PowerUp!: A Tool for Calculating Minimum Detectable Effect Sizes and Minimum Required Sample Sizes for Experimental and Quasi-Experimental Design Studies

Nianbo Dong & Rebecca Maynard

To link to this article: https://doi.org/10.1080/19345747.2012.673143

Published online: 11 Jan 2013.
METHODOLOGICAL STUDIES

PowerUp!: A Tool for Calculating Minimum Detectable Effect Sizes and Minimum Required Sample Sizes for Experimental and Quasi-Experimental Design Studies

Nianbo Dong
Vanderbilt University, Nashville, Tennessee, USA

Rebecca Maynard
University of Pennsylvania Graduate School of Education, Philadelphia, Pennsylvania, USA

Abstract: This paper and the accompanying tool are intended to complement existing supports for conducting power analysis tools by offering a tool based on the framework of Minimum Detectable Effect Sizes (MDES) formulae that can be used in determining sample size requirements and in estimating minimum detectable effect sizes for a range of individual- and group-random assignment design studies and for common quasi-experimental design studies. The paper and accompanying tool cover computation of minimum detectable effect sizes under the following study designs: individual random assignment designs, hierarchical random assignment designs (2-4 levels), block random assignment designs (2-4 levels), regression discontinuity designs (6 types), and short interrupted time-series designs. In each case, the discussion and accompanying tool consider the key factors associated with statistical power and minimum detectable effect sizes, including the level at which treatment occurs and the statistical models (e.g., fixed effect and random effect) used in the analysis. The tool also includes a module that estimates for one and two level random assignment design studies the minimum sample sizes required in order for studies to attain user-defined minimum detectable effect sizes.

Keywords: Power analysis, minimum detectable effect size, multilevel experimental, quasi-experimental designs

Experimental and quasi-experimental designs are widely applied to evaluate the effects of policy and programs. It is important that such studies be designed to have adequate statistical power to detect meaningful size impacts, if they occur. Some excellent tools have been developed to estimate the statistical power of studies with particular characteristics to detect true impacts of a particular size or larger—referred to as minimum detectable effect sizes (MDES)—for both individual and group-randomized experiments (e.g., Optimal Design Version 2.0, Spybrook, Raudenbush, Congdon, & Martinez, 2009; and Hedges & Rhoads, 2010; Konstantopoulos, 2009). This article and the associated computational tools in the accompanying workbook, *PowerUp!*, use the framework of MDES formulae in these other tools to define and apply formulae to compute MDES under a variety of experimental designs.

Address correspondence to Rebecca Maynard, University of Pennsylvania Graduate School of Education, 3700 Walnut Street, Philadelphia, PA 19104, USA. E-mail: rmaynard@gse.upenn.edu
and quasi-experimental study designs and to estimate the minimum required sample size (MRSS) to achieve a desired level of statistical analysis under various study designs and assumptions.

The article begins with a discussion of the various study designs included in the PowerUp! tool. The second section discusses study designs and the design qualities that are associated with statistical power, MDES, and MRSS for various study goals and designs. The third section of the article presents a framework for selecting the minimum relevant effect size (MRES) to focus on when designing a study and defines the basic computational formulas for determining MDES, given study design parameters. The fourth section describes the use of the PowerUp! tools for estimating MRES, and the fifth section discusses the use of PowerUp! tools for estimating MRSS for studies with particular goals and design parameters.

STUDY DESIGNS

PowerUp! focuses on two broad classes of experimental designs, individual random assignment (IRA) and cluster random assignment (CRA) designs, and two classes of quasi-experimental designs—regression discontinuity (RD) designs and interrupted time series (ITS) designs. In total, the PowerUp! tool covers 21 design variants, the key features of which are summarized in Table 1.

Experimental Designs

Experimental design studies involve random assignment of study units to conditions, generally treatment or control. If experimental design studies are well implemented and the data are properly analyzed, they generate unbiased estimates of both the average effects of the program, policy, or practice being tested and the confidence intervals around the estimated impacts (Boruch, 1997; Murnane & Willett, 2010; Orr, 1998).

Individual Random Assignment (IRA) designs are the most common and simplest experimental design and involve the random assignment of individual analysis units to treatment or control conditions (see Table 1, Model 1.0). These are also referred to in the literature as “completely randomized controlled trials” or “simple random assignment” designs. In cases where the treatment and control groups are equal in size, formulas found in sample design textbooks can be used for computing statistical power and minimum sample sizes needed to achieve certain minimum detectable effect sizes (MDES; e.g., see Orr, 1998). However, when groups are unequal in size and when randomization has occurred among individuals within blocks or strata (i.e., blocked individual random assignment or BIRA designs), it is more complicated to find, interpret, and apply the formulas for such computations (see Table 1, Models 2.1–2.5).

Cluster Random Assignment (CRA) designs have been gaining popularity in education research (Kirk, 1995). These designs entail random assignment of clusters of analysis units (e.g., classes of students or whole schools of teachers) to the treatment or control condition. In the simplest case, all clusters in a study sample are randomized either individually or within “blocks” (e.g., defined by district or state), resulting in what is referred to as CRA (or group) designs. These models generally fall into one of two categories—simple CRA designs (see Table 1, Models 3.1–3.3) or blocked CRA (BCRA) designs (see Table 1, Models 4.1–4.5). In simple CRA designs, top-level clusters (e.g., schools containing teachers and students) are randomly assigned to the treatment or control condition (e.g., see Borman et al., 2007; Cook, Hunt, & Murphy, 2000). In contrast, in BCRA designs,
Table 1. Study designs and analyses included in the PowerUp! tools

<table>
<thead>
<tr>
<th>Study Design</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Number</td>
<td></td>
<td>Simple or Blocked (Stratified) Assignment</td>
<td>Levels of Clustering</td>
<td>Unit of Treatment Assignment</td>
<td>Treatment Assignment Level</td>
<td>Cluster/Block Effect</td>
<td>MDES Calculation</td>
<td>Sample Size Calculation</td>
</tr>
<tr>
<td>Individual Random Assignment Designs (Level of Assignment = Level of Analysis)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Simple Individual Random Assignment (IRA)</td>
<td>1.0</td>
<td>simple</td>
<td>1</td>
<td>individual</td>
<td>1</td>
<td>N/A</td>
<td>IRA</td>
<td>N_IRA</td>
</tr>
<tr>
<td>2. Blocked (Stratified) Individual Random Assignment (BIRA)</td>
<td>2.1</td>
<td>simple</td>
<td>2</td>
<td>individual</td>
<td>1</td>
<td>constant</td>
<td>BIRA2_1c</td>
<td>N_BIRA2_1c</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>blocked</td>
<td>2</td>
<td>individual</td>
<td>1</td>
<td>fixed</td>
<td>BIRA2_1t</td>
<td>N_BIRA2_1t</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>blocked</td>
<td>2</td>
<td>individual</td>
<td>1</td>
<td>random</td>
<td>BIRA2_1r</td>
<td>N_BIRA2_1r</td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td>blocked</td>
<td>3</td>
<td>individual</td>
<td>1</td>
<td>random</td>
<td>BIRA3_1r</td>
<td>N_BIRA3_1r</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>blocked</td>
<td>4</td>
<td>individual</td>
<td>1</td>
<td>random</td>
<td>BIRA4_1r</td>
<td>N_BIRA4_1r</td>
</tr>
<tr>
<td>Cluster Random Assignment Designs (Level of Assignment = Level of Analysis)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Simple Cluster Random Assignment (CRA)</td>
<td>3.1</td>
<td>simple</td>
<td>2</td>
<td>cluster</td>
<td>2</td>
<td>random</td>
<td>CRA2_2r</td>
<td>N_CRA2_2r</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>simple</td>
<td>3</td>
<td>cluster</td>
<td>3</td>
<td>random</td>
<td>CRA3_3r</td>
<td>N_CRA3_3r</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>simple</td>
<td>4</td>
<td>cluster</td>
<td>4</td>
<td>random</td>
<td>CRA4_4r</td>
<td>N_CRA4_4r</td>
</tr>
<tr>
<td>4. Blocked (Stratified) Cluster Randomized Assignment Designs (BCRA)</td>
<td>4.1</td>
<td>blocked</td>
<td>3</td>
<td>cluster</td>
<td>2</td>
<td>fixed</td>
<td>BCRA2_2f</td>
<td>N_BCR2_A2_2f</td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>blocked</td>
<td>3</td>
<td>cluster</td>
<td>2</td>
<td>random</td>
<td>BCRA3_2r</td>
<td>N_BCR3_A2_2r</td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>blocked</td>
<td>4</td>
<td>cluster</td>
<td>2</td>
<td>random</td>
<td>BCRA4_2r</td>
<td>N_BCR4_A2_2r</td>
</tr>
<tr>
<td></td>
<td>4.4</td>
<td>blocked</td>
<td>4</td>
<td>cluster</td>
<td>3</td>
<td>fixed</td>
<td>BCRA4_3f</td>
<td>N_BCR4_A3_3f</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>blocked</td>
<td>4</td>
<td>cluster</td>
<td>3</td>
<td>random</td>
<td>BCRA4_3r</td>
<td>N_BCR4_A3_3r</td>
</tr>
<tr>
<td>Quasi-experimental Designs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Regression Discontinuity Designs (RD)</td>
<td>5.1</td>
<td>blocked</td>
<td>2</td>
<td>individual</td>
<td>1</td>
<td>fixed</td>
<td>RD2_1f</td>
<td>N_RD2_1f</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td>blocked</td>
<td>2</td>
<td>individual</td>
<td>1</td>
<td>random</td>
<td>RD2_1r</td>
<td>N_RD2_1r</td>
</tr>
<tr>
<td></td>
<td>5.3</td>
<td>simple</td>
<td>2</td>
<td>cluster</td>
<td>2</td>
<td>random</td>
<td>RD2_2r</td>
<td>N_RD2_2r</td>
</tr>
<tr>
<td></td>
<td>5.4</td>
<td>simple</td>
<td>3</td>
<td>cluster</td>
<td>3</td>
<td>random</td>
<td>RD3_3r</td>
<td>N_RD3_3r</td>
</tr>
<tr>
<td></td>
<td>5.5</td>
<td>blocked</td>
<td>3</td>
<td>cluster</td>
<td>2</td>
<td>fixed</td>
<td>RD3_2f</td>
<td>N_RD3_2f</td>
</tr>
<tr>
<td></td>
<td>5.6</td>
<td>blocked</td>
<td>3</td>
<td>cluster</td>
<td>2</td>
<td>random</td>
<td>RD3_2r</td>
<td>N_RD3_2r</td>
</tr>
<tr>
<td>6. Interrupted Time-Series Designs (ITS)</td>
<td>6.0</td>
<td>blocked</td>
<td>3</td>
<td>cluster</td>
<td>2</td>
<td>constant at level 3; random at level 2</td>
<td>ITS</td>
<td>N_ITS</td>
</tr>
</tbody>
</table>

 subclusters of individuals within top-level clusters (blocks) are randomly assigned to the treatment or control condition (e.g., see Nye, Hedges, & Konstantopoulos, 1999).

To determine the MDES for a particular sample size and allocation or the minimum required sample size (MRSS) to achieve a target MDES, it is necessary to account for both the particular qualities of the study design and the implication of that design for the analytic models to be used. For example, IRA design studies typically use simple multiple regression models, whereas CRA design studies generally use hierarchical linear models (HLMs) that account for clustering of the analysis units (e.g., students within classrooms or students within classrooms, schools, and districts). Blocked random assignment designs, whether IRA or CRA, typically entail meta-analyzing the results of ministudies of each sample using the fixed or random block effect model.

PowerUp! supports computation of both MDES and MRSS for a variety of IRA and CRA designs that are distinguished by whether the study sample is blocked prior to assigning units to treatment or control condition and by the number of levels of clustering, and the level at which random assignment occurs. For example, Model 1.0 (IRA and N_IRA) entails neither blocking nor clustering, whereas Model 2.1 (BIRA2_1c and N_BIRA2_1c) refers to a BIRA design that assumes constant effects across the assignment blocks. Model 3.1 (CRA2_2r and N_CRA2_2r) pertains to a design with two levels of sample clustering, assignment to treatment or control condition is at the second level (e.g., students are the units for analysis and classes of students are randomized to
Table 2. Examples of blocked random assignment designs

<table>
<thead>
<tr>
<th>PowerUp! Model →</th>
<th>Levels of Blocking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Two (students and schools)</td>
</tr>
<tr>
<td>Level of Random Assignment</td>
<td>1 = Students</td>
</tr>
<tr>
<td>Block Effects</td>
<td>c</td>
</tr>
</tbody>
</table>

Note: c = constant block effects model; f = fixed block effects model; r = random block effects model.

condition), and impacts are estimated using a random effects model. Model 3.3 (CRA4_4r and N_CRA4_4r) is similar to Model 3.1, except that pertain to a design with four levels of sample clustering and random assignment occurring at the fourth level.

The suffix of the worksheet names in PowerUp! shown in Table 1, columns 7 and 8, denote key characteristics of the study design and intended analytic model. For example, for Models 2.1 through 2.4, denoted by BIRA1_jk, i takes on the values of 2 through 4 to denote the levels of blocking; j takes on the values of 1 through 3 to denote the level at which random assignment occurs (e.g., students = 1, schools = 2, and districts or states = 3); k takes on values of c, f, and r, denoting the assumptions to be used in estimating the effects of the treatment. A “c” denotes the assumption of constant treatment effects across blocks, an “f” denotes the assumption that the block effect is fixed (i.e., each block has a specific treatment effect that could differ across block), and an “r” denotes the assumption that the block effect is random (i.e., the treatment effects can randomly vary across blocks).

In general, the decision about whether to use a fixed block effect model or a random block effect model depends on the sampling scheme used in the study and the population to which the results will be generalized. If the study uses a random sample drawn from a population to which the results are expected to generalize, the random block effect model would be appropriate. However, if the intent is to generalize the findings only to the study sample, a fixed block effect would be appropriate, with the block indicators functioning as covariates controlling for the treatment effects of block membership. With this model, estimates of the average treatment effect and its standard error are computed by averaging the block-specific treatment effects and computing the standard error of that average, whereas with the random block effect, model estimates one average treatment effect across all blocks and one standard error. Key properties of these models are illustrated in Table 2.

