Practical Considerations: Using Robust Standard Errors in Meta-regression

Elizabeth Tipton Northwestern University, USA

Presented at the Joint Cochrane Campbell Colloquium, Keystone Colorado, October 2010

Outline

- 1. Choosing the right model
 - Correlated Effects
 - Hierarchical Model
- 2. Different types of regression coefficients
 - Independent effects meta-regression (I-MR) vs.
 Dependent effects meta-regression (D-MR)
- 3. Efficient weight estimation: What about ρ?

1. Choosing the right model

Where does the dependency come from?

- 1. If from sampling errors, then use the **correlated effects model**.
- e.g. errors that arise because the same people are used to calculate multiple effect sizes
 - e.g. Multiple measures are collected on each person in the study.
 - e.g. The same control group is used for multiple treatment contrasts.
- This model assumes
 - there is between study random variation (τ^2) ; and
 - every within-study effect size is an estimate of the same underlying study-specific effect size parameter; and
 - the within-study correlation is induced by sampling error.

1.1 Correlated Effects Model

1.2 Choosing the right model

2. If from parameter variance, then use the hierarchical model.

- Variation that arise from parameters:
 - e.g. Studies nested within clusters of researchers.
 - e.g. Studies nested within research themes.
- This model assumes
 - there is between-cluster random variation in average study effect sizes (τ^2); and
 - there is within-cluster random variation in effect size parameters across studies (ω^2); and
 - there are no sampling error induced correlations.

1.3 Hierarchical Model

2. Within- vs. between- study models

In detecting the effect of an intervention, there are two types of models and analyses:

1. Within-study model:

For example:

- Within each study, people are randomly assigned to:
 - Exercise 6 times a week (Treatment A); or
 - Exercise 3 times a week (Treatment B); or
 - Not exercise (Control).
- The ES for comparing Treatments B and A then is simply

$$ES_{(Trt B vs Trt A)} = ES_{(Trt A vs C)} - ES_{(Trt B vs C)}$$

• In a MR, each study contributes one such comparison. The MR estimates an average *causal* ES for exercising 6 (vs 3) times per week.

2.1 Within- vs. between- study models

2. Between-study effects:

For example:

- In some studies, individuals are randomly assigned to:
 - Exercise 6 times a week (Treatment A); or
 - Not exercise (Control).
- In other studies, individuals are randomly assigned to:
 - Exercise 3 times a week (Treatment B); or
 - Not exercise (Control).
- The ES for exercising 6 (vs 3) times a week is calculated using MR. Note that this average effect is **NOT causal**.

The idea of within- and between-study effects plays an important role in D-MR.

2.2 Regression Coefficients: I-MR

Let T_i be the effect size and X_i be the length to follow-up:

$$T_j = \beta_0 + X_j \beta_1 + \cdots$$

Note: here each study contributes one value of X_i.

The coefficients β_0 and β_1 can be interpreted as:

- $-\beta_0$ = the average effect size when $X_j = 0$
 - e.g. the average effect size in studies in which the intervention just occurred.
- β_1 = the effect of a 1-unit increase in X_i on T_i
 - e.g. the ES change from moving from a study in which the intervention just occurred to a study in which the ES was measured at a follow-up 1 month later.

2.3 Regression Coefficients: D-MR

For a fixed study (j=1), now assume there are multiple outcomes. This study has its own regression equation:

$$T_{i1} = \beta_{01} + X_{i1}\beta_{11} + ...$$

Note: here each outcome contributes one value of X_{i1} .

The coefficients β_{01} and β_{11} can be interpreted as:

- $-\beta_{01}$ = the average effect size when $X_{i1} = 0$
 - e.g. the average effect size for units in the study (j=1) when the intervention just occurred.
- $-\beta_{11}$ = the effect of a 1-unit increase in X_{i1} on T_{i1}
 - e.g. the effect size change for units in the study at the time of intervention and at follow-up 1 month later.

2.4 Between and within: D-MR

In D-MR these two types of regression occur in one analysis:

- Within Study: $T_{ij} = \beta_{0j} + X_{ij}\beta_2 + \cdots$
- Between Study: $\beta_{0j} = \beta_0 + X_{\bullet j}\beta_1 + \cdots$

Here there are two different relationships between X and T:

- The **between-study** effect of $X_{\bullet j}$ on $T_{\bullet j}$
 - Note: this effect is found in I-MR
- The **within-study** effect of X_{ij} on T_{ij}
 - Note: this effect is NOT found in I-MR

These two regressions are combined into one analysis and model:

$$T_{ij} = \beta_0 + X_{ij}\beta_2 + X_{\bullet j}\beta_1 + \cdots$$

2.5 The effect of centering: D-MR

In D-MR, how X is centered:

- Affects the interpretation of the coefficients; and
- Allows within- and between- study effects to be properly separated.

The best way to center is call **Group Mean Centering**:

$$X_{ij}^{c} = X_{ij} - X_{\bullet j}$$

Where $X_{\bullet j}$ is the mean value of X_{ij} in group j (and where group is either study or cluster).

2.6 Different models for X: D-MR

Model 1:
$$T_{ij} = \beta_0 + X_{ij}^c \beta_2 + ...$$

- Here only the within-effect of X_{ij}^c is of interest.
- $-\beta_2$ = the effect of a 1-unit increase in X_{ij} on T_{ij}

Model 2:
$$T_{ij} = \beta_0 + X_{\bullet i}\beta_1 + ...$$

- Here only the between-effect of X.; is of interest.
- $-\beta_1$ = the effect of a 1-unit increase in X_{ij} on T_{ij}

Model 3:
$$T_{ij} = \beta_0 + X_{\bullet j}\beta_1 + X_{ij}^c\beta_2 + ...$$

- Here both the within and between effects of X are of interest.
- $-\beta_2$ and β_1 are as above, and their estimates are independent.

