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Outline

1. Choosing the right model
— Correlated Effects
— Hierarchical Model

2. Different types of regression coefficients

— Independent effects meta-regression (I-MR) vs.
Dependent effects meta-regression (D-MR)

3. Efficient weight estimation: What about p?



1. Choosing the right model

Where does the dependency come from?

1. If from sampling errors, then use the correlated
effects model.

— e.g. errors that arise because the same people are used to calculate
multiple effect sizes

e.g. Multiple measures are collected on each person in the study.

e.g. The same control group is used for multiple treatment
contrasts.

— This model assumes

there is between study random variation (t?); and

every within-study effect size is an estimate of the same
underlying study-specific effect size parameter; and

the within-study correlation is induced by sampling error.



1.1 Correlated Effects Model
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1.2 Choosing the right model

2. If from parameter variance, then use the

hierarchical model.

—  Variation that arise from parameters:

e.g. Studies nested within clusters of researchers.
e.g. Studies nested within research themes.

— This model assumes

there is between-cluster random variation in average study effect
sizes (t?); and

there is within-cluster random variation in effect size parameters
across studies (w?); and

there are no sampling error induced correlations.



1.3 Hierarchical Model
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2. Within- vs. between- study models

In detecting the effect of an intervention, there are two types of models and
analyses:

1. Within-study model:

For example:
*  Within each study, people are randomly assigned to:
—  Exercise 6 times a week (Treatment A); or
—  Exercise 3 times a week (Treatment B); or
— Not exercise (Control).
 The ES for comparing Treatments B and A then is simply

ES(Trt BvsTrt A) — ES(Trt AvsC) — ES(Trt B vs C)
* Ina MR, each study contributes one such comparison. The MR estimates

an average causal ES for exercising 6 (vs 3) times per week.



2.1 Within- vs. between- study models

2. Between-study effects:

For example:

* Insome studies, individuals are randomly assigned to:
—  Exercise 6 times a week (Treatment A); or
— Not exercise (Control).

* Inother studies, individuals are randomly assigned to:
—  Exercise 3 times a week (Treatment B); or
— Not exercise (Control).

* The ES for exercising 6 (vs 3) times a week is calculated using MR. Note
that this average effect is NOT causal.

The idea of within- and between-study effects
plays an important role in D-MR.



2.2 Regression Coefficients: I-MR

Let T; be the effect size and X; be the length to follow-up:
T =By + X By + -

Note: here each study contributes one value of X..

The coefficients B, and B, can be interpreted as:

— By, = the average effect size when X; =0

* e.g.the average effect size in studies in which the intervention just
occurred.

— B, = the effect of a 1-unit increase in X;onT,

e e.g. the ES change from moving from a study in which the
intervention just occurred to a study in which the ES was
measured at a follow-up 1 month later.



2.3 Regression Coefficients: D-MR

For a fixed study (j=1), now assume there are multiple outcomes.
This study has its own regression equation:

Ty = Boy + X1Byq +-..

Note: here each outcome contributes one value of X,.

The coefficients B,; and 3,; can be interpreted as:
— By, = the average effect size when X, =0

* e.g. the average effect size for units in the study (j=1) when the
intervention just occurred.

— B, = the effect of a 1-unit increase in X,; on T,

* e.g. the effect size change for units in the study at the time of
intervention and at follow-up 1 month later.



2.4 Between and within: D-MR

In D-MR these two types of regression occur in one analysis:
—  Within Study: Ty = Bo + XiBy +
— Between Study: g =By + X,By +

Here there are two different relationships between X and T:
— The between-study effect of X,; on T,
* Note: this effect is found in I-MR
— The within-study effect of X;; on T,
* Note: this effect is NOT found in I-MR

These two regressions are combined into one analysis and model:

Ti=Bo + X;B, + X,By +
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2.5 The effect of centering: D-MR

In D-MR, how X is centered:
* Affects the interpretation of the coefficients; and

* Allows within- and between- study effects to be
properly separated.

The best way to center is call Group Mean Centering:
C =Y —

Where X,; is the mean value of X; in group j (and where group is
either study or cluster).



