models. 
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The proportion of convicted defendants who actually were not guilty, i.e., the conditional 

probability of a wrongful conviction, may be estimated by 0 1ˆ U Bp !
! .  The estimates under the 

two models are 0.08 (0.04) and 0.10 (0.03). 

 

C.  Additional Limitations 

 

The interpretation of the latent variable U  requires care:  does it refer to correct status 

under the omniscient viewpoint, or under the procedural viewpoint, or something else?  

Although we want U  to refer to the omniscient view of the true state, the data analysis 

uses statistical patterns of agreement observed in real cases to estimate the parameters in 

the models.  Cases where judge and jury agree on acquittal because the evidence is 

simply weak may be classified as having higher odds that 0U #  for that reason rather 

than because they agree on acquittal from the omniscient viewpoint described in Section I.  

The proportion of such cases is not known, due to the question wording concerning 

evidentiary strength (see Section IV), but if those cases are solely within the group 

classified as having weak evidentiary strength, their proportions are not large (7% 

according to the judge’s assessment and 9% according to the jury’s).  A labor-intensive 

way to investigate the validity of U would be to review (a sample of) the cases one by one 

and compare their predicted status of U , namely 0 1ˆ ˆ,U Up p , with the record (transcripts, 

interviews with judge and jury, etc.).   

 

The standard error of an estimator depends on the sampling design used for the study.  

The present analysis does not formally generalize its estimates of accuracy beyond the 

cases in the NCSC, and thus there is no sampling of judges or juries involved.  If the 

cases were taken as a random sample from a larger population of cases, the calculation of 

standard error would need to account for clustering of cases by judges; such a calculation 

is easily carried out with the jackknife or other methods.   

 

The effects of dependence between judge and jury error on the same case are still 

pertinent to the empirical estimates.  Vacek (1985) has shown that positive dependence 

leads to overstatement of the accuracy rates in estimates based on the Hui-Walter model, 

analogous to what was demonstrated in Section III, and it is conjectured that the effect is 

in the same direction for the log-linear models such as (3a)-(3b).  Although models for 
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dependence have been proposed for the Hui-Walter model, some require an additional 

“rater” in addition to the judge and the jury, and so they are not applicable to the NCSC 

data (Qu, Tan, and Kutner 1996; Yang and Becker 1997).  The estimation of dependence 

using the adaptation of the Hui-Walter model by Sinclair and Gastwirth (1996, 966) would 

involve yet other simplifying assumptions.  It would be desirable to test the models directly, 

but to do that would require data where the true state was known with some degree of 

certainty.   

 

D.  Alternative Models 

 

The remainder of this section is technical and discusses alternative models that were tried 

but found unsatisfactory.  The reader should feel free to skip this section with no loss of 

continuity. To compare alternative models, 5 sets of statistics will be considered in addition 

to estimates of standard errors.  The likelihood-ratio chi-square statistic ( 2L  in Table 4) and 

the degrees of freedom (d.f.) is useful for comparing sub-models with the more general 

model, but the distributional properties depend on the more general model being correct.  

An alternative measure, that does not depend on an assumption that the model is correct, 

is an estimate of expected entropy, say ent , which may be written as 

& ' & 'ˆ ˆent / ln /j jj
n n n n# *  where in  is the observed count in cell j  of Table 3 

( 1, ,36j # # ), ˆin  is the estimated count based on the fitted model, and the total count is 

ˆ 271.n n# #   Gilula and Haberman (1994, 650-651; 1995, 1138) provide a bias-corrected 

version of ent , which we will call entGH .  Alternative measures of model performance are 

the AIC criterion of Akaike and the BIC criterion of Schwarz; these will be scaled to be 

comparable to ent , and in fact we will use & 'entAIC ent 36 d.f . / n# % (  and 

& ' & ' & 'entBIC ent 36 d.f . ln / 2n n# % ( .  We will refer to these various measures as penalty 

measures; see Gilula and Haberman (2001) for discussion. 