2.7 What can go wrong?

What if you don't center X_{ij} ?

$$T_{ij} = \beta_0 + X_{ij}\beta_2 + \dots$$

- The effect you think you are modeling (β_2) is the within- effect, BUT
- What you have actually modeled is a weighted combination of the within- and between- effects.
- This makes interpreting β_2 very difficult.
- → This is why group centering is preferred.

2.8 Interpretation issues

Including $\beta_2 X^c_{ij}$ in addition to $\beta_1 X_{ij}$ in the model allows a *new* type of effect to be modeled.

However, in some D-MR, there may only be a few clusters with values of X that vary within each cluster.

This leads to 2 issues:

- 1. The estimate of β_2 (associated with X^c_{ij}) will be imprecise (i.e. have a large standard error).
- 2. The types of clusters in which X_{ij} varies may be different (i.e. not representative) of clusters in which X_{ij} does not vary.

2.9 Conclusions

- 1. When using a covariate, ask if the effect of interest is *between-* (X_{•j}) or *within-* (X_{ij}^C) studies.
- 2. Make sure to *group-center* your within-study variables.
- 3. Check your data to see if X_{ij}^{C} varies in many studies and if you think these studies are representative of all studies.

3. Weighting issues: p unknown

Recall that in general,

- 1. The robust standard error estimator *does not* require information on the true correlation in the data. Additionally, the estimator works for *any weights*.
- 2. The most efficient weights are inverse-variance weights,
 - i.e for any covariance matrix Σ, W = Σ^{-1}

In the **hierarchical model**, these weights can be estimated fairly easily.

In the **correlated effects** case, while the variances are known, the covariances between the estimates are NOT known.

3.1 Correlated effects model

One way to estimate the efficient weights is to assume a simplified correlation structure.

Assume that within each study j,

- The correlation between all the pairs of effect sizes is a constant ρ;
- 2. This correlation is the same in all studies; and
- 3. The k_j sampling variances within the study are approximately equal, with average V_{\bullet_i} .

Then the (approximately) efficient weights can be shown to be:

$$W_{ij} = 1/\{(V_{\bullet j} + \tau^2)[1+(k_j-1)\rho]\}$$

3.2 Where p occurs in weights

In these weights, the unknown correlation ρ occurs twice:

1. In the estimator of τ^2 :

$$\hat{\tau}^{2} = \frac{Q_{E} - m + \operatorname{tr}\left(\mathbf{V}\sum_{j=1}^{m} \frac{w_{j}}{k_{j}} \mathbf{X}_{j}' \mathbf{X}_{j}\right) + \rho \operatorname{tr}\left(\mathbf{V}\sum_{j=1}^{m} \frac{w_{j}}{k_{j}} \left[\mathbf{X}_{j}' \mathbf{J}_{j} \mathbf{X}_{j} - \mathbf{X}_{j}' \mathbf{X}_{j}\right]\right)}{\sum_{j=1}^{m} k_{j} w_{j} - \operatorname{tr}\left(\mathbf{V}\sum_{j=1}^{m} w_{j}^{2} \mathbf{X}_{j}' \mathbf{J}_{j} \mathbf{X}_{j}\right)}$$

where \mathbf{J}_j is a k_j x k_j matrix of ones and $\mathbf{V} = (\mathbf{X'WX})^{-1}$

2. In the multiplier: $[1+(k_i-1)\rho]$.

3.3 Three approaches

Three strategies for dealing with ρ in calculating efficient weights can be used:

1. Sensitivity approach

2. Conservative approach

3. External information approach

3.4 Sensitivity approach

1. Sensitivity approach:

- Run the model with various values of ρ in (0,1).

This approach allows you to see how **robust** the results are to weights based on different values of ρ .

3.5 Conservative approach

2. Conservative approach:

– Assume $\rho = 1$.

The weights become: $W_{ij} = 1/\{k_j(V_{\bullet j} + \tau^2)\}$. Each study gets total weight $\Sigma W_{ij} = 1/(V_{\bullet j} + \tau^2)$.

These are **conservative** in that a study does not receive additional weight because it has multiple measures.

3.6 External information approach

3. External information approach:

- e.g. test reliability measures, information from a study that reports the correlations, information from the design of the test.
- In the **binary outcomes** case (e.g. log odds ratio), an upper bound on ρ can be calculated from estimates of the treatment and control proportions, (π_C, π_T) .

3.7 Combined approaches

In practice, a combination of these three approaches will often be used.

Example: HTJ recommendation

- Estimate τ^2 using a sensitivity approach; but
- For the multiplier, use a conservative strategy.

Or, the same strategy can be used for both estimating both τ^2 and the multiplier.

Overall Conclusions

- 1. Make sure you choose the proper model for the type of dependencies in your data.
- 2. For each covariate X_{ii} in your model, remember that you can include
 - 1. The group-centered within-study variable $(X_{ij}^c = X_{ij} X_{ij})$, and/or
 - 2. The average (X_{i}) .
- 3. When using the correlated effects model with efficient weights:
 - 1. If you have information on ρ, use it!
 - 2. If the T_{ij} are functions of proportions, use this information to get an upper bound on ρ .
 - 3. If you have no information on ρ :
 - Use a sensitivity approach for estimating τ^2
 - Assume $\rho=1$ in your weights, i.e. $W_{ij} = 1/k_i[V_{ij} + \tau^2]$

Thank you!

For more information:

http://www.northwestern.edu/ipr/qcenter/RVE-meta-analysis.html