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Sources of Dependence in Meta-analysis

let7,=60.+¢,i=1, ..., k

where T’ is the effect size estimate, 6. is the effect size
parameter, and ¢, is the estimation error of the i*" effect

Dependence arises in either of two places:

Because the ¢; are correlated

OR
Because the 0, are correlated

Or both



Dependence Due to Correlated Estimation
Errors (correlated ¢; °s)

This form of dependence is familiar in connection with

Multiple estimates from the same sample
— Multiple followups
— Multiple outcome constructs
— Multiple measures of the same outcome construct

Partially overlapping samples (e.g., in multi-armed studies)
— Shared control groups

— Shared treatment groups

| will deal mostly with this form of dependence here



Dependence Due to Correlated Effect Size
Parameters (correlated 6. °s)

This form of dependence is familiar in connection with

Higher order clustering of studies
— Studies from the same laboratory
— Studies from the same investigator or team
— Studies reported in the same paper (but using different individuals)
— Groups of coordinated studies

This form of dependency is not often modeled in some areas,
but is of great interest in others



Why Do We Care About Dependence?

We care about dependence because it complicates
estimation

It complicates computing uncertainty of estimates
It complicates getting efficient estimates

| argue that often (but perhaps not always) the biggest

problem posed by dependence is proper estimation
of uncertainty of estimates



How Do We Deal with Dependence?

lgnore it without contrivance (often a bad idea, but
sometimes acceptable)

Contrive to ignore it by creating a single synthetic
effect size per sample

Model dependence with full multivariate analysis

Use new robust methods that estimate empirical
standard errors



Full Multivariate Meta-analysis



Full Multivariate Meta-analysis
Notation

Assume k studies, each with a vector of effect sizes

Effect Size Parameters 0,...,0

Effect Size Estimates T,....T,
Estimation Error Variances Xy, 2
Study Level Covariates Xjyoees X,

Distributional Assumptions T;[0,~N(9, X)



Full multivariate analysis is always possible in theory and is optimal in
theory

Key references are:

Hedges & Olkin (1985) Statistical methods for meta-analysis
Raudenbush, Becker, & Kalaian (1988) Psychological Methods
Kalaian & Raudenbush (1996) Psychological Methods

But all of these methods require that the covariance matrix of
estimation errors is known



Major Problem

Covariance structure of estimation errors is almost always
unknown

Sometimes we have estimates of this structure, but these are
often subject to large sampling errors (of the same order as
the effect sizes themselves)

Frequently, we don’ t even have empirical estimates from the
studies in question and we have to impute (guess) based on
other sources of information

In large datasets, this is a very tedious process



Robust Variance Estimation

One potential solution comes from work on robust
variance estimation in the general linear model

Work in this tradition includes

— Eichler (1967) 5t Berkeley Symposium
— Huber (1967) 5% Berkeley Symposium
— White (1980) Econometrica

— MacKinnon & White (1984) J of Econometrics



Robust Variance Estimates
(Univariate Version)

The fundamental ideas are easier to understand as a univariate analysis
(estimating the mean effect size) with k] =1 (one effect per study)

The weighted mean effect size estimate (call it b) is

(8w (Sn |52

Since the T, are mzdependent, the variance of b is
2| | Vel
j=1 Wo

To get a robust variance estimate we need to get an estimate of this quantity.
Do that by substituting e; = (T, — b)* for Var{T}}



Robust Variance Estimates
(Multivariate Version)

We have k estimates (from m < k studies) T=(T,, ..., T,) '
The general model (with covariates) is
T=Xp + ¢, e~N(0, X)

where X is a k x p design matrix, p = (,B], .., 5.) "is a p x 1 vector of unknown
regression coefficients, and € = (¢, .. )p is a k x 1 vector of residuals.

Usually we would estimate B and its variance via
= (X'WX)'X'WT Vib} = X'WX)!

with W = X-1 (which might include between-study variance components)

The problem is that although the variances are “known” the covariances of ¢
in X contain unknown correlations



Robust Variance Estimates
(Multivariate Version)

Change notation slightly so we have k = k,+ ~ + k_estimates T= (T}, ..., T,)’ from m
studies with k; > 1 estimates within the ;™ study

Partition the vectors T and ¢ into m stacked k. x 1 vectors T, ..., T, and g, ..., €,, and
partition the design matrix into m stackec(kj X p matrices so that
(T (g ) (X (xy L ox,)
T=| M e=| M X=| M X.= M O M
\Tm / & ) \X’" J \xf”fl L Kinsp )

and the model becomes

(Tl \ (Xl \ (81 3\
M= M|p+| M| & ~N(0,X)

L)\ X ) (8

and Zj is an k] X k] covariance matrix of effects within studies




Robust Variance Estimates
(Multivariate Version)

In this new notation, with (known) weight matrix W = diag(W, ..., W, ) the
weighted least squares estimate of B is

-1
b= [Z X'W X ] (Z X 'Wy, ]
J= J=
And its exact covariance matrix is
-1 -1
(Z XWX ] (Z{ XWX WX )[2{ XWX ]
Jj= Jj= Jj=

which still depends on unknown correlations that are part of the I, s.