 

The fit of model (3a) as assessed by the likelihood ratio chi-square statistic ( 2L  in Table 4) 

is 4.87 with 13 degrees of freedom, whereas (3b)  has 2L  = 5.27 with 16 degrees of 

freedom; the difference in 2L  is quite small, only 0.40 with 3 degrees of freedom.  The 

measures entAIC  and entBIC  are smaller for (3b) than for (3a), and ent  and entGH  are 

only slightly larger.  Those measures are subject to appreciable sampling error, however; 
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e.g., the difference between entGH  for the two models is only 0.008 whereas the estimated 

standard error of the difference is 0.02.  There is no real evidence that (3b) is less 

appropriate a model than (3a).  The tradeoff of possible model bias against reduced 

standard errors looks favorable for model (3b). 

 

Additional submodels of (3a) will now be described, and then a model with an additional 

latent variable representing strength of evidence.  None of the submodels were as 

successful as the submodel (3b), however, in that the measure of fit deteriorated and the 

estimates of probabilities changed markedly relative to the estimated standard errors.  

One further simplification from (3a)  is assume away any two-way interactions between the 

true state and the assessments of the strength of evidence. This model is (3b) with the 

additional restriction that  

 

     0UC UD
uc ud: :# # .     (3c) 

 

The lack of fit increased from 2L  = 5.27  for (3b) with 16 degrees of freedom to 2L  = 21.99 

with 20 degrees of freedom.  The change is statistically significant (p-value of 0.002) when 

assessed with a chi-square distribution.  Although estimated standard errors decreased 

(except for 1 0ˆ U Ap !
! ), the estimate 1 0ˆ B Up !

!  of the probability of a type I error decreased by 0.20 

from model (3b) to (3c), a change that at 2.7 times its estimated standard error (0.07) is 

unlikely if both models (3b) and (3c) are correct. (Note that if model (3c) is correct, so are 

models (3b) and (3a).  Standard errors for differences across models were estimated with 

the jackknife and are not shown in Table 4.)   Other changes were large in magnitude but 

not as large in terms of standard errors, and could reflect chance variation in light of the 

multiple comparisons being made.  The estimated proportion of true verdicts decreased by 

0.12 from (3a), from 0.27 in (3a) to 0.15 in (3c), a difference that was large in magnitude 

compared to its estimated standard error (0.05). The estimate 1 0ˆ U Ap !
!  increased enormously, 

from 0.13 in (3a) to 0.34; the estimated standard error for the change is 0.12. The changes 

in the various penalty measures were increases over their values from (3b) except for 

decrease of 0.01 in entBIC , which is not appreciable in light of the sampling variability.  

This model does not seem as trustworthy as (3b). 
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An alternative simplification from (3b) is to assume away any two-way interactions 

between classification of the case and assessment of strength of evidence, whether by the 

judge or jury.  This model is (3b) with the additional restriction that  

 

      0.AC BD
ac bd: :# #      (3d) 

 

Figure 1 casts doubt on model (3d), however.  The lack of fit increased from 2L  = 5.27  for 

(3b) with 16 degrees of freedom to 2L  = 53.27 with 20 degrees of freedom.  The penalty 

measures were all much larger than for (3a). 

 

One final simplification from (3b) is a cynical one:  disallow direct interaction between the 

true state and either the judge’s classification or the jury’s classification.  Under this model, 

the judge’s (or jury’s) classification of the case is conditionally independent of the true 

state, given the assessment of strength of evidence.  This model, if correct, would indicate 

profound problems with the legal system.  Formally, this model is (3b) with the additional 

restriction that  

 

     0.UA UB
ua ub: :# #      (3e) 

 

As shown in Table 4, this model estimates that 94% of the cases truly are not guilty, which 

is markedly (and significantly) different than the estimate of 27% under the more general 

model (3a).  The difference in the estimates 0ˆ
Up  is 0.67, which is much larger than its 

estimated standard error (0.16).  The implications of having such a high proportion of truly 

not guilty cases are low estimates of judge’s and jury’s probabilities of correct decisions, 

0.25 and 0.34, respectively. Further, the penalty measures are larger than for (3a).  Thus, 

this model may be rejected.   