2.6 Different models for X: D-MR

Model 1: Ty =Bo+ X8, + ..
— Here only the within-effect of X<; is of interest.
— B, = the effect of a 1-unit increase in X;on T,

Model 2: Ti=Bo + XoBy + ...
— Here only the between-effect of X.; is of interest.
— P, =the effect of a 1-unit increase in X.; on T,

Model 3: Ty = Bo + XBy + X8, +...
— Here both the within and between effects of X are of interest.
— B, and B, are as above, and their estimates are independent.
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2.7 What can go wrong?

What if you don’t center X;?
Ti = By + X;B; +...

* The effect you think you are modeling (B,) is the
within- effect, BUT

 What you have actually modeled is a weighted
combination of the within- and between- effects.

* This makes interpreting 3, very difficult.
- This is why group centering is preferred.



2.8 Interpretation issues

Including 3,X%; in addition to ,X.;in the model allows a new
type of effect to be modeled.

However, in some D-MR, there may only be a few clusters with
values of X that vary within each cluster.

This leads to 2 issues:

1. The estimate of B, (associated with X;) will be imprecise
(i.e. have a large standard error).

2. The types of clusters in which X;; varies may be different
(i.e. not representative) of clusters in which X;; does not
vary.



2.9 Conclusions

1. When using a covariate, ask if the effect of
interest is between- (X,;) or within- (X;)
studies.

2. Make sure to group-center your within-study
variables.

3. Check your data to see if X;“ varies in many
studies and if you think these studies are
representative of all studies.




3. Weighting issues: p unknown

Recall that in general,

1. The robust standard error estimator does not require
information on the true correlation in the data. Additionally,

the estimator works for any weights.
2. The most efficient weights are inverse-variance weights,
— i.e for any covariance matrix 2, W= 31

In the hierarchical model, these weights can be estimated fairly
easily.

In the correlated effects case, while the variances are known,
the covariances between the estimates are NOT known.



3.1 Correlated effects model

One way to estimate the efficient weights is to assume a
simplified correlation structure.

Assume that within each study j,

1. The correlation between all the pairs of effect sizes is a
constant p;

2. This correlation is the same in all studies; and

3. The k. sampling variances within the study are approximately
equalj, with average V.;.

Then the (approximately) efficient weights can be shown to be:

W = 1/{(Voj t Tz)[l"'(kj'l)p]}



3.2 Where p occurs in weights

In these weights, the unknown correlation p occurs twice:

1. Inthe estimator of t?:

J'J]XJ X 'X ]]

ik W, —tr[VZwJZXJ'JJXJ)
j=l

where J; is a k; x k; matrix of ones and V = (X'WX)!

2. In the multiplier: [1+(k-1)p].
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3.3 Three approaches

Three strategies for dealing with p in calculating efficient weights
can be used:

1. Sensitivity approach
2. Conservative approach

3. External information approach



3.4 Sensitivity approach

1. Sensitivity approach:
— Run the model with various values of p in (0,1).

This approach allows you to see how robust the
results are to weights based on different values
of p.



3.5 Conservative approach

2. Conservative approach:
— Assume p = 1.

The weights become: W; = 1/{k(V,; + T)}.
Each study gets total weight W = 1/(V,, + t9) .

These are conservative in that a study does not receive
additional weight because it has multiple measures.



3.6 External information approach

3. External information approach:

— e.g. test reliability measures, information from a
study that reports the correlations, information
from the design of the test.

— In the binary outcomes case (e.g. log odds ratio),
an upper bound on p can be calculated from
estimates of the treatment and control
proportions, (1, ;).



3.7 Combined approaches

In practice, a combination of these three approaches
will often be used.

Example: HTJ recommendation
— Estimate 12 using a sensitivity approach; but
— For the multiplier, use a conservative strategy.

Or, the same strategy can be used for both estimating both t?
and the multiplier.



Overall Conclusions

1. Make sure you choose the proper model for the type of dependencies in
your data.

2. For each covariate X; in your model, remember that you can include
1. The group-centered within-study variable (X; = X; — X.)), and/or
2. The average (X.)).

3. When using the correlated effects model with efficient weights:
1. If you have information on p, use it!

2. Ifthe T; are functions of proportions, use this information to get an
upper bound on p.

3. If you have no information on p:
. Use a sensitivity approach for estimating t2

*  Assume p=1in your weights, i.e. W;; = 1/k[V.; + t]



Thank you!

For more information:

http://www.northwestern.edu/ipr/qcenter/RVE-meta-
analysis.html
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