We want to get a robust estimate of this variance (one based only on the
observed estimates), but it looks like we have to estimate every element of
theX’s

J



Robust Variance Estimates
(Multivariate Version)

Werite the variance of \/mb as

~1 -1
1 &, ] &G, 1 &,

[_ZXJWJ'XJ ] [_ZXJ WJZJWJXJ )[_EXJWJ’XJ )
m o m m 7

j=1

This illustrates that we don’ t have to estimate every element of each X, only
estimate

1 & / /
_ZE{XJ Wie g, WjX]}
m“S

which is quite feasible if m is large enough. So we look for a theorem that is
asymptotic in m (the number of studies)

Note that the correlations do not need to be known or explicitly estimated



Robust Variance Estimates

(Multivariate Version)

If we take the X, and W, to be stochastic (as well as the T )
estimating the variarce of b also requires estimating

| & , )
(_ZE{XJWJXJ}]
m 5
There is an argument for having the X, at least, be stochastic

The random effects model treats studies as sampled, their
covariate values are also sampled, and hence random

Few of the analyses we do take this into account



Robust Variance Estimates
(Multivariate Version)

The robust variance estimate of b is

—1 —1
R _ m = ’ = ’ ’ = ’
Vo= (—) ZXJWJXJ ZXJ Wee WX, ZXJWJXJ
m=p A j= j=1 j=1
where e=T,—Xbis the (kj x 1) (estimated) residual vector in the jt" study

The robust test of the hypothesis H,: 5, = 0 uses the test statistic

=0,/ \WE

where v, R is the at" diagonal element of VX We might use the t-distribution
with m — p degrees of freedom for critical values

A robust confidence intervals would use v, * too

/ R / R
ba_ca/2 vaa Sﬂagba_l_cw/2 vaa



The General Theorem

Under regularity conditions as m — o, V_ X is a consistent
estimator of the true covariance matrix, and

Jm (mv,*)" (b, ~B)—>N(0, 1,)

where (V,£) is the robust covariance matrix and b, is the
estimate of f computed from m studies

The regularity conditions include that
— The regressors are uniformly bounded
— The weights are uniformly bounded
— The number of estimates per study is bounded
— The first few moments of €; are uniformly bounded

As well as absolute moment conditions on the (g, ¢))



This Theorem is Remarkably General

The method can be generally used (if m is not too
small)

 For unknown correlation structures
* For different kinds of dependency
* Different kinds of effect sizes

e Different numbers of dependent effects per study
or per cluster

* Even if the effect sizes are heterogeneous within
studies




Notes on the General Theorem

This theorem is asymptotic in m, the number of studies,
not the size of each study

There are no distribution assumptions about the effect
sizes

Correlations among the effects within studies need not
be specified, but presumably impact the standard
errors

The X, need not be fixed (random X, are more
consistent with random effects models)



A Special Case: Estimating the Mean Effect

In the case of estimating the overall average effect, the estimator reduces to a
weighted mean
k

TEZUUEWZJ

j=1 i=l j=1 i=l
And the robust variance is

=33 S, (7, 7 (7, - -)/[2 ]

Note that this is similar to, but not identical to, the Knapp-Hartung variance
estimate

~.

Note that the exact estimate depends on how weights are assigned



Choosing Weights

This procedure does not lead to obvious choices
of weights

Instead, it gives us a variance estimate of an
effect based on any set of weights we might
choose

Thus we need to think about weights that might
be useful in practice



Choosing Weights

Why do we weight in meta-analysis?
— To obtain more efficient estimates

— To help compute variances (incidentally)
Major gains in efficiency come when optimal weights are unequal

Different effects within studies are often based on the same sample size,

which (for some effect size measures) implies that they will have similar
variances

Therefore it might make sense to equally weight estimates within studies and
allow different weights between studies



Choosing Weights

One weighting scheme we might propose is to give equal weight
to all estimates in the same study, but total weight based on
the average variance, namely

1 1

wW. = —
] —
v,].kj V), +L + ijj

This is similar to a fixed effects weighting scheme and would not
be as efficient as a scheme that incorporated between-study
variance or within-study covariances, or both