 

An alternative model formulation – not a submodel of (3a) – includes a second 

unobserved attribute, ,V  which underlies the judge’s and jury’s assessments of strength of 

evidence ( ,C D ) and which takes values 1, 2, 3.  In this model, the probability that a case 

has one of the 216 possible patterns of attributes is approximated by the hierarchical log-

linear model  
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log

,

UV ABCD U V A B C D
u v a b c d i u v a b c d

UA UB VC VD AC BD
ua ub vc vd ac bd

p 9 : : : : : :

: : : : : :

# % % % % % % %

% % % % %
   (4) 

 

with the constraints 0.U V UA UA BD BD
u v ua ua bd bd

u v u a b d
: : : : : :# # # # # # # #* * * * * *" "   This 

model allows the judge’s classification of the case to depend on the true state (U ) and on 

judge’s assessed strength of evidence, and it allows the latter to depend on the 

unobserved underlying strength of evidence (V ).  The estimated standard errors for this 

model typically are larger than those for model (3a), which is not surprising as the model 

involves two latent variables.  The penalty measures for (4) are all larger than for (3a) and 

(3b).  At least for the NCSC data, this model does not appear to provide more trustworthy 

estimates than (3a) or (3b). 

 

 

VI. SUMMARY AND CONCLUSIONS 

 

We have shown that accuracy of jury verdicts can be studied empirically and 

systematically.  Two different kinds of estimators were considered.  A simple estimator 

based on the rate of agreement between judge and jury was developed and analysis 

indicated that it could tend to overestimate accuracy but would not tend to underestimate 

accuracy.  The jury verdict was estimated to be accurate no more than 87% of the time for 

the cases in the recent study by the National Center for State Courts National Center 

(NCSC) and no more than 89% for the cases studied by Kalven and Zeisel in the 1950s.  

The NCSC cases should not be regarded as a representative sample with respect to jury 

accuracy, however.   

 

Under a log-linear model based on different assumptions and utilizing additional 

components of the NCSC data, the estimate of accuracy dropped to 0.83 – 0.85.  Some 

limitations of the log-linear analysis should be kept in mind:  (i) the judge’s classification 

and the jury’s classification for a given case are assumed to be conditionally independent 

given the strength of the evidence, when in fact both classifications may be affected by 

presentation of false evidence; (ii) the specification of the log-linear model may not be 

correct; (iii) the classification of “correct” in the log-linear model may not correspond to our 

interpretation of “correct”, (iv) sampling error may be underestimated.  In light of these 
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limitations,  the empirical estimates from the data analysis must be interpreted with great 

caution and in no event should be generalized beyond the NCSC study.  That said, some 

estimates of accuracy of verdicts for the criminal cases included in the NCSC study are 

presented below, based on the log-linear model denoted (3b).  The estimates are no basis 

for action other than future studies.  Numbers below in parentheses are estimates of  

standard errors. 

 

1.  Jury verdicts were incorrect 15%  of the time, with an estimated standard error of 4 

percentage points.  If the assumption of conditional independence between judge and jury 

error is incorrect, this estimate of error rate will tend to be too low.  

 

2.  The estimated proportion of defendants who were not guilty is around 28%, with an 

estimated standard error of 4 percentage points. 

 

3.  The conditional probability that the jury incorrectly convicts (a “type I error”) was 

estimated at 0.25 (0.07), the conditional probability that a jury incorrectly acquits (“type II 

error”) was estimated at 0.14 (0.03), and the difference was estimated at 0.12 (0.08).  The 

estimated number of defendants in the NCSC cases who truly are not guilty but are 

convicted does seem to be smaller than the number who truly are guilty but are acquitted. 