The first three blocked random assignment design models in the tool kit pertain to two-level designs. Model 2.1 (used in PowerUp! worksheets BIRA2_1c and N_BIRA2_1c) assumes treatment effects are constant across blocks and that results pertain to the population groups similar to the student sample; Models 2.2 (used in BIRA2_1f and N_BIRA2_1f) assumes that the treatment effects within blocks (e.g., schools) are fixed, but they may differ across blocks, and that the estimated impacts pertain to population groups similar to the schools represented in the sample; and Model 2.3 (used in BIRA2_1r and N_BIRA2_1r) assumes that the treatment effects may vary randomly across blocks and that the estimated average effect is generalizable to the reference population for the study (e.g., all students and schools).

Models 2.4 and 2.5 (used in BIRA3_1r and N_BIRA3_1r, and BIRA4_1r and N_BIRA4_1r, respectively) assume that random assignment occurs at Level 1 (e.g., students) and that impacts of the treatment vary randomly across higher levels (e.g., classrooms, schools, districts).
Models 4.1 through 4.5 are counterpart BCRA models (denoted as BCRA\textsubscript{i,j,k} and N_BCRA\textsubscript{i,j,k}). Models 4.1 and 4.4 (BCRA\textsubscript{3,2,f} and BCRA\textsubscript{4,3,f}) assume that random assignment occurs at Level 2 and Level 3, respectively (e.g., school and district, respectively) and that the treatment effects are fixed across blocks, as in the case of Model 2.2. Models 4.2 and 4.3 are similar to Models 2.4 and 2.5, except that the random assignment occurred at Level 2. Model 4.5 is similar to Model 2.5, except that it assumes that random assignment occurred at Level 3, not Level 1.

Quasi-Experimental Designs

In quasi-experimental designs, comparison groups are identified by means other than random assignment (e.g., students scoring just above the cut-point on the test used to select the treatment group, which consists of those with scores below the cut-point; students in matched schools not offering the treatment). Although there is a rich literature demonstrating the limitations of quasi-experimental methods for estimating treatment effects, quasi-experimental methods will continue to be used when it is not practical or feasible to conduct a study using random assignment to form the treatment and comparison groups. Thus, *PowerUp!* includes tools for estimating MDES and MRSS for studies that use two quasi-experimental—RD designs and ITS designs.

RD designs compare outcomes for the treatment group (e.g., students with low pretest scores or schools designated in need of improvement based on the percentage of students scoring below proficient on a state test) with a comparison group that was near the threshold for selection for the treatment on the basis of some characteristic that is measured using an ordinal scale (e.g., the pretest score or the percentage of students scoring below proficient on the state test), but that was not selected. Under certain conditions, studies that compare groups on either side of this selection threshold will yield unbiased estimates of the local average treatment effect for individuals whose “score” on the selection criterion is in the vicinity of the selection threshold or “discontinuity” (Bloom, 2009; Cook & Wong, 2007; Imbens & Lemieux, 2008; Schochet, 2008b; Schochet et al., 2010; Shadish, Cook, & Campbell, 2002; Thistlethwaite & Campbell, 1960; Trochim, 1984). In recent years, RD designs have been applied to study the effects on academic achievement of a variety of policies and practices, including class size reductions (Angrist & Lavy, 1999), mandatory summer school (Jacob & Lefgren, 2004; Matsudaira, 2008), and the federal Reading First Program (Gamse et al., 2008).

For sample design purposes, RD designs can be mapped to corresponding random assignment study designs in terms of the unit of assignment to treatment and the sampling framework (Schochet, 2008b). *PowerUp!* includes tools for estimating MDES for six specific RD designs described in Table 1:

- **Model 5.1:** “Students are the unit of assignment and site (school or district) effects are fixed” (Schochet, 2008b, p. 5). This corresponds to the two-level BIRA designs with fixed effects and treatment at Level 1 (Table 1, Model 2.2).
- **Model 5.2:** “Students are the units of assignment and site effects are random” (Schochet, 2008b, p. 5). This corresponds to two-level BIRA designs with random block effects (Table 1, Model 2.3).
- **Model 5.3:** “Schools are the unit of assignment and no random classroom effects” (Schochet, 2008b, p. 5). This corresponds to two-level simple CRA designs (Table 1, Model 3.1).
Model 5.4: “Schools are the units of assignment and classroom effects are random” (Schochet, 2008b, p. 6). This corresponds to three-level simple CRA designs with treatment at Level 3 (Table 1, Model 3.2).

Model 5.5: “Classrooms are the units of assignment and school effects are fixed” (Schochet, 2008b, p. 5). This corresponds to three-level BCRA designs with fixed effects and treatment at Level 2 (Table 1, Model 4.1).

Model 5.6: “Classrooms are the units of assignment and school effects are random” (Schochet, 2008b, p. 6). This corresponds to three-level BCRA designs with treatment at Level 2 and random effects across clusters (Table 1, Model 4.2).

ITS designs are used to estimate treatment impact by comparing trends in the outcome of interest prior to the introduction of the treatment and after (Bloom, 1999). They have been used primarily in large-scale program evaluations where program or policy decisions did not include or allow selecting participants or sites using a lottery. Examples include evaluations of the Accelerated Schools reform model (Bloom, 2001), First Things First school reform initiative (Quint, Bloom, Black, & Stephens, 2005), Talent Development (Kemple, Herlihy, & Smith, 2005), Project GRAD (Quint et al., 2005), and the Formative Assessments of Student Thinking in Reading program (Quint, Sepanik, & Smith, 2008).

A challenge with ITS designs is establishing a credible basis for determining the extent to which changes occurring after the onset of the intervention can be attributed reasonably to the intervention rather than to other factors. One strategy for improving the ability to parse out effects of co-occurring factors that can affect observed differences in outcomes between the pre- and postintervention period is to use both before-and-after comparisons within the time series (e.g., schools before and after the introduction of the treatment) and comparison of the time series for the treatment units with a matched group of units that never received the treatment.

PowerUp! includes tools for estimating the MDES and the minimum sample size requirements for ITS design studies that involve up to two levels of clustering (see Table 1, Model 6.0). For example, as in the applications just cited, the treatment is often delivered at the cohort level, whereas the analysis is conducted at the student level, and the school is used as constant or fixed effect.

FACTORS THAT AFFECT MDES AND MRSS

Smartly designed evaluations have sample sizes large enough that, should the program, policy, or practice under study have a meaningful size impact, there is a high probability that the study will detect it. However, knowing how large a sample is sufficient for this purpose depends on a number of factors, some of which can only be "guesstimated" prior to conducting the study. Moreover, some of these factors are discretionary (i.e., based on the evaluator’s judgment) and others are inherent (i.e., depend on the nature of the intervention and the study design). Put another way, discretionary factors are statistical qualifications decided on by the evaluator, whereas inherent factors are characteristics of the true effect, which is not known, and of the basic study design, which typically is conditioned by factors outside of the evaluator’s control (e.g., the size and nature of the units of intervention and the properties of the outcomes of interest).

There are six prominent discretionary factors associated with statistical power of particular study samples and sample size requirements to achieve a specified statistical power. One is the minimum relevant size impact, by which we mean the smallest size
impact it is important to detect, if it exists. The second is the adopted level of statistical significance (α) or probability of making a Type I error (i.e., concluding there is an impact when there really is not). Commonly, evaluators set alpha equal to .05. A third discretionary factor is the desired level of statistical power ($1-\beta$), where β is the probability of making a Type II error (failing to detect a true impact if it occurs). Commonly, evaluators adopt a power level of .80. A fourth factor pertains to use of one-tailed or two-tailed testing, with two-tailed testing being most common. A fifth factor relates to use covariates to reduce measurement error (Bloom, 2006; Bloom, Richburg-Hayes, & Black, 2007), and a sixth factor relates to whether to assume fixed or random effects across sample blocks or clusters, which relates to the intended application of the study findings.

There are five especially notable inherent factors associated with the MDES or required sample size estimates associated with particular evaluation goals: (a) the size of the true average impact of the treatment or intervention (typically expressed in effect-size units), (b) for cluster (group) designs, the intraclass correlations (ICCs) indicating the fraction of the total variance in outcome that lies between clusters, (c) the number of sample units within clusters, (d) the proportion of the sample expected to be in the treatment (or comparison) group (Bloom, 2006; Bloom et al., 2008; Hedges & Rhoads, 2010; Konstantopoulos, 2008a, 2008b; Raudenbush, 1997; Raudenbush, Martinez, & Spybrook, 2007; Schochet, 2008a), and (e) the minimum relevant effect size (MRES). For blocked random assignment design studies, the variability in impacts across blocks or effect size heterogeneity also affects the MDES and MRSS (Hedges & Rhoads, 2010; Konstantopoulos, 2008a, 2009; Raudenbush et al., 2007).1

For RD design studies, an inherent factor in determining MDES or MRSS is the ratio of the asymptotic variances of impact estimators of RD design and experimental design, referred to as the “design effect.” For single-level RD design studies, the design effect can be expressed as $1/(1 - \rho_{TS}^2)$, where ρ_{TS} is the correlation between treatment status and the criterion measure used to determine whether the unit was assigned to the treatment group (Schochet, 2008b). Notably, ρ_{TS} will vary depending on three factors: (a) the distribution of the criterion measure in the population that is represented by the study sample, (b) the location of the cut-off score in this distribution, and (c) the proportion of the sample that is in the treatment group (Schochet, 2008b). The resulting consequence of the design effect for the statistical power of a particular study design is detailed in the appendix and described in Schochet (2008b).

PowerUp! allows the user to compute either the MDES or the MRSS for studies by specifying inherent and discretionary factors, based on the best available information about them. For example, the user can specify assumed unconditional ICCs, drawing on resources such as Hedges and Hedberg (2007) and the average size of clusters, based on demographic data. The user can then set values for discretionary factors, such as the desired level of statistical precision, the nature of statistical controls that will be used, and the relative size of the treatment and comparison groups. Within each design, the user may select other design features, including the number of levels of clustering or blocking, the nature of the cluster or block effect, and the expected level of sample attrition.

The MRES is both one of the most important factors and one that requires considerable judgment on the part of the evaluator. It also is frequently not explicitly discussed in evaluation design reports or considered in evaluating study findings.

1The effect size variability and effect size heterogeneity have different definitions but both indicate the variability/heterogeneity of treatment effect vary across block.
SELECTING THE MRES

Most often power analysis entails estimating and evaluating MDES for specific sample sizes and designs. *PowerUp!* is designed to encourage and facilitate designing studies with adequate power to detect impacts equal to or larger than an established minimum size that has relevance for policy or practice. We refer to this as the MRES. In some cases, there is an empirical or policy basis for establishing a minimum size impact that is relevant and, thus, for a “target” MRES to use in designing a study or as the basis for judging the adequacy of an existing study sample to estimate reliably whether a treatment has a meaningful effect. The two obvious considerations in deciding on the MRES are cost and actual size of impact. For example, a costly educational intervention such as lowering class size would have practical relevance only if it generates relatively large impacts on student achievement, whereas a low-cost intervention such as financial aid counseling would need to have only modest impacts on college attendance for it the findings to have practical relevance. Alternatively, often there may be threshold effects that are needed before an intervention would be judged to be important for policy. For example, even a low-cost intervention that moves student achievement 1 or 2 points on a 500-point scale is not likely to have practical importance, regardless of whether or not the study findings are statistically significant.

Educators frequently describe their goals for changes in policy or practice in terms of their potential to close achievement gaps (e.g., between gender or race/ethnic groups) or in relation to an average year of student growth in the outcome of interest. It is important to note that these types benchmarks are sensitive to the metrics used (Bloom, Hill, Black & Lipsey, 2008; Hill, Bloom, Black, & Lipsey, 2007). Thus, it is generally best to determine the minimum relevant size impact in some natural unit (like test score gains or percentage point reductions in dropout rates) for determining the minimum relevant size impact and, subsequently, convert this to effect size units (the MRES).

COMPUTING THE MDES

A convenient way to determine whether a completed study has adequate statistical power is to compute the MDES and compare this with the MRES. A priori, the goal is to design the study such that the MDES is less than or equal to the MRES and, thereby, maximize the chance that, if no impacts are detected, it is pretty certain that any true impacts escaping detection were sufficiently small as to have no practical or policy significance.

In contrast to the MRES, which is independent of the study design, the MDES depends on the actual sample design that was (or will be) implemented. Specifically, it is the minimum true effect size that a particular study can detect with a specified level of statistical precision and power. The MDES depends on a variety of characteristics of the actual study including the study design, the extent and nature of clustering, the total sample size available for analysis (e.g., taking account of sample attrition), and the allocation of the sample to treatment and control conditions.

In general, the formula for estimating the MDES can be expressed as

$$MDES = M_v \times \frac{SE}{\sigma}$$

where M_v is the sum of two t statistics (Bloom, 1995, 2005, 2006; Murray, 1998). For one-tailed tests, $M_v = t_{\alpha} + t_{1-\beta}$ with v degrees of freedom (v is a function of sample size.
Figure 1. One-tailed multiplier \(M_v = t_\alpha + t_{1-\beta} \) (color figure available online).

Note: Adapted from “The Core Analytics of Randomized Experiments for Social Research” (Figure 1, p. 22) by H. S. Bloom, 2006, MDRC Working Papers on Research Methodology, New York, NY: Manpower Demonstration Research Corporation. Copyright 2006 by MDRC. Adapted with permission. The two-tailed multiplier: \(M_v = t_{\alpha/2} + t_{1-\beta} \).

and number of covariates) and for two-tailed tests (which are typically applied in studies designed to measure treatment effects), \(M_v = t_{\alpha/2} + t_{1-\beta} \). \(SE \) is the standard error of the treatment effect estimate, and \(\sigma \) is the pooled total standard deviation of the outcome. Throughout this article and in the accompanying tools, the effect size has been defined as the difference in raw score units of the outcome of interest, divided by the pooled total standard deviation.

Figure 1 illustrates the construct of the multiplier for one-tailed tests. It is the smallest distance in standard error (\(t \) statistic) units such that, if the null hypothesis \(\left(H_0 : \bar{Y}_T - \bar{Y}_C = 0 \right) \) is true, the Type I error is equal to \(\alpha \) and, if the alternative hypothesis \(\left(H_a : \bar{Y}_T - \bar{Y}_C > 0 \right) \) is true, the Type II error is equal to \(\beta \). Put another way, the MDES is the smallest size true effect we expect to be able to detect with the specified power and precision.

It is possible to calculate the MDES for any study design as long as the ratio of the \(SE \) to \(\sigma \) is known and other key assumptions about the study design and analytic model have been specified (e.g., the sample size and its allocation across clusters and to treatment conditions, the level at which random assignment occurs, the number of covariates and their explanatory power, and the level of sample attrition). For example, in the two-level simple CRA design where treatment is at Level 2 (Table 1, Model 3.1), the treatment effect can be estimated using a two-level HLM:

\[
\text{Level 1: } Y_{ij} = \beta_{0j} + \beta_{1j}X_{ij} + r_{ij}, \quad r_{ij} \sim N(0, \sigma^2_{r|X})
\]

\[
\beta_{0j} = \gamma_{00} + \gamma_{01}(\text{TREATMENT})_j + \gamma_{02}W_j + \mu_{0j}, \quad \mu_{0j} \sim N(0, \tau^2_{0|W})
\]

\[
\beta_{1j} = \gamma_{10}
\]

Reduced form: \(Y_{ij} = \gamma_{00} + \gamma_{01}(\text{TREATMENT})_j + \gamma_{02}W_j + \gamma_{10}X_{ij} + \mu_{0j} + r_{ij} \)
In this case, the MDES formula from Bloom (2006, p. 17) is as follows:

\[
MDES = M_{J-g^*-2} \sqrt{\frac{\rho (1 - R_2^2)}{P(1-p)J} + \frac{(1-\rho)(1-R_1^2)}{P(1-P)Jn}}
\]

where

Multiplier for one-tailed test: \(M_{J-g^*-2} = t_{\alpha} + t_1 - \beta\) with \(J-g^*-2\) degrees of freedom;
Multiplier for two-tailed test: \(M_{J-g^*-2} = t_{\alpha/2} + t_1 - \beta\) with \(J-g^*-2\) degrees of freedom;
\(J\) = the total number of clusters;
\(g^*\) = the number of group covariates used;
\(\rho = \frac{\tau^2}{\tau^2 + \sigma^2}\) is the unconditional intra-class coefficient (ICC);
\(\tau^2\) = Level-2 (between group-level) variance in the unconditional model (without any covariates);
\(\sigma^2\) = Level-1 (individual-level) variance in the unconditional Model;
\(R_1^2 = 1 - (\sigma^2_W / \sigma^2)\) is the proportion of variance in the outcome measure occurring at Level 1 that is explained by covariates, \(X\);
\(R_2^2 = 1 - (\tau^2_W / \tau^2)\) is the proportion of the within group variance (at Level 2) that is explained by the covariates, \(W\);
\(P = \) the proportion of this sample assigned to the treatment group (\(J_T \div J\));
\([1 + \frac{1}{J-2}]\)

Sample attrition reduces statistical power by lowering the size of the analytic sample. For the two-level simple CRA design, attrition might occur at both levels. Suppose the sample retention rates (= 1 - the percentage of the study sample lost to follow up) at Levels 1 and 2 are \(r_1\) and \(r_2\), respectively, the revised \(MDES\) formula containing the retention rates:

\[
MDES = M_{J-g^*-2} \sqrt{\frac{\rho (1 - R_2^2)}{P(1-p)J} + \frac{(1-\rho)(1-R_1^2)}{P(1-P)Jn}} \sqrt{1 + \frac{1}{J-2}}
\]

The MDES formula derived by Bloom (2006) ignores the factor \(\sqrt{1 + \frac{1}{J-2}}\). The reason is that this adjustment has no practical significance for very small samples (i.e., samples less than 30). For example, for \(J = 6, 10, 14, 20,\) and 30, respectively, the MDES calculated from Bloom’s formula is 18%, 7%, 5%, 3%, and 2% smaller than what would have been estimated including the small sample correction. Similarly, the standard error formulas for three-level hierarchical randomized assignment designs derived by other researchers did not include such a factor (e.g., Hedges & Rhoads, 2010; Konstantopoulos, 2008b; Schochet, 2008a; Spybrook, 2007), to be consistent we use the MDES formula by ignoring this factor.

In addition to affecting the MDES and MRSS, sample attrition also may introduce the threat of bias (U.S. Department of Education, What Works Clearinghouse, 2008). PowerUp! does not address the threat of bias due to sample attrition.

An alternative approach to handling attrition in power analysis is to calculate the required sample size to meet MDES when there is no attrition and then adjust this sample size by dividing (1-attrition rate).
In addition to Bloom’s (1995, 2005, 2006) work on the background and computation of MDES, the specific formulae for SEs used in the PowerUp! tools rely on the work of others. For example, formulae for the two-level simple CRA design studies (Table 1, Model 3.1) draw on Raudenbush (1997); those for two-level BIRA designs (Table 1, Models 2.2 and 2.3) draw on Raudenbush and Liu (2000); those for three-level simple CRA designs (Table 1, Model 3.2) and for three-level BIRA or BCRA designs (Table 1, Models 2.4, 3.1 and 3.2) draw on Hedges and Rhoads (2010), Konstantopoulos (2008a, 2008b, 2009), Schochet (2008a), and Spybrook (2007); those for four-level BCRA designs with treatment at Level 3 (Table 1, Models 4.4 and 4.5) draw on Spybrook (2007); those for the various RD designs (Table 1, Models 5.1–5.6) draw on Schochet (2008b); and those for the ITS designs (Table 1, Model 6.0) draw on Bloom (1999, 2003). Notably, because the SE can be expressed in terms of the pooled standard deviation of the outcome, it also could be expressed in terms that are related to the SE, such as the unconditional ICC or the R^2. The MDES formulae for four-level simple cluster designs and the other four-level blocked random assignment designs were derived following similar logic as applied for the aforementioned designs. The MDES formulae for all of the designs previously described and listed in Table 1 are presented in the appendix.

These MDES formulas are the basis for the PowerUp! tools in the accompanying Microsoft Excel workbook.

COMPUTING MRSS

The same formulae that are used to compute MDES can be manipulated to work in reverse to determine the minimum size sample required to ensure that the MDES for a study will be less than or equal to the minimum size that is relevant for policy or practice (the MRES). For example, using the MDES formula for a two-level CRA design study in the preceding example (Table 1, Model 3.1), the sample size (J) can be expressed as follows:

$$J = \left(\frac{M_{Jr2-g^*r-2}}{MDES}\right)^2 \left(\frac{\rho(1-R_2^2)}{P(1-P)r_2} + \frac{(1-\rho)(1-R_1^2)}{P(1-P)n\rho r_2r_1}\right)$$

Because the multiplier, M_{Jr2-g^*r-2}, is a function of J, PowerUp! solves for the sample size through an iterative process that is illustrated next.

USING THE PowerUp! TOOLS

PowerUp! users have options to compute an MDES or to determine the MRSS by selecting the core study design features from among the 21 identified in Table 1. PowerUp! is a user-friendly, flexible tool that complements existing power analysis software by answering one of two questions, based on user-supplied assumptions: (a) What is the minimum size of true impact that will have a specified likelihood of being detected (i.e., the MDES), given
a specified study design, sample size, and allocation to treatment and control condition? and (b) for a given study design, what is the MRSS to have the desired power to detect a true impact (if such exists) that is at or above a minimum size that is relevant for policy or practice (i.e., the MRES)?

Computing MDES

In general, one would want to estimate the MDES in cases where there is an existing sample design—for example, to determine whether a completed study used a sufficiently large sample to expect that it would have detected impacts of a given size or larger, if they occurred. Put another way, one could determine whether the study was likely to have uncovered true impacts that were equal to or larger than a specified MRES.

The first step in using the tool is to determine the basic study design, using Table 1 and then select the corresponding Tab in the PowerUp! tool. For example, to compute the MDES for a study that used simple IRA of students to treatment or control condition corresponds to Model 1.0 (IRA) in Table 1. Thus, the user would to select Tab 1.0 IRA to enter the tool for computing the study’s MDES (see Table 3). Once locating the relevant worksheet, the user has the opportunity to supply relevant assumptions and preferences in the highlighted cells. These include the desired statistical precision and power (i.e., \(\alpha \), whether a one- or two-tailed test is being used, and \(1 - \beta \)), assumptions about the analytic models that were used to estimate impacts (i.e., the proportion of variance in the outcome explained by the model and the number of covariates used), and characteristics of the study sample (i.e., total size and proportion assigned to treatment condition).

Table 3 shows input and output for computing the MDES for a study that randomly assigned 240 individuals to treatment or control condition in equal proportion. The user in this example specified an alpha level of .05, a two-tailed test, 80% power, and an \(R^2 \) of...

<table>
<thead>
<tr>
<th>Assumptions</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>0.05 Probability of a Type I error</td>
</tr>
<tr>
<td>Two-tailed or One-tailed Test?</td>
<td>2</td>
</tr>
<tr>
<td>Power (1-(\beta))</td>
<td>0.80 Statistical power (1-probability of a Type II error)</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0.50 Proportion of the sample randomised to treatment: (m_t / (n_t + n_c))</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.60 Percent of variance in outcome explained by covariates (See Bloom et al. 2007; Dede et al. 2010)</td>
</tr>
<tr>
<td>(k^*)</td>
<td>1 Number of covariates used</td>
</tr>
<tr>
<td>(n) (Total Sample Size)</td>
<td>240</td>
</tr>
<tr>
<td>(M) (Multiplier)</td>
<td>2.81 Computed from (T_1) and (T_2)</td>
</tr>
<tr>
<td>(T_1) (Precision)</td>
<td>1.97</td>
</tr>
<tr>
<td>(T_2) (Power)</td>
<td>0.84 Determined from given power level</td>
</tr>
<tr>
<td>MDES</td>
<td>0.230 Minimum Detectable Effect Size</td>
</tr>
</tbody>
</table>

Note: The parameters in the yellow cells need to be specified. The MDES will be calculated automatically.
Table 4. Sample tool for computing the MDES for a two-level blocked individual random assignment design study with random effects (see Table 1, Model 2.3 and PowerUp! Tab 2.3 BIRA2.1r; available in color online)

<table>
<thead>
<tr>
<th>Assumptions</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha Level (α)</td>
<td>0.05</td>
</tr>
<tr>
<td>Two-tailed or One-tailed Test</td>
<td>2</td>
</tr>
<tr>
<td>Power (1-β)</td>
<td>0.80</td>
</tr>
<tr>
<td>Rho (ICC)</td>
<td>0.35</td>
</tr>
<tr>
<td>ω</td>
<td>0.10</td>
</tr>
<tr>
<td>R²</td>
<td>0.00</td>
</tr>
<tr>
<td>R²CI</td>
<td>0.00</td>
</tr>
<tr>
<td>s (Average Block Size)</td>
<td>80</td>
</tr>
<tr>
<td>M (Multiplier)</td>
<td>2.81</td>
</tr>
<tr>
<td>T₁ (Precision)</td>
<td>1.96</td>
</tr>
<tr>
<td>T₂ (Power)</td>
<td>0.84</td>
</tr>
<tr>
<td>MDES</td>
<td>0.033 Minimum Detectable Effect Size</td>
</tr>
</tbody>
</table>

Note: The parameters in yellow cells need to be specified. The MDES will be calculated automatically.

.60. After inputting these user-supplied assumptions, PowerUp! returned an estimate of the MDES equal to .230 (shown in bold at the bottom of the worksheet).

Estimating the MDES for a BIRA design study is similar, only the user would select a Tab corresponding to the relevant version of Model 2, depending on whether there are two, three, or four levels of clustering and whether the analytic model assumes constant, fixed, or random effects, respectively. Table 4 illustrates the worksheet for Model 2.3, which has two levels of clustering and assumes random effects. In general, the tools for blocked random assignment designs work similarly to those just stated, with the addition of treatment effect heterogeneity parameters (ω) that denote assumptions about the variability of the treatment effect across certain level of blocks, standardized by the outcome variation at that level of block (Hedges & Rhoads, 2010; Konstantopoulos, 2008a, 2009). Furthermore, the block-level variance explained is the proportion of variance between blocks on the treatment effect that is explained by block-level covariates, not the block-mean variance explained.

An example of studies for which it would be appropriate to use these block random assignment designs is for the recently completed study of charter schools (Gleason, Clark, Tuttle, & Dwyer, 2010), where lotteries were used to assign eligible charter school applicants for oversubscribed schools to admission (treatment group) or not (control group) for the particular charter school to which they applied (the block). In analyzing the data from this randomized block design study, it was assumed that the effects were unique to each charter school.

For a CRA design, the user would select the relevant Model 3 or Model 4 tab from the PowerUp! tools. Models 3.1 through 3.3 all pertain to simple CRA designs but differ in the number of levels of clustering. For example, a study in which treatment occurred at the cluster level closest to the unit of analysis (e.g., randomization occurred at the classroom level and students were the unit of analysis), the user should select Model 2.2 (CRA2.2r). If schools were randomized to treatment or control status and students clustered in classrooms
Table 5. Sample tool for computing the MDES for a four-level simple cluster random assignment design study with treatment at Level 4 (see Table 1, Model 3.3 and PowerUp/ Tab 3.3 CRA4,4r; available in color online)

<table>
<thead>
<tr>
<th>Assumptions</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha Level (a)</td>
<td>0.05 Probability of a Type I error</td>
</tr>
<tr>
<td>Two-tailed or One-tailed Test?</td>
<td></td>
</tr>
<tr>
<td>Power (1-β)</td>
<td>0.80 Statistical power (1 - probability of a Type II error)</td>
</tr>
<tr>
<td>ρ_{01} (ICC1)</td>
<td>0.05 Proportion of variance among Level 4 units (V4/(V1 + V2 + V3 + V4)) (See Hedges and Hedberg 2007)</td>
</tr>
<tr>
<td>ρ_{02} (ICC2)</td>
<td>0.05 Proportion of variance among Level 3 units (V3/(V1 + V2 + V3)) (See Hedges and Hedberg 2007)</td>
</tr>
<tr>
<td>ρ_{03} (ICC3)</td>
<td>0.05 Proportion of variance among Level 2 units (V2/(V1 + V2 + V3)) (See Hedges and Hedberg 2007)</td>
</tr>
<tr>
<td>ρ_{04} (ICC4)</td>
<td>0.05 Proportion of variance among Level 1 units (V1) (V1) (See Hedges and Hedberg 2007)</td>
</tr>
<tr>
<td>ρ_{12}</td>
<td>0.50 Proportion of Level 2 units randomized to treatment</td>
</tr>
<tr>
<td>ρ_{13}</td>
<td>0.50 Proportion of Level 3 units randomized to treatment</td>
</tr>
<tr>
<td>ρ_{14}</td>
<td>0.50 Proportion of Level 4 units randomized to treatment</td>
</tr>
<tr>
<td>ρ_{23}</td>
<td>0.50 Proportion of variance in the Level 2 mean outcome explained by Level 2 covariates (See Bloom et al. 2007; Deke et al. 2010)</td>
</tr>
<tr>
<td>ρ_{24}</td>
<td>0.50 Proportion of variance in the Level 3 mean outcome explained by Level 3 covariates (See Bloom et al. 2007; Deke et al. 2010)</td>
</tr>
<tr>
<td>ρ_{34}</td>
<td>0.50 Proportion of variance in the Level 4 mean outcome explained by Level 4 covariates (See Bloom et al. 2007; Deke et al. 2010)</td>
</tr>
<tr>
<td>3a*</td>
<td>1 Number of Level 4 covariates</td>
</tr>
<tr>
<td>n (Average Sample Size for Level 1)</td>
<td>10 Mean number of Level 1 units per Level 2 unit (harmonic mean recommended)</td>
</tr>
<tr>
<td>J (Average Sample Size for Level 2)</td>
<td>2 Mean number of Level 2 units per Level 3 unit (harmonic mean recommended)</td>
</tr>
<tr>
<td>K (Average Sample Size for Level 3)</td>
<td>3 Mean number of Level 3 units per Level 4 unit (harmonic mean recommended)</td>
</tr>
<tr>
<td>L (Sample Size # of Level 4 units)</td>
<td>20 Number of Level 4 units</td>
</tr>
<tr>
<td>M (Multiples)</td>
<td>2.97 Computed from T_1 and T_2</td>
</tr>
<tr>
<td>T_1 (Precision)</td>
<td>2.11 Determined from alpha level, given two-tailed or one-tailed test</td>
</tr>
<tr>
<td>T_2 (Power)</td>
<td>0.86 Determined from given power level</td>
</tr>
<tr>
<td>MDES</td>
<td>0.292 Minimum Detectable Effect Size</td>
</tr>
</tbody>
</table>

Note: The parameters in yellow cells need to be specified. The MDES will be calculated automatically.

were the unit of analysis, the user should select Model 3.2; if districts were randomized to treatment or control conditions, but students clustered in schools and classrooms were the unit of analysis, the user should select Model 3.3.

In addition to the input required for IRA design studies, for CRA designs, the user also needs to provide information on the unconditional ICCs between the analysis units and the clusters, assumptions about the proportion of variance in the outcome explained by the estimation model for each level of the data, and details about the size of sample clusters as well as the overall sample. The medium shaded cells in Table 5 illustrate these input parameters for a design with four levels of clustering and where the treatment occurs at the highest level of clustering (Table 1, Model 3.3, and PowerUp/ Tab 3.3 CRA4,4r).

In this particular example, the user selected the same basic parameters as in the previous example shown in Table 3 (e.g., alpha level, two-tailed testing, power standard, and proportion assigned to treatment condition). However, in this case, the user also needed to provide assumptions or actual data about the ICCs at the various levels, the proportion of variance in the outcomes explained by covariates (R_j^2) at the various levels, the number of sample units randomized, and the average number of units in each of the clusters. In this particular example, there are 1,200 analysis units, clustered as follows: 10 Level-1 units per Level 2 cluster, 2 Level-2 units per Level 3 cluster; 3 Level-3 units per Level 4 cluster, and 20 Level-4 units. The user specified that covariates will be included in the Levels 1 to
4 analyses and that covariates will explain half of the variance in the outcome measured at each level. With only one covariate in the Level 4 analysis (which is the level at which randomization was conducted), the MDES is estimated to be .292 standard deviations (shown in the dark shaded box at the bottom).

For BCRA designs, the user selects one of the Model 4 tabs from the PowerUp! tools. As with the BIRA models, the appropriate tab depends on the level of blocking at which random assignment occurred and whether the analysis is designed to estimate fixed or random effects.

As previously discussed, the PowerUp! tool uses formulas for computing the MDES and minimum sample size requirements for RD designs that are “derivative” of those used for random assignment designs. Essentially, in an RD design, the treatment and control groups are determined not by randomization but by a specific rule for sorting based on a continuous criterion variable. As a result, for any given set of study design parameters (e.g., alpha level, one- or two-tailed test, power level, and MRES), the MDES and MRSS are considerably larger than under an IRA design. PowerUp! has built into the MDES formulas estimates of the “penalty” (formally referred to as the “design effect”) based on work by Schochet (2008b).

The design effect can be thought of as the multiplier on the sample size requirement needed for the RD design to have similar statistical power to a block random assignment design study. For example, Schochet (2008b) found that, for a study in which the optimal functional form is linear, the criterion measure is normally distributed, the cutoff score is at the mean, and 50% of the sample is in the treatment group, the estimated design effect is 2.75. Drawing on this work, PowerUp! includes this value as the default design effect in the RD design tools. Of importance, Schochet (2008b, p. 10) noted that “the linearity (and constant treatment effects) assumptions will likely provide a lower bound on RD design effects.” Thus, PowerUp! users may want to modify this default.

Table 6 illustrates the PowerUp! tool for computing the MDES for Model 5.2 (PowerUp! Tab 5.2 RD2.1r), which would apply to a study in which students were the units of assignment and school effects are random. This model is analogous to two-level random effect block random assignment designs (Table 1, Model 2.3 and PowerUp! Tab 2.3 BIRA2.1r). In addition to the parameters required to calculate MDES for two-level random effect blocked random assignment design study (e.g., the treatment effect heterogeneity, \(\omega \), and the proportion of variance between blocks on the treatment effect explained by the block-level covariates), the user also needs to accept or change the default design effect.

For ITS design studies, the user needs to specify four design parameters that are unique to the ITS design: (a) the number of baseline years of data; (b) the follow-up year of interest; and (c) whether an additional comparison group is used; and (d) if an additional comparison group is used, its size relative to that of the number of treatment group units.

Table 7 illustrates the MDES calculation for an ITS design study with alpha level of .05, using a two-tailed test, and 80% power. The ICC for the cohorts is 0.02, with five waves of baseline data, six program schools, and 200 students per school. The proportion of variance of between-cluster (cohort) explained by a cohort-level covariate is 0.2. The impact is estimated in the second observation period following the treatment. For this example, the MDES is estimated to be 0.20 assuming the study sample does not include any no-treatment comparison units and 0.24 if two thirds of the sample consists of nontreatment comparison units. The reason the MDES increases if some of the sample comes from no-treatment comparison units is that, holding sample size constant, the no-treatment comparison units increase the standard error of the impact estimate increases due to the need to make additional comparisons.
Table 6. Sample tool for computing the MDES for regression discontinuity design analogous to two-level blocked individual random assignment design with random effects (see Table 1, model 5.2 and PowerUp! Tab 5.2 RD2_1r; available in color online)

<table>
<thead>
<tr>
<th>Assumptions</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha Level (α)</td>
<td>Probability of a Type I error</td>
</tr>
<tr>
<td>Two-tailed or One-tailed Test?</td>
<td>2</td>
</tr>
<tr>
<td>Power (1-β)</td>
<td>Statistical power (1 - probability of a Type II error)</td>
</tr>
<tr>
<td>Rho (ICC)</td>
<td>Proportion of variance between clusters (Hedges & Holmberg 2007)</td>
</tr>
<tr>
<td>δ²</td>
<td>Treatment effect heterogeneity or variance in treatment effect across Level 2 units, standardized by the Level 2 outcome variation: (\theta = \delta / \tau_c)</td>
</tr>
<tr>
<td>p</td>
<td>Proportion of individuals randomized to treatment: (n_t / (n_t + n_c))</td>
</tr>
<tr>
<td>R²</td>
<td>Proportion of variance in the Level 1 outcome explained by the Level 1 covariates (See Bloom et al. 2007, Deke et al 2010)</td>
</tr>
<tr>
<td>R²/²</td>
<td>Proportion of variance in treatment effect between Level-2 blocks explained by Level-2 covariates</td>
</tr>
<tr>
<td>n (Average Cluster Size)</td>
<td>Mean number of Level 1 units per Level 2 cluster (harmonic mean recommended)</td>
</tr>
<tr>
<td>J (Sample Size [# of Clusters])</td>
<td>Number of Level 2 units in sample</td>
</tr>
<tr>
<td>Design Effect</td>
<td>2.75 Estimated from empirical data (last two rows) or based on other assumptions (Schocher, 2008)</td>
</tr>
<tr>
<td>M (Multiplier)</td>
<td>2.80 Computed from (T_1) and (T_2)</td>
</tr>
<tr>
<td>(T_1) (Precision)</td>
<td>2.02 Computed from given alpha Level, two-tailed or one-tailed test</td>
</tr>
<tr>
<td>(T_2) (Power)</td>
<td>0.85 Computed from given power level</td>
</tr>
<tr>
<td>MDES</td>
<td>0.232 Minimum Detectable Effect Size</td>
</tr>
<tr>
<td>(\rho_2)</td>
<td>Correlation between TREATMENT indicator and the score used for treatment assignment</td>
</tr>
<tr>
<td>Estimated Design Effect</td>
<td>2.78 Estimated multiplier on sample size for Randomized Block Design study with equal power (See Schocher 2008)</td>
</tr>
</tbody>
</table>

Note: The parameters in yellow cells need to be specified. The MDES will be calculated automatically.

Determining the MRSS to Achieve Study Goals

The logical way to design a study is to begin by determining the most appropriate, feasible study design. The first step is to determine whether it is feasible to conduct an experimental design evaluation. The second step is to determine the appropriate units for assignment to treatment condition and for analysis, considering factors like the natural unit for delivering the intervention, the potential for contamination of the control group, and the likelihood of gaining necessary cooperation from partner organizations and individuals. The third step is to determine the MRES (see previous discussion), considering factors such as the cost of the intervention and the nature of the target outcome (e.g., student test scores, or high school graduation rates), their means and standard deviations for target populations, and “normal” changes in the levels over time. The fourth step is to use this information in estimating how large the study sample needs to be to achieve the study objectives.

Typically, design teams arrive at their target sample sizes in one of two ways. One way is to figure out how large a sample can be supported by the evaluation dollars, determine the MDES implied by that sample size, and rationalize it. Another common strategy is to use a trial-and-error approach to computing the MDES for various sample sizes until converging on an “acceptable” MDES. The PowerUp! sample size estimation tools use variants of the
Table 7. Sample tool for computing the MDES for an interrupted time series design study: Three-level blocked design with random effects at Level 2 and constant effects at Level 3 (see Table 1, Model 6.0 and *PowerUp!* Tab ITS; available in color online)

<table>
<thead>
<tr>
<th>Assumptions</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha Level (α)</td>
<td>0.05</td>
</tr>
<tr>
<td>Two-tailed or One-tailed Test?</td>
<td>2</td>
</tr>
<tr>
<td>Power (1-β)</td>
<td>0.80</td>
</tr>
<tr>
<td>Rho (ICC)</td>
<td>0.02</td>
</tr>
<tr>
<td>T (the number of baseline years)</td>
<td>The number of years prior to intervention for which the baseline, or pre-intervention, trend is established.</td>
</tr>
<tr>
<td>n (Average Sample Size for Level 1)</td>
<td>Mean number of Level 1 units per Level 2 unit, or cohort (harmonic mean)</td>
</tr>
<tr>
<td>m (Sample Size [# of program schools])</td>
<td>Number of Level 3 units in the sample</td>
</tr>
<tr>
<td>R²</td>
<td>0.20</td>
</tr>
<tr>
<td>t (follow-up year of interest)</td>
<td>Year in which the outcomes are to be compared (i.e., "0" would indicate the year that treatment occurs; "1" would indicate the first year following the intervention).</td>
</tr>
<tr>
<td>g*</td>
<td>1</td>
</tr>
<tr>
<td>Ratio of comparison units to experimental units</td>
<td>Number of Level 2 (cohort-level) covariates at block level</td>
</tr>
<tr>
<td>N (Multiplicities)</td>
<td>2.90 (Multiplicities) = 2.90 was used in Bloom (1999, 2007).</td>
</tr>
<tr>
<td>T1 (Precision)</td>
<td>2.05 (T1 = Precision) = 2.05 was used in given alpha Level, two-tailed or one-tailed test, df = m*T-g-1.</td>
</tr>
<tr>
<td>T1 (Power)</td>
<td>0.85</td>
</tr>
<tr>
<td>MDES (no comparison units)</td>
<td>0.20 Minimum Detectable Effect Size</td>
</tr>
<tr>
<td>MDES (with comparison units)</td>
<td>0.24 Minimum Detectable Effect Size</td>
</tr>
</tbody>
</table>

Note: The parameters in yellow cells need to be specified. The MDES will be calculated automatically. This calculation assumes a design in which individuals are nested within successive grade cohorts in a school cohort is a random effect; the school is constant effect.

Formulae used to calculate MDES to compute sample size requirements for user-defined MDES (which should be the same or smaller than the MRES). It does this through an iterative process, which we have automated through an Excel macro that works as follows:

- Step 1. An initial “guesstimate” of the sample size (individuals, clusters or blocks) has been set at 30.
- Step 2. An estimate of the multiplier and the MRSS is calculated using the formulas based on the “guesstimate” of the sample size.
- Step 3. If the “guesstimate” of the sample size differs from that calculated using the formula, the “guesstimate” is replaced with the average of the original “guesstimate” and the calculated sample size, and the program goes back to Step 2.
- The process stops when the difference between the calculated sample size and “guesstimate” is within ±0.1.

PowerUp! includes a tab for computing minimum required sample sizes to achieve a specified MRES under user-defined parameters for each of the 21 study design configurations specified in Table 1. The example shown in Table 8 pertains to a simple two-level CRA design study where the analysis will be conducted using a two-level HLM with student nested within schools and assuming random effects. In this example, the user’s desired MDES is 0.25 standard deviations. The user also has specified an alpha of .05, two-tailed tests of statistical significance, and 80% power level. The user has assumed an ICC of 0.20, that there will be an average of 60 students per school, and that 90% of the schools and 80% of the students in the original study sample will be retained in the analysis. The analysis will
Table 8. A sample tool for computing the minimum required sample size for simple two-level cluster random assignment design with treatment occurring at Level 2 (see Table 1, Model 3.1 and PowerUp! Tab N.CRA2.2r; available in color online)

<table>
<thead>
<tr>
<th>Assumptions</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRES = MDES</td>
<td>0.25 MRES = MDES</td>
</tr>
<tr>
<td>Alpha Level (α)</td>
<td>0.05 Probability of a Type I error</td>
</tr>
<tr>
<td>Two-tailed or One-tailed Test?</td>
<td>2</td>
</tr>
<tr>
<td>Power (1-β)</td>
<td>0.80 Statistical power (1-probability of a Type II error)</td>
</tr>
<tr>
<td>Rho (ICC)</td>
<td>0.20 Proportion of variance in outcome that is between clusters (See Hedges and Heidberg 2007)</td>
</tr>
<tr>
<td>n (Average Cluster Size)</td>
<td>60 Mean number of Level 1 units per Level 2 cluster (harmonic mean)</td>
</tr>
<tr>
<td>Sample Retention Rate: Level 2 units</td>
<td>90% Proportion of Level 2 units retained in analysis sample</td>
</tr>
<tr>
<td>Sample Retention Rate: Level 1 units</td>
<td>80% Proportion of Level 1 units retained in analysis sample</td>
</tr>
<tr>
<td>p</td>
<td>0.500 Proportion of sample randomized to treatment: (\frac{h}{1 + h})</td>
</tr>
<tr>
<td>(R_1^2)</td>
<td>0.500 Proportion of variance in Level 1 outcome explained by Block and Level 1 covariates (See Bloom et al. 2007; Deke et al. 2010)</td>
</tr>
<tr>
<td>(R_2^2)</td>
<td>0.700 Proportion of variance in Level 2 outcome explained by Block and Level 2 covariates (See Bloom et al. 2007; Deke et al. 2010)</td>
</tr>
<tr>
<td>(e)</td>
<td>1 Number of Level 2 covariates</td>
</tr>
<tr>
<td>M (Multiplier)</td>
<td>2.59 Computed from (T_1) and (T_2)</td>
</tr>
<tr>
<td>[Sample Size [Clusters #]]</td>
<td>41 Number of clusters needed for given MRES</td>
</tr>
</tbody>
</table>

Note: The parameters in yellow cells need to be specified. Then click "RUN" to calculate sample size.

include one student-level covariate that explains 50% of student-level variance, and one school-level covariate explaining 70% of school-level variance. Using these user-supplied parameters, PowerUp! estimates that the study sample should include 41 schools (2,460 students).

Users may find the PowerUp! tools useful for exploring the implications for sample size requirements of varying the study design parameters. For example, it would be relatively easy to assess the sensitivity of the MRSS to the ICC level, to decisions about blocking, or to higher \(R^2 \) that would result from investing in good pretest measures.

CONCLUSION

PowerUp! is intended as a complement to, not a replacement for, other sample design tools. One goal in developing this tool is to encourage and enable evaluators who are planning new evaluations to more accurately estimate the size samples needed to ensure a high probability that the study will detect meaningful size impacts, should they result from the intervention. A second goal is to make it easier for those who are judging the findings from existing research to estimate how large an impact would need to be in order for the study to have a reasonable chance of observing a statistically significant difference between the treatment and control groups. A third goal is make it easy for evaluators to see how sensitive evaluation findings may be to factors that are inherent to the particular intervention and setting for the study (e.g., the units for delivering the intervention, the age and demographics of the study sample, important outcomes), as well as discretionary factors (e.g., study design, levels of statistical power and precision required, fixed or random effects, control variables).
PowerUp! makes key assumptions study designs transparent. It also invites users to examine the sensitivity of their estimated sample size requirements or MDES to various assumptions and decisions of the evaluator. For example, it would be easy for an evaluator to determine how much more sample would be required if the goal were to generate a population estimate of the impact rather than simply a sample estimate, determine the expected decrease in the MDES or the MRSS if sample attrition could be reduced by 10 percentage points, estimate the “cost” of blocking as opposed to using a simple random assignment design, determine how sensitive the MDES or minimum sample size estimate are to the assumed ICC, and estimate the difference in the MDES for a give sample size if the evaluator opts to use an experimental design rather than an RD or ITS design.

PowerUp! makes it easy for the user to explore the implications of sample design decisions and user-supplied assumptions about unknowns, such as the ICC, explanatory power of covariates, and ultimate sample attrition rates. By using Microsoft Excel as the platform for this tool, we have made it possible for others to not only use the tool as we have designed it but also to adapt and enhance it to meet other objectives.

ACKNOWLEDGMENTS

The authors contributed equally to this work. The article and accompanying analytic tool benefitted greatly from input at various stages of the work by Spyros Konstantopoulos, Mark Lipsey, Larry Orr, Mike Weiss, and Kerry Hofer. We also thank two anonymous reviewers for their thoughtful comments and suggestions. The PowerUp! tool that accompanies this article may be accessed at http://peabody.vanderbilt.edu/research/pri/methods_resources.php or from the corresponding author.

REFERENCES

APPENDIX

Statistical Models, Minimum Detectable Effect Size (MDES), and Sample Size Calculation Formula

General Notes

These notations apply to the MDES formulas listed next. *P* is the proportion of this sample that is treatment group. *n* is the average sample size for Level 1 (Students #). *J* is the average sample size for Level 2 (Classes #). *K* is the average sample size for Level 3 (School #). *L* is the total sample size for Level 4 (District #). ρ_2 (or ρ), ρ_3, and ρ_4 are unconditional
intra-class correlation (ICC) at Levels, 2, 3, and 4, respectively. R^2_m is the proportion of level-m variance explained by covariate at level m (m could be 1 – 4). R^2_h is the proportion of variance between level-h blocks on the treatment effect explained by block-level covariates (h could be 2 – 4). $\omega = \frac{\tau^2}{\tau^2 + \sigma^2}$ indicates treatment effect heterogeneity (Hedges & Rhoads, 2010; Konstantopoulos, 2008b, 2009) across level-h block, which is proportion of the variance between level-h blocks on the treatment effect to the between-level-h-block residual variance. For example, in two-level random effect block random assignment design (the model details are below), $\omega = \frac{\tau^2}{\tau^2 + \sigma^2}$ indicates treatment effect heterogeneity across block.

Note that $\rho \omega = \frac{\tau^2}{\tau^2 + \sigma^2}$, which is effect size variability. The multiplier (M_v) for one-tailed test and two-tailed test are $t_{\alpha} + t_{1-\beta}$ and $t_{\alpha/2} + t_{1-\beta}$, respectively, with v degrees of freedom which is the function of the sample size and number of covariates depending on the study designs and analysis models.

1. Individual Random Assignment (IRA) Design

The treatment effect can be estimated by the following ordinary least square model:

$$Y_i = \beta_0 + \beta_1(TREATMENT)_i + \beta_2X_i + e_i, \; e_i \sim N(0, \sigma^2_X)$$

MDES formula is given by Bloom (2006, p. 12):

$$MDES = M_{n-k^*+2} \sqrt{\frac{1 - R^2_A}{nP(1-P)}}$$

The sample size ($n = n_T + n_C$) can be derived from the previous formula as follows:

$$n = \left(\frac{M_{n-k^*+2}}{MDES} \right)^2 \left(\frac{1 - R^2_A}{P(1-P)} \right)$$

$P =$ the proportion of this sample that is randomized treatment, i.e., $n_T/(n_T + n_C)$. $k^* = \frac{k^*}{k^*}$ is the number of covariates. $R^2_A = 1 - (\sigma^2_X/\sigma^2)$, defined as the proportion of variance in the outcome predicted by covariates, X. $\sigma^2 = \text{variance in unconditional model (without any covariates).}$ Multiplier for one-tailed test: $M_{n-k^*+2} = t_{\alpha} + t_{1-\beta}$ with $n-k^*+2$ degrees of freedom. Multiplier for two-tailed test: $M_{n-k^*+2} = t_{\alpha/2} + t_{1-\beta}$ with $n-k^*+2$ degrees of freedom. α is the type-I error, and β is the type-II error, i.e., $(1-\beta)$ is the power.

Note that the multiplier, M_{n-k^*+2}, is a function of n, however, n can be solved through iterations.

2. Blocked Individual Random Assignment (BIRA) Design

Recall that in BIRA design, treatment is at individual level (Level 1).

Model 2.1. Two-Level BIRA Design, Constant Block Effect Model (BIRA2c).

The constant block effect model assumes that the treatment effect is constant across block. The statistical model only includes block dummy variables, which differentiate the
intercepts. The fixed block effect model assumes that each block has its own treatment effect. The statistical model includes both block dummy variables and the interaction terms of block dummies and \textit{TREATMENT} variable.

For the constant block effect model, within two-level hierarchical linear model framework, we have

\begin{align*}
\text{Level 1: } Y_{ij} &= \beta_{0j} + \beta_{1j}(TREATMENT)_{ij} + \beta_{2j}X_{ij} + r_{ij} \\
\beta_{0j} &= \gamma_{00} + \mu_{0j} \\
\text{Level 2: } \beta_{1j} &= \gamma_{10} \\
\beta_{2j} &= \gamma_{20} \\
\text{Reduced form: } Y_{ij} &= \gamma_{00} + \gamma_{10}(TREATMENT)_{ij} + \gamma_{20}X_{ij} + \mu_{0j} + r_{ij}
\end{align*}

\(\mu_{0j}\), for \(j \in \{1, 2, \ldots, J\}\), are associated with each block mean, constrained to have a mean of zero.

Bloom (2006, p. 13) derived a MDES formula for the unconditional model (without covariate adjustment). The adapted MDES formula with covariate adjustment is

\[MDES = M_{Jn-J-g^*-1} \left(\frac{(1 - R_1^2)}{nP(1 - P)} \right) \]

The Level-2 sample size \(J\) can be derived from the previous formula as follows:

\[J = \left(\frac{M_{Jn-J-g^*-1}}{MDES} \right)^2 \left(\frac{(1 - R_1^2)}{nP(1 - P)} \right) \]

Multiplier for one-tailed test: \(M_{Jn-J-g^*-1} = t_\alpha + t_{1-\beta}\) with \(Jn - J - g^* - 1\) degrees of freedom. Multiplier for two-tailed test: \(M_{Jn-J-g^*-1} = t_{\alpha/2} + t_{1-\beta}\) with \(Jn - J - g^* - 1\) degrees of freedom. \(R_1^2\) is the proportion of pooled unexplained variation in the outcome predicted by the blocks and covariates. \(n\) is the average number of individuals per block. \(J\) is the number of blocks. \(g^*_1\) is the number of covariates. \(P\) is the proportion of this sample that is treatment group \((n_T/n)\).

Model 2.2. Two-Level Blocked Individual Random Assignment Design, Fixed Block Effect Model (BIRA2_1f).

For the fixed block effect model, within two-level hierarchical linear model framework, we have

\begin{align*}
\text{Level 1: } Y_{ij} &= \beta_{0j} + \beta_{1j}(TREATMENT)_{ij} + \beta_{2j}X_{ij} + r_{ij}, \quad r_{ij} \sim N(0, \sigma^2_{Y|x}) \\
\beta_{0j} &= \gamma_{00} + \mu_{0j} \\
\text{Level 2: } \beta_{1j} &= \gamma_{10} + \mu_{1j} \\
\beta_{2j} &= \gamma_{20} \\
\text{Reduced form: } Y_{ij} &= \gamma_{00} + \gamma_{10}(TREATMENT)_{ij} + \gamma_{20}X_{ij} + \mu_{0j} + \mu_{1j}(TREATMENT)_{ij} + r_{ij}
\end{align*}
\(\mu_{0j} \), for \(j \in \{1, 2, \ldots, J\} \), are fixed effects associated with each block mean, constrained to have a mean of zero; \(\mu_{1j} \), for \(j \in \{1, 2, \ldots, J\} \), are fixed effects associated with each block treatment effect, constrained to have a mean of zero.

\[
MDES = M_{Jn-2J-\gamma_1^*} \sqrt{\frac{(1 - R_1^2)}{JnP(1 - P)}}
\]

The Level-2 sample size \((J) \) can be derived from the previous formula as follows:

\[
J = \left(\frac{M_{Jn-2J-\gamma_1^*}}{MDES} \right)^2 \left(\frac{(1 - R_1^2)}{nP(1 - P)} \right)^{-1}
\]

\(n \) = average number of individuals per block. \(g_1^* \) = number of Level-1 covariates. \(R_1^2 \) = proportion of variance in the outcome predicted by blocks and Level-1 covariates. \(P \) = the average proportion of this sample that is treatment group \((n_T/n)\).

Model 2.3. Two-Level Blocked Individual Random Assignment Design, Random Block Effect Model (BIRA2.1r).

Within two-level hierarchical linear model framework, the unconditional model i:

Level 1: \(Y_{ij} = \beta_{0j} + \beta_{1j}(TREATMENT)_{ij} + r_{ij}, \ r_{ij} \sim N(0, \sigma^2) \)

Level 2: \[\beta_{0j} = \gamma_{00} + \mu_{0j} \left(\begin{array}{c} \mu_{0j} \\ \mu_{1j} \end{array} \right) \sim N \left(\left(\begin{array}{c} 0 \\ 0 \end{array} \right), \left[\begin{array}{cc} \tau_2^2 & \tau_2 T_2^2 \\ \tau_2 T_2^2 & \tau_2 T_2^2 \end{array} \right] \right) \]

\[\beta_{1j} = \gamma_{10} + \mu_{1j} \]

Reduced form: \(Y_{ij} = \gamma_{00} + \gamma_{10}(TREATMENT)_{ij} + \mu_{0j} + \mu_{1j}(TREATMENT)_{ij} + r_{ij} \).

The variance of \(TREATMENT \) derived by Raudenbush and Liu (2000) is as follows:

\[\text{Var}(\hat{\gamma}_{10}) = \frac{\tau_2^2 + 4\sigma^2/n}{J}. \]

\(\rho = \frac{\tau_2^2}{\tau_2^2 + \sigma^2} \), unconditional intraclass coefficient (ICC).

\(\omega = \frac{\tau_2^2}{\tau_2^2 + \sigma^2} \) indicates treatment effect heterogeneity, which is the ratio of the variance of the treatment effect between blocks to the between-block residual variance. Note that \(\rho \omega = \frac{\tau_2^2}{\tau_2^2 + \sigma^2} \), which is effect size variability.

The conditional model is

Level 1: \(Y_{ij} = \beta_{0j} + \beta_{1j}(TREATMENT)_{ij} + \beta_{2j}X_{ij} + r_{ij}, \ r_{ij} \sim N(0, \sigma_{X}^2) \)

\[\beta_{0j} = \gamma_{00} + \gamma_{01}W_j + \mu_{0j} \]

Level 2: \[\beta_{1j} = \gamma_{10} + \gamma_{11}W_j + \mu_{1j}. \left(\begin{array}{c} \mu_{0j} \\ \mu_{1j} \end{array} \right) \sim N \left(\left(\begin{array}{c} 0 \\ 0 \end{array} \right), \left[\begin{array}{cc} \tau_2^2 & \tau_2 T_2^2 \\ \tau_2 T_2^2 & \tau_2 T_2^2 \end{array} \right] \right) \]

\[\beta_{2j} = \gamma_{20} \]
$$MDES = M_{J-g^*-1} \sqrt{\frac{\rho \omega (1 - R^2_{2T})}{J} + \frac{(1 - \rho)(1 - R^2_{J})}{P(1 - P)Jn}}$$

The Level-2 sample size (J) can be derived from the previous formula as follows:

$$J = \left(\frac{M_{J-g^*-1}}{MDES} \right)^2 \left(\rho \omega (1 - R^2_{2T}) + \frac{(1 - \rho)(1 - R^2_{J})}{P(1 - P)n} \right)$$

The multiplier for a one-tailed test is: $M_{J-g^*-1} = t_{a} + t_{1-\beta}$ with $J-g^*-1$ degrees of freedom. The multiplier for two-tailed test: $M_{J-g^*-1} = t_{a/2} + t_{1-\beta}$ with $J-g^*-1$ degrees of freedom. n = average sample size for Level 1 (Students #). P = the average proportion of this sample that is treatment group (n_T/n). g^* = number of block-level covariates. $R^2_I = 1 - \sigma^2_{\eta_i}/\sigma^2$ indicates the proportion of individual variance (at Level 1) predicted by covariates. $R^2_{2T} = 1 - \tau^2_{T2|W}/\tau^2_{T2}$ indicates the proportion of variance between Level-2 blocks on the treatment effect explained by Level-2 covariates. When it is unclear how much the block-level covariate can reduce the block-treatment variance, it will be conservative to set $R^2_{T2} = 0$.

Model 2.4. Three-Level Blocked Individual Random Assignment Design, Random Block Effect Model (BIRA3..tr).

Within three-level hierarchical linear model framework, the treatment effect can be estimated by

Level 1: $Y_{ijk} = \beta_{0jk} + \beta_{1jk}(TREATMENT)_{ijk} + \beta_{2jk}X_{ijk} + r_{ijk} r_{ijk} \sim N(0, \sigma^2_X)$

$\beta_{0jk} = \gamma_{00k} + \gamma_{01k} W_{jk} + \mu_{0jk}$

Level 2: $\beta_{1jk} = \gamma_{10k} + \gamma_{11k} W_{jk} + \mu_{1jk} \left(\frac{\mu_{0jk}}{\mu_{1jk}} \right) \sim N \left(\left[\begin{array}{cc} 0 \\ \tau^2_{2|W} \\ \tau^2_{T2|W} \\ \tau^2_{T3|V} \\ \tau^2_{T3|V} \end{array} \right] \right)$

$\beta_{2jk} = \gamma_{20k}$

$\gamma_{00k} = \xi_{000} + \xi_{001} V_k + \xi_{00k}$

$\gamma_{10k} = \xi_{100} + \xi_{101} V_k + \xi_{10k}$

$\gamma_{11k} = \xi_{110}$

$\gamma_{20k} = \xi_{200}$

Based on the standard error of treatment effect estimate formula that derived by Hedges and Rhoads (2010) and Konstantopoulos (2008b), the MDES for three-level BIRA with treatment at Level 1 and random block effect model is as follows:

$$MDES = M_{K-g^*-1} \sqrt{\frac{\rho_3 \omega_3 (1 - R^2_{3T})}{K} + \frac{\rho_2 \omega_2 (1 - R^2_{2T})}{JK} + \frac{(1 - \rho_2 - \rho_3)(1 - R^2_{J})}{P(1 - P)JKn}}$$

The Level-3 sample size (K) can be derived from the previous formula as follows:

$$K = \left(\frac{M_{K-g^*-1}}{MDES} \right)^2 \left(\frac{\rho_3 \omega_3 (1 - R^2_{3T})}{J} + \frac{\rho_2 \omega_2 (1 - R^2_{2T})}{P(1 - P)Jn} \right)$$
The multiplier for one-tailed test is: $M_{K-g_3^3-1} = t_{a_1} + t_{1-\beta}$ with $K-g_3^3-1$ degrees of freedom. Multiplier for two-tailed test is: $M_{K-g_3^3-1} = t_{a/2} + t_{1-\beta}$ with $K-g_3^3-1$ degrees of freedom. $J = \text{average sample size for Level 2 (Classes #).} \ n = \text{average sample size for Level 1 (Students #).}$ $P = \text{the average proportion of this sample that is treatment group (} n_T/n \text{).}$ \[\rho_3 = \frac{\tau_3^2}{\tau_3^2 + \sigma^2} \] is unconditional ICC at Level 3. \[\rho_2 = \frac{\tau_2^2}{\tau_3^2 + \sigma^2} \] is unconditional ICC at Level 2. \[\tau_2^2 = \text{Level-3 variance (unconditional model).} \ \tau_2^2 = \text{Level-2 variance (unconditional model).} \]

\[\sigma^2 = \text{individual-level variance (unconditional model).} \ \omega_3 = \frac{\tau_3^2}{\tau_2^2} \] indicates treatment effect heterogeneity across Level 3, which is the proportion of the variance between schools on the treatment effect to the between-school residual variance (unconditional model). \[\omega_2 = \frac{\tau_2^2}{\tau_3^2} \] indicates treatment effect heterogeneity across Level 2, which is the proportion of the variance between classrooms on the treatment effect to the between-classroom residual variance (unconditional model). \[\tau_3^2 = \text{Level-3 variance (unconditional model).} \ \tau_3^2 = \text{Level-2 variance (unconditional model).} \]

Model 2.5: Four-Level Blocked Individual Random Assignment Design, Random Block Effect Model (BCRA4.1r).

Within four-level hierarchical linear model framework, the treatment effect can be estimated by:

Level 1: \[Y_{ijkl} = \beta_{0ijkl} + \beta_{1ijkl}(\text{TREATMENT})_{ijkl} + \beta_{2ijkl}X_{ijkl} + r_{ijkl}, \ r_{ijkl} \sim N(0, \sigma_{\gamma}^2) \]

\[\beta_{0ijkl} = \gamma_{00kl} + \gamma_{01kl}W_{ijkl} + \mu_{0ijkl} \]

Level 2: \[\beta_{1ijkl} = \gamma_{10kl} + \gamma_{11kl}W_{ijkl} + \mu_{1ijkl}, \ \left(\mu_{0ijkl} \mu_{1ijkl} \right) \sim N \left(\left[\begin{array} \gamma_{00kl} \\ \gamma_{01kl} \end{array} \right], \left[\begin{array} \tau_{21k}^2 \\ \tau_{22k}^2 \end{array} \right] \right) \]

\[\tau_2^2_W = \text{Level-2 variance conditional on Level-2 covariate.} \ \sigma_{\gamma}^2 = \text{individual-level variance (unconditional model).} \]

\[\gamma_{00kl} = \xi_{000l} + \xi_{001l}V_{kl} + \xi_{00kl} \]

\[\gamma_{10kl} = \xi_{100l} + \xi_{101l}V_{kl} + \xi_{10kl}, \ \left(\xi_{00kl} \xi_{10kl} \right) \sim N \left(\left[\begin{array} \xi_{000l} \\ \xi_{100l} \end{array} \right], \left[\begin{array} \tau_{31l}^2 \\ \tau_{32l}^2 \end{array} \right] \right) \]

Level 3:

\[\gamma_{01l} = \xi_{01l} \]

\[\gamma_{11l} = \xi_{11l} \]

\[\gamma_{20l} = \xi_{20l} \]

\[\xi_{000l} = \psi_{000l} + \psi_{001l}Z_{l} + \nu_{000l} \]

\[\xi_{001l} = \psi_{001l} \]

Level 4:

\[\xi_{100l} = \psi_{100l} + \psi_{101l}Z_{l} + \nu_{100l}, \ \left(\nu_{000l} \nu_{100l} \right) \sim N \left(\left[\begin{array} \nu_{000l} \\ \nu_{100l} \end{array} \right], \left[\begin{array} \tau_{41l}^2 \\ \tau_{42l}^2 \end{array} \right] \right) \]

\[\xi_{101l} = \psi_{101l} \]

\[\xi_{011l} = \psi_{011l} \]

\[\xi_{20l} = \psi_{20l} \]
Following the same logic of two- and three-level block random assignment designs with treatment at Level 1, the MDES formula for four-level designs can be expressed as follows:

\[
MDES = M_{L-g_4^1-1} \times \sqrt{\frac{\rho_4 \omega_4 (1 - R_T^2)}{L} + \frac{\rho_3 \omega_3 (1 - R_T^2)}{LK} + \frac{\rho_2 \omega_2 (1 - R_T^2)}{LKJ} + \frac{(1 - \rho_2 - \rho_3 - \rho_4)(1 - R_T^2)}{P(1 - P)JKJn}}
\]

The Level-4 sample size \(L\) can be derived from the previous formula as follows:

\[
L = \left(\frac{M_{L-g_4^1-1}}{MDES} \right)^2 \left(\frac{\rho_4 \omega_4 (1 - R_T^2)}{K} + \frac{\rho_3 \omega_3 (1 - R_T^2)}{KJ} + \frac{(1 - \rho_2 - \rho_3 - \rho_4)(1 - R_T^2)}{P(1 - P)JKJn} \right)
\]

The multiplier for one-tailed test is: \(M_{L-g_4^1-1} = t_n + t_{1-\beta}\) with \(L-g_4^1-1\) degrees of freedom. The multiplier for two-tailed test is: \(M_{L-g_4^1-1} = t_{n/2} + t_{1-\beta}\) with \(L-g_4^1-1\) degrees of freedom. \(n\) = average number of individuals per Level 2. \(P\) = average proportion of this sample that is treatment group (\(n_T/n\)). \(J\) = average sample size for Level 2 (Class #). \(K\) = average sample size for Level 3 (School #). \(\rho_4 = \frac{\tau_4}{\tau_4^2 + \tau_3^2 + \tau_2^2 + \sigma^2}\) is the unconditional ICC at Level 4. \(\rho_3 = \frac{\tau_3}{\tau_3^2 + \tau_2^2 + \sigma^2}\) is the unconditional ICC at Level 3. \(\rho_2 = \frac{\tau_2}{\tau_2^2 + \tau_1^2 + \sigma^2}\) is Level-3 variance (unconditional model). \(\tau_4^2\) = Level-4 variance (unconditional model). \(\tau_2^2\) = Level-2 variance (unconditional model). \(\sigma^2\) = individual-level variance (unconditional model). \(\omega_4 = \frac{\tau_4^2}{\tau_4^2}\) indicates treatment effect heterogeneity across Level 4, which is proportion of the variance between level-4 clusters on the treatment effect to the between Level-4-cluster residual variance (unconditional model). \(\omega_3 = \frac{\tau_3^2}{\tau_4^2}\) indicates treatment effect heterogeneity across Level 3, which is proportion of the variance between level-3 clusters on the treatment effect to the total between Level-3-cluster residual variance (unconditional model). \(\omega_2 = \frac{\tau_2^2}{\tau_4^2}\) indicates treatment effect heterogeneity across Level 2, which is proportion of the variance between Level-2 clusters on the treatment effect to the total between Level-2-cluster residual variance (unconditional model). \(R_T^2 = 1 - (\sigma_X^2 / \sigma^2)\), defined as the proportion of individual variance (at level one) predicted by covariates, \(X\). \(R_{T2}^2 = 1 - \tau_{T2\omega}^2 / \tau_T^2\) indicates the proportion of variance between Level-2 blocks on the treatment effect explained by Level-2 covariates. \(R_{T3}^2 = 1 - \tau_{T3\nu}^2 / \tau_T^2\) indicates the proportion of variance between level-3 blocks on the treatment effect explained by Level-3 covariates. \(R_{T4}^2 = 1 - \tau_{T4\nu}^2 / \tau_T^2\) indicates the proportion of variance between Level-4 blocks on the treatment effect explained by level-4 covariates.

3. Simple Cluster Random Assignment (CRA) Design

Recall that in hierarchical random assignment designs, treatment is at top level.

Model 3.1. Two-Level CRA Design Where Treatment Is at Level 2 (CRA2_2r).

The treatment effect can be estimated by a two-level hierarchical linear model:
PowerUp! A Tool for MDES and MRES

Level 1: \(Y_{ij} = \beta_{0j} + \beta_{1j} X_{ij} + r_{ij}, \quad r_{ij} \sim N(0, \sigma_{X}^2) \)

Level 2: \(\beta_{0j} = \gamma_{00} + \gamma_{01}(TREATMENT)_j + \gamma_{02} W_j + \mu_{0j}, \mu_{0j} \sim N(0, \tau_{W}^2) \)

\(\beta_{1j} = \gamma_{10} \)

Reduced form: \(Y_{ij} = \gamma_{00} + \gamma_{01}(TREATMENT)_j + \gamma_{02} W_j + \gamma_{10} X_{ij} + \mu_{0j} + r_{ij} \)

The MDES formula from Bloom (2006, p. 17) is

\[
MDES = M_{J - g^* - 2} \sqrt{\frac{\rho(1-R_j^2)}{P(1-P)J} + \frac{(1-\rho)(1-R_j^2)}{P(1-P)Jn}}
\]

Sample attrition reduces statistical power by lowering the size of the analytic sample. For two-level cluster random assignment (CRA) design, attrition might occur at both levels. Suppose the retention rates (\(= 1 - \text{attrition rates} \)) at Levels 1 and 2 are \(r_1 \) and \(r_2 \), respectively, the MDES formula containing the retention rates is

\[
MDES = M_{J r_2 - g^* - 2} \sqrt{\frac{\rho(1-R_j^2)}{P(1-P)r_2} + \frac{(1-\rho)(1-R_j^2)}{P(1-P)nr_2r_1}}
\]

The Level-2 sample size \((J) \) can be derived from the previous formula as follows:

\[
J = \left(\frac{M_{J r_2 - g^* - 2}}{MDES} \right)^2 \left(\frac{\rho(1-R_j^2)}{P(1-P)r_2} + \frac{(1-\rho)(1-R_j^2)}{P(1-P)nr_2r_1} \right)
\]

The multiplier for one-tailed test is: \(M_{J r_2 - g^* - 2} = t_a + t_{1-\beta} \) with \(J r_2 - g^* - 2 \) degrees of freedom. The multiplier for two-tailed test is: \(M_{J r_2 - g^* - 2} = t_{a/2} + t_{1-\beta} \) with \(J r_2 - g^* - 2 \) degrees of freedom. \(\tau^2 = \text{Level-2 (between group-level) variance in unconditional model (without any covariates).} \)

\(g^* = \text{Level-1 (individual-level) variance in unconditional model (without any covariates).} \)

\(\rho = \frac{\tau^2}{\tau^2 + \sigma^2}, \text{unconditional intraclass coefficient (ICC).} \)

\(R_j^2 = 1 - (\sigma^2_X / \sigma^2), \text{defined as the proportion of individual variance at Level 1 predicted by covariates,} \)

\(X. \) \(R_j^2 = 1 - (\sigma^2_W / \tau^2), \text{defined as the proportion of group variance (at Level 2) predicted by covariates,} \)

\(W. \) \(g^* = \text{the number of group covariates used.} \) \(P = \text{the proportion of this sample that is treatment group (} J r_2 / J) \).

Model 3.2. Three-Level CRA Design Where Treatment Is at Level 3 (CRA3_3r).

The treatment effect can be estimated by a three-level hierarchical linear model:

Level 1: \(Y_{ijk} = \beta_{0jk} + \beta_{1jk} X_{ijk} + r_{ijk}, \quad r_{ijk} \sim N(0, \sigma_{X}^2) \)

Level 2: \(\beta_{0jk} = \gamma_{00k} + \gamma_{01k} W_{jk} + \mu_{0jk}, \mu_{0jk} \sim N(0, \tau_{W}^2) \)

\(\beta_{1jk} = \gamma_{10k} \)

\(\gamma_{00k} = \xi_{000} + \xi_{001}(TREATMENT)_k + \xi_{002} V_k + \xi_{00k} \)

Level 3: \(\gamma_{01k} = \xi_{010} \)

\(\gamma_{10k} = \xi_{100} \)
Based on the variance (or standard error) of treatment effect estimate formula that derived by Hedges and Rhoads (2010), Konstantopoulos (2008a), Schochet (2008a), and Spybrook (2007), the MDES for three-level CRA design is

\[
MDES = M_{K-g_3^{+2}} \left(\frac{\rho_3(1 - R_2^2)}{P(1 - P)K} + \frac{\rho_2(1 - R_2^2)}{P(1 - P)J} + \frac{(1 - \rho_2 - \rho_3)(1 - R_1^2)}{P(1 - P)JKn} \right)
\]

The Level-3 sample size \((K) \) can be derived from the previous formula as follows:

\[
K = \left(\frac{M_{K-g_3^{+2}}}{MDES} \right)^2 \left(\frac{\rho_3(1 - R_2^2)}{P(1 - P)} + \frac{\rho_2(1 - R_2^2)}{P(1 - P)J} + \frac{(1 - \rho_2 - \rho_3)(1 - R_1^2)}{P(1 - P)JKn} \right)
\]

Multiplier for one-tailed test: \(M_{K-g_3^{+2}} = t_a + t_{1-\beta} \) with \(K-g_3^{+2} \) degrees of freedom. Multiplier for two-tailed test: \(M_{K-g_3^{+2}} = t_{a/2} + t_{1-\beta} \) with \(K-g_3^{+2} \) degrees of freedom. \(J = \) average sample size for Level 2 (Classes #). \(\rho_3 = \frac{\tau_3}{\tau_3 + \tau_2 + \sigma^2} \) is the unconditional ICC at Level 3. \(\rho_2 = \frac{\tau_2}{\tau_2 + \tau_1 + \sigma^2} \) is the unconditional ICC at Level 2. \(\tau_3^2 = \) Level-3 variance (unconditional model). \(\tau_2^2 = \) Level-2 variance (unconditional model). \(\sigma^2 = \) individual-level variance (unconditional model). \(R_1^2 = 1 - (\sigma^2_{1x}/\sigma^2) \), defined as the proportion of individual variance (at Level 1) predicted by covariates, \(X. R_2^2 = 1 - (\tau_2^2/\tau_2^2) \), defined as the proportion of group variance (at Level 2) predicted by covariates, \(W. R_3^2 = 1 - (\tau_3^2/\tau_3^2) \), defined as the proportion of group variance (at Level 3) predicted by covariates, \(V. g_3^+ = \) the number of group covariates used at Level 3. \(P = \) the proportion of this sample that is treatment group (\(K_T/K \)).

Model 3.3. Four-Level CRA Design Where Treatment Is at Level 4 (CRA4.4r).

The treatment effect can be estimated by a four-level hierarchical linear model:

Level 1: \(Y_{ijkl} = \beta_{0ijkl} + \beta_{1ijkl} X_{ijkl} + r_{ijkl}, \quad r_{ijkl} \sim N(0, \sigma^2_{1x}) \)

Level 2:

- \(\beta_{0ijkl} = \gamma_{0000} + \gamma_{0100} W_{ijkl} + \mu_{0ijkl} \)
- \(\beta_{1ijkl} = \gamma_{1000} \)
- \(\gamma_{0000} = \xi_{0000} + \xi_{0010} V_{kl} + \xi_{000l} \)
- \(\gamma_{0100} = \xi_{0100} \)
- \(\gamma_{00l} = \xi_{00l} \)

Level 3:

- \(\gamma_{1000} = \xi_{1000} \)
- \(\xi_{0000} = \psi_{0000} + \psi_{0001}(TREATMENT) + \psi_{0002} Z_l + \psi_{000l} \)
- \(\xi_{0010} = \psi_{0010} \)
- \(\xi_{0100} = \psi_{0100} \)
- \(\xi_{1000} = \psi_{1000} \)

Following the same logic of two- and three-level CRA designs, the MDES formula for four-level CRA designs can be expressed as follows:

\[
MDES = M_{L-g_4^{+2}} \times \left(\frac{\rho_4(1 - R_4^2)}{P(1 - P)L} + \frac{\rho_3(1 - R_3^2)}{P(1 - P)KL} + \frac{\rho_2(1 - R_2^2)}{P(1 - P)JKL} + \frac{(1 - \rho_2 - \rho_3 - \rho_4)(1 - R_1^2)}{P(1 - P)JKLn} \right)
\]
The Level-4 sample size \((L)\) can be derived from the previous formula as follows:

\[
L = \left(\frac{M_k - g_4}{MDES} \right)^2 \left(\frac{\rho_4 (1 - R_2^2)}{P(1 - P)} + \frac{\rho_3 (1 - R_2^2)}{P(1 - P) K} + \frac{\rho_2 (1 - R_2^2)}{P(1 - P) K n} \right) + \frac{(1 - \rho_2 - \rho_3 - \rho_4)(1 - R_1^2)}{P(1 - P) J K n}
\]

The multiplier for one-tailed test: \(M_{k - g_4} = t_{\alpha} + t_{1 - \beta}\) with \(L - g_4\) degrees of freedom. The multiplier for two-tailed test: \(M_{k - g_4} = t_{\alpha / 2} + t_{1 - \beta}\) with \(L - g_4\) degrees of freedom.

\(g_4^*\) is the number of Level 4 covariates. \(\rho_4 = \frac{\tau^2_4}{\tau^2_4 + \tau^2_3 + \tau^2_2 + \sigma^2}\), is the unconditional ICC at Level 4. \(R_2^2 = 1 - (\tau^2_{4|Z}/\tau^2_4)\), defined as the proportion of Level-4 variance predicted by covariates, \(Z\). \(P = \) the proportion of this sample that is treatment group \((L_T / L)\). All the other notations are same as in three-level CRA design.

4. Blocked CRA (BCRA) Design

In BCRA design, treatment is at subcluster level.

Model 4.1. Three-Level Blocked Cluster Random Assignment Design (Treatment at Level 2), Fixed Block Effect Model (BCRA3.2f).

Within three-level hierarchical linear model framework, the treatment effect can be estimated by:

- **Level 1**: \(Y_{ijk} = \beta_{0jk} + \beta_{1jk} X_{ijk} + r_{ijk}\) \(\sim N(0, \sigma^2_X)\)

- **Level 2**: \(\beta_{0jk} = \gamma_{00k} + \gamma_{01k}(TREATMENT)_{jk} + \gamma_{02k} W_{jk} + \mu_{0jk}\) \(\mu_{0jk} \sim N(0, \tau^2_{2|W})\)

- **Level 3**: \(\gamma_{00k} = \xi_{000} + \varsigma_{00k}\)

\(\gamma_{01k} = \xi_{010} + \varsigma_{01k}\)

\(\gamma_{02k} = \xi_{020}\)

\(\gamma_{10k} = \xi_{100}\)

\(\varsigma_{00k}\), for \(k \in \{1, 2, ..., K\}\), are fixed effects associated with each block mean, constrained to have a mean of zero; \(\varsigma_{01k}\), for \(k \in \{1, 2, ..., K\}\), are fixed effects associated with each block treatment effect, constrained to have a mean of zero.

Based on the variance of treatment effect estimate formula that derived by Spybrook (2007), the MDES for three-level BCRA design with treatment at Level 2 and fixed block effect model is

\[
MDES = M_{K(J-2) - g_4^*} \sqrt{\frac{\rho_2 (1 - R_2^2)}{P(1 - P) J K} + \frac{(1 - \rho_2)(1 - R_1^2)}{P(1 - P) J K n}}
\]
The Level-3 sample size \(K \) can be derived from the previous formula as follows:

\[
K = \left(\frac{M_{K(J-2)-g_3^2} \cdot KMDES}{1 - \frac{\tau^2}{\tau^2+\sigma^2}} \right)^2 \left(\frac{\rho_2(1 - R_2^2)}{P(1 - P)J + \frac{(1 - \rho_2)(1 - R_1^2)}{P(1 - P)Jn}} \right)
\]

The multiplier for one-tailed test: \(M_{K(J-2)-g_3^2} = t_\alpha + t_1 - \beta \) with \(K(J-2)-g_3^2 \) degrees of freedom. The multiplier for two-tailed test: \(M_{K(J-2)-g_3^2} = t_{\alpha/2} + t_1 - \beta \) with \(K(J-2)-g_3^2 \) degrees of freedom. \(J = \) average sample size for Level 2 (Classes #). \(P = \) the proportion of this sample that is treatment group \((J_T/J) \). \(\rho_2 = \frac{\tau^2}{\tau^2+\sigma^2} \), unconditional ICC. \(\tau^2 = \frac{\rho_2(1 - R_2^2)}{P(1 - P)J + \frac{(1 - \rho_2)(1 - R_1^2)}{P(1 - P)Jn}} \)

\[\text{Within three-level hierarchical linear model framework:}\]

Level 1: \(Y_{ijk} = \beta_{0ijk} + \beta_{1ijk}X_{ijk} + r_{ijk} \quad r_{ijk} \sim N(0, \rho_{jk}^2)\)

Level 2: \(\begin{align*}
\beta_{0ijk} &= \gamma_{00k} + \gamma_{01k}(\text{TREATMENT})_{jk} + \gamma_{02k}W_{jk} + \mu_{0jk} \quad \mu_{0jk} \sim N(0, \tau_{2iW}^2) \\
\beta_{1ijk} &= \gamma_{10k} \\
\gamma_{00k} &= \xi_{000} + \xi_{001}V_k + \xi_{00k} \\
\gamma_{01k} &= \xi_{010} + \xi_{011}V_k + \xi_{01k} \\
\gamma_{02k} &= \xi_{020} \\
\gamma_{10k} &= \xi_{100}
\end{align*}\)

Based on the variance (or standard error) of treatment effect estimate formula that derived by Hedges and Rhoads (2010), Konstantopoulos (2008a), Schochet (2008a), and Spybrook (2007), the MDES for three-level BCRA design with treatment at Level-2 and random block effect model is:

\[
\text{MDES} = M_{K-g_3^2-1} \left[\frac{\rho_3(1 - R_3^2)}{K} + \frac{\rho_2(1 - R_2^2)}{P(1 - P)JK} + \frac{(1 - \rho_2 - \rho_3)(1 - R_1^2)}{P(1 - P)Jkn} \right]
\]

The Level-3 sample size \(K \) can be derived from the previous formula as follows:

\[
K = \left(\frac{M_{K-g_3^2-1} \cdot KMDES}{1 - \frac{\tau^2}{\tau^2+\sigma^2}} \right)^2 \left(\frac{\rho_3(1 - R_3^2)}{P(1 - P)J + \frac{(1 - \rho_2 - \rho_3)(1 - R_1^2)}{P(1 - P)Jn}} \right)
\]

The multiplier for one-tailed test is: \(M_{K-g_3^2-1} = t_\alpha + t_1 - \beta \) with \(K-g_3^2-1 \) degrees of freedom. The multiplier for two-tailed test is: \(M_{K-g_3^2-1} = t_{\alpha/2} + t_1 - \beta \) with \(K-g_3^2-1 \) degrees of freedom. \(n = \) average number of individuals per Level 2. \(J = \) average sample size for Level 2 (Classes #). \(P = \) the proportion of this sample that is treatment group \((J_T/J) \). \(\rho_3 = \frac{\tau_3}{\tau^2+\sigma^2} \) is the correlation among students at the same school with different classes.
(unconditional model). $\rho_2 = \frac{\tau_1^2}{\tau_1^2 + \sigma^2}$ is the correlation among students at the same school with same classes (unconditional model). τ_1^2 = between group-level variance (Level-3) (unconditional model). τ_2^2 = between group-level variance (Level-2) (unconditional model). σ^2 = individual-level variance (unconditional model). $\omega = \frac{\tau_1^2}{\tau_2^2}$ indicates treatment effect heterogeneity across block (school), which is the proportion of the variance between schools on the treatment effect to the between-school residual variance. $\tau_3^2V = \text{between group-level variance (Level-3) (conditional model)}$. $\tau_2^2W = \text{between group-level variance (Level-2) (conditional model)}$. $\sigma^2_1X = \text{individual-level variance (conditional model)}$. $R_1^2 = 1 - \sigma^2_1X / \sigma^2$ indicates the proportion of individual variance (at Level 1) predicted by covariates. $R_2^2 = 1 - \tau_2^2W / \tau_2^2$ indicates the proportion of variance between Level-2 groups explained by level-2 covariates. $R_3^2T = 1 - \tau_3^2V / \tau_2^2$ indicates the proportion of variance between level-3 blocks on the treatment effect explained by Level-3 covariates. $g^*_a = \text{the number of group covariates used at Level 3.}$

Model 4.3. Four-Level BCRA Design (Treatment at Level 2), Random Block Effect Model (BCRA4,2r).

Within four-level hierarchical linear model framework, the treatment effect can be estimated by:

Level 1: $Y_{ijkl} = \beta_{ijkl} + \beta_{1,ijkl}X_{ijkl} + \epsilon_{ijkl}, \quad \epsilon_{ijkl} \sim N\left(0, \sigma^2_1X\right), \quad \epsilon_{ijkl} \sim N\left(0, \sigma^2_1\right)$

Level 2: $\begin{align*}
\gamma_{ijkl} &= \gamma_{0,ijkl} + \gamma_{0,ijkl}(\text{TREATMENT})_{ijkl} + \gamma_{0,ijkl}W_{ijkl} + \mu_{ijkl} \\
\mu_{ijkl} &\sim N\left(0, \tau_2^2W\right)
\end{align*}$

Level 3: $\begin{align*}
\gamma_{0,ijkl} &= \xi_{000l} + \xi_{011l}V_{kl} + \xi_{01kl} \\
\gamma_{02kl} &= \xi_{020l} \\
\gamma_{10kl} &= \xi_{100l} \\
\xi_{000l} &\sim \psi_{000l} + \psi_{000l}Z_l + \upsilon_{000l} \\
\xi_{001l} &\sim \psi_{001l} \\
\xi_{010l} &\sim \psi_{010l} \\
\xi_{011l} &\sim \psi_{011l} \\
\xi_{020l} &\sim \psi_{020l} \\
\xi_{100l} &\sim \psi_{100l}
\end{align*}$

Level 4: $\begin{align*}
\xi_{000l} &= \psi_{000l} + \psi_{001l}Z_l + \upsilon_{000l} \\
\xi_{001l} &= \psi_{001l} \\
\xi_{010l} &= \psi_{010l} \\
\xi_{011l} &= \psi_{011l} \\
\xi_{020l} &= \psi_{020l} \\
\xi_{100l} &= \psi_{100l}
\end{align*}$

Following the same logic as in three-level blocked individual random assignment (BIRA) design with treatment at Level 1 and random block effect model:

$$MDES = M_{L-\xi^*_a} - 1$$

$$\sqrt{\frac{\rho_4\omega_4\left(1 - R^2_4\right)}{L} + \frac{\rho_3\omega_3\left(1 - R^2_{4T}\right)}{L K} + \frac{\rho_2\left(1 - R^2_2\right)}{P\left(1 - P\right)L K J} + \frac{(1 - \rho_2 - \rho_3 - \rho_4\left(1 - R^2_1\right)}{P\left(1 - P\right)L K J n}}$$
The Level-4 sample size \((L) \) can be derived from the above formula as below:

\[
L = \left(\frac{M_{L-g_4^*-1}}{MDES} \right)^2 \left(\rho_4 \omega_4 (1 - R_{4T}^2) + \frac{\rho_3 \omega_3 (1 - R_{4T}^2)}{K} + \frac{\rho_2 (1 - R_{4T}^2)}{P(1 - P)KJ} \right) + \frac{(1 - \rho_2 - \rho_3 - \rho_4)(1 - R_{4T}^2)}{P(1 - P)KJn}
\]

The multiplier for one-tailed test is: \(M_{L-g_4^*-1} = t_\alpha + t_1 - \beta \) with \(L\)-\(g_4^* \)-1 degrees of freedom. The multiplier for two-tailed test is: \(M_{L-g_4^*-1} = t_\alpha/2 + t_1 - \beta \) with \(L\)-\(g_4^* \)-1 degrees of freedom. \(n = \) average number of individuals per level 2. \(J = \) average sample size for Level 2 (Class #). \(P = \) average proportion of this sample that is treatment group \((J_T/J) \). \(K = \) average sample size for Level 3 (School #). \(L = \) total sample size for Level 4 (District #). \(\rho_2, \rho_3, \) and \(\rho_4 \) are the unconditional ICCs at Levels 2, 3, and 4, respectively. \(\omega_4 = \frac{\sigma_4^2}{\sigma^2} \) indicates treatment effect heterogeneity across Level 4, which is proportion of the variance between Level-4 clusters on the treatment effect to the between Level-4-cluster residual variance (unconditional model). \(\omega_3 = \frac{\sigma_3^2}{\sigma^2} \) indicates treatment effect heterogeneity across Level 3, which is proportion of the variance between Level-3 clusters on the treatment effect to the total between Level-3-cluster residual variance (unconditional model). \(\omega_2 = \frac{\sigma_2^2}{\sigma^2} \) indicates the proportion of individual variance (at Level 1) predicted by covariates. \(R_{1T}^2 = 1 - \sigma_1^2/\sigma^2 \) indicates the proportion of variance between Level-2 groups explained by Level-2 covariates. \(R_{2T}^2 = 1 - \tau_{2T}^2/\tau_T^2 \) indicates the proportion of variance between Level-3 clusters on the treatment effect explained by Level-3 covariates. \(R_{3T}^2 = 1 - \tau_{3T}^2/\tau_T^2 \) indicates the proportion of variance between Level-4 blocks on the treatment effect explained by Level-4 covariates. When it is unclear how much the block-level covariate can reduce the block-treatment variance, it will be conservative to set \(R_{3T}^2 = 0 \); \(R_{4T}^2 = 0 \).

Model 4.4. Four-Level BCRA Design (Treatment at Level 3), Fixed Block Effect Model (BCRA4_3f).

Within four-level hierarchical linear model framework, the treatment effect can be estimated by:

Level 1: \(Y_{ijkl} = \beta_{0jkl} + \beta_{1jkl}X_{ijkl} + r_{ijkl} \), \(r_{ijkl} \sim N(0, \sigma_{ij}^2) \)

Level 2: \(\beta_{0jkl} = \gamma_{00kl} + \gamma_{01kl}W_{jkl} + \mu_{0jkl} \)
\(\beta_{1jkl} = \gamma_{10kl} + \mu_{1jkl} \)
\(\gamma_{00kl} \sim N(0, \tau_{2W}^2) \)
\(\gamma_{01kl} \sim N(0, \tau_{2W}^2) \)
\(\gamma_{10kl} \sim N(0, \tau_{2W}^2) \)

Level 3: \(\gamma_{01kl} = \xi_{000l} + \xi_{001l}(TREATMENT)_{kl} + \xi_{002l}V_{kl} + \xi_{003l}Z_{kl} + \xi_{004l}Z_{kl} + \xi_{005l} + \xi_{006l}Z_{kl} + \xi_{007l}Z_{kl} + \xi_{008l} \)
\(\gamma_{10kl} \sim N(0, \tau_{3V}^2) \)
\(\gamma_{10kl} \sim N(0, \tau_{3V}^2) \)
\(\xi_{000l} \sim N(0, \tau_{3V}^2) \)
\(\xi_{001l} \sim N(0, \tau_{3V}^2) \)
\(\xi_{002l} \sim N(0, \tau_{3V}^2) \)
\(\xi_{003l} \sim N(0, \tau_{3V}^2) \)

Level 4: \(\xi_{004l} \sim N(0, \tau_{3V}^2) \)
\(\xi_{005l} \sim N(0, \tau_{3V}^2) \)
\(\xi_{006l} \sim N(0, \tau_{3V}^2) \)
\(\xi_{007l} \sim N(0, \tau_{3V}^2) \)
\(\xi_{008l} \sim N(0, \tau_{3V}^2) \)
\(\upsilon_{000l} \), for \(l \in \{1, 2, ..., L\} \), are fixed effects associated with each block mean, constrained to have a mean of zero; \(\upsilon_{00l} \), for \(l \in \{1, 2, ..., L\} \), are fixed effects associated with each block treatment effect, constrained to have a mean of zero.

Using the same logic as in three-level BRD with treatment at Level 2 and fixed block effect model (Spybrook, 2007), the MDES for four-level BCRA design with treatment at Level 3 and fixed block effect model is:

\[
MDES = M_{L(K-2)-g_3^2} \sqrt{\frac{\rho_3(1 - R_3^2)}{P(1 - P)LK} + \frac{\rho_2(1 - R_2^2)}{P(1 - P)KJ} + \frac{(1 - \rho_2 - \rho_3)(1 - R_1^2)}{P(1 - P)KJn}}
\]

The Level-4 sample size \((L) \) can be derived from the previous formula as follows:

\[
L = \left(\frac{M_{L(K-2)-g_3^2}}{MDES} \right)^2 \left(\frac{\rho_3(1 - R_3^2)}{P(1 - P)K} + \frac{\rho_2(1 - R_2^2)}{P(1 - P)\tau_3} + \frac{(1 - \rho_2 - \rho_3)(1 - R_1^2)}{P(1 - P)\tau_2} \right)
\]

The multiplier for one-tailed test is: \(M_{L(K-2)-g_3^2} = t_a + t_1 - \beta \) with \(L(K-2)-g_3^2 \) degrees of freedom. The multiplier for two-tailed test is: \(M_{L(K-2)-g_3^2} = t_{a/2} + t_1 - \beta \) with \(L(K-2)-g_3^2 \) degrees of freedom. \(n \) = average number of individuals per Level 2. \(P \) = average proportion of this sample that is treatment group (\(n_T/n \)). \(J \) = average sample size for Level 2 (Class #). \(K \) = average sample size for Level 3 (School #). \(P \) = average proportion of this sample that is treatment group (\(K_T/K \)). \(g_3^2 \) is the number of Level 3 covariates. \(\rho_3 = \frac{\tau_1^2}{\tau_1^2 + \tau_2^2 + \sigma^2} \) is the unconditional ICC at Level 3. \(\rho_2 = \frac{\tau_2^2}{\tau_1^2 + \tau_2^2 + \sigma^2} \) is the unconditional ICC at Level 2. \(\tau_2^2 = \) Level-3 variance (unconditional model). \(\tau_1^2 = \) Level-2 variance (unconditional model). \(\sigma^2 = \) individual-level variance (unconditional model). \(R_1^2 = 1 - \sigma^2/\sigma^2 \) indicates the proportion of individual variance (at Level 1) predicted by covariates. \(R_2^2 = 1 - \tau_3^2/W/\tau_2^2 \) indicates the proportion of variance between Level-2 groups explained by Level-2 covariates. \(R_3^2 = 1 - \tau_2^2/V/\tau_2^2 \) indicates the proportion of variance between Level-3 groups explained by block and Level-3 covariates.

Model 4.5. Four-Level BCRA Design (Treatment at Level 3), Random Block Effect Model (BCRA4,3r).

Within four-level hierarchical linear model framework, the treatment effect can be estimated by:

Level 1: \(Y_{ijkl} = \beta_{0ijkl} + \beta_{1ijkl}X_{ijkl} + r_{ijkl}, \quad r_{ijkl} \sim N(0, \sigma_X^2) \)

Level 2: \(\beta_{0ijkl} = \gamma_{00kl} + \gamma_{01kl}W_{ijkl} + \mu_{0ijkl}, \quad \mu_{0ijkl} \sim N(0, \tau_2^2W) \)

Level 3: \(\gamma_{00kl} = \xi_{000l} + \xi