Many other schemes are possible, with different consequences
for efficiency



Choosing Weights

Assume a single between-studies variance component (no
differential variances for different effects within studies)

_ 2
le—X,-le'?ﬁSij WjNN(O:T)

where ¢;; and ¢;-; may be correlated

Use this model (maybe with one effect per study) to estimate 7°
and then use this between study variance to compute weights

1
w, =

! (f2+\7,j)/kj



Choosing Weights

Impute (guess) a within-study covariance structure for
the effect size estimates

Use a hierarchical model to estimate the between-
study covariance structure, and use these variance
components to compute weights

This should result in
— Better estimates of the variance components
— Better efficiency of the final estimates



Choosing Weights

In principle, differential weighting of correlated estimates within
studies can matter a lot (e.g., when between-study variance is
small and within-study variances and correlations both vary

We need to get a better understanding of whether differential
weighing of correlated estimates within studies matters a lot
or only a little in practical situations

Theory can help but empirical evidence is essential



(Almost) Efficient Weights

We suggest a strategy of assuming a plausible constant value of p
(the within study correlation of the effects) to estimate
weights

It turns out that the estimate of 77 is often remarkably insensitive
top

For a completely general meta-regression problem we can
specify approximate method of moments estimators of 7

These can then be used to get almost efficient weights, which

can then be used in a meta-regression with robust variance
estimates



(Almost) Efficient Weights

In general, if O is the weighted residual sum of
squares about the regression line, w, —l/k v, the
method of moments estimate of 7*

0, - m+tr[V2 XX, ]+ptr[ i—f[xj JX -X'X, ])

JlJ :11

T

n2
T

and J; is a k] X k] matrix of ones and V = (X'WX)-!



For Estimating the Mean Effect

Suppose that every effect size estimate in the jt study has weight

w, = 1/kj\7j then the method of moments estimate of 72 is

_ - A
O—|m—| D> w, | > wk, ||+p|1=| 3wk,
o i j=1 j=l1 | i J=1 )
zm: w;k Z wik; i Wik,

Jj= J=1 J=1

Note that when all the k., = 1, this reduces to the usual method of moments
estimator of 7?



Clustering by Groups of Studies

Suppose dependence is induced by clustering of groups of studies

Then the assumption that all correlated effect sizes have the same estimation
error variance is implausible

We need a different strategy to estimate almost efficient weights
One idea is to assume two variance components
Between studies within clusters w?

Between clusters (between cluster means) 72



Clustering by Groups of Studies

Use the weighted residual sum of squares Q. and another
weighted sum of squares

O = i(Tj _XJB)'JJ (Tj _XJB)

J=1

Then the method of moments estimators of the variance
components are

@2:A2(Q1_C1)_A1(QE_C2) ZA_z_QE_Cz_éf&
BIAZ _BZAI Az AZ

Where

_ m 2 m , m . m . m ,
A = ij —tr Vz; kX I WX, j—n»(vzf kXWX, J+ tr (V[Z{ XijXJ}Vz; X, W.J. WX,
J= J= J= J=

0

=zr(W'l)—tr(Vix'ijXj] A, :tr(w)—tr(vix'jijjijj )Bz =tr(W)—lr(ViX;Wj2Xj

j=1 j=1 =1

= ij —tr VZ X.J, WX, ]—tr[Vz X, W.J X, j+ tr (V[Z X;ijj}vz‘x'jwij} C, = ij —p
j=1 j=1 j=1 j=1



How Small Can m Safely Be?

We need evidence about rates of convergence to the asymptotic
distribution and what it depends on

Our simulations suggest that convergence is relatively rapid for
standardized mean differences and equally correlated
estimates (confidence intervals have close to nominal content
when m = 10 and the k] =2 to 5)

Presumably it depends on &/m and the correlation structure



Conclusion

The robust variance estimate looks promising for cases where there are a
large number of studies, some or all of which have multiple (correlated)
effect size estimates

It is extremely easy to implement (compared to exact multivariate methods)

These estimates are not optimally efficient, but may be close to optimal with
a little work estimating approximate variance components

The small sample properties look pretty good so far, but more study will help
us better understand the small m (small number of studies) properties



Thank You!



Regularity Conditions Can Fail

These regularity conditions are often met, but can fail
to be true

The conditions on regressors are met with bounded
fixed X;' s

The moment conditions on the sj’s fail

— always for one instrument IV estimators,
— d-statistics with less than 4 degrees of freedom, and

— (formally, but not actually) for odds and risk ratios