 

4.  The type I error rate for the jury is estimated to be  smaller than the type I error rate for 

the judge by 0.12 (0.10).  The type I error rate for the judge was estimated at 0.37 (0.09), 

and the type II error rate for the judge was estimated at 0.02 (0.02).   

 

5.  The conditional probability of a wrongful conviction, given that the defendant was 

convicted, is estimated at 0.10 (0.03). 

 

In conclusion, studies of judge-jury agreement are a powerful tool for assessing the 

performance of the jury system.  The agreement rates themselves are statistical indicators 

and should be constructed and compared. 10  A variety of estimates of accuracy can be 

developed from the data.  Additional studies of judge-jury agreement should be carried out 

to provide for each jury verdict in the study a second rating, ideally with equal or better 
                                                 
10 Caution must be taken, however, that a statistical indicator is not used to regulate, reward, or 
punish – for that may well lead to corruption of the indicator.  Wartime statistics on body counts is 
one well known example.  
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accuracy than the jury’s. The rating could come from judge in the case, but it might also 

come from an observer (or observers) other than the sitting judge, for example by a retired 

judge or other expert; see Gastwirth and Sinclair (1998) for discussion and additional 

suggestions.  Such studies would be strengthened by carefully worded questions 

assessing of strength of evidence and, perhaps, by confidence of judge and jury in their 

decisions.  The studies could even be designed to dovetail with cases where the correct 

verdict would later be known.  There are many possibilities for improving the studies, but 

the most important step is to carry out more studies of judge-jury agreement so that we 

can assess and compare accuracy rates over time, across jurisdictions, for different kinds 

of cases, for consistency between demographic characteristics of defendant and jury, etc.   
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DERIVATIONS 

 

To derive (1), note first that 

 

    
& ' & '! )

)

# % % ( (

# % % ( (

1 1

2 1 .

A B A B
i i i i i i

A B A B
i i i i i

p p p p

p p p p
 

 

Averaging over the N  cases and substituting, we have 
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Proof of lower bound for !  (as asserted in the second sentence following (1)). 

The roots to (1) are given by  & '+ ! - +# ( < ( ' ( % 2.5 1 2( 1Bp .  Because the roots must 

be real, the quantity under the square root sign must be non-negative, and thus we have 

! - +. % ( 2(1 ) / 2.  

 

 

Proof that identification error equals ! - + (( , , ) .Bf p    

Since the values of Bp , ! , - , and +  all occur, they must satisfy (1) and in particular 

! - +. % ( 2(1 ) / 2.   It follows that lower constraint in (2) is unnecessary for evaluating 

! - +( , , )f , and  so 0 1! - + #( , , ) min ,1B
highf p .  Thus, the identification error equals 

0 1 (min ,1B B
highp p ! - +# (( , , ) B

highf p . 
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ADDENDUM 

 

Jack Heinz asked about the extent to which the Type I error rate for judges is a function of 

the jury conviction rate.  That is, if juries convicted more often (so that their rate was closer 

to that of judges), would the estimate of the judges' Type I rate would be lower, and by 

how much? 

 

To address this question, I weighted the NCSC counts in Table 3, assigning a weight of 4 

to each case with #( , ) (0,1)A B  and assigning a weight of 2 to each case with #( , ) (1,1);A B  

all other cases received a weight of 1.  Prior to the weighting, the judge conviction rate for 

Table 3 as 81.2% and the jury rate was 69.4%; after weighting, the rates were 80.4% and 

83.0%, respectively.  The agreement rate was 77.1% before weighting and 78.1% after.   

 

The estimated probabilities of type I and type II error for judges changed from 37.5% and 

1.8% before the weighting to 37.4% and 5.1% after.  Thus, the type I error rate hardly 

changed.  Similarly, the estimated proportion of not guilty cases #( 0)U  increased from 

28.0% to 29.3%.   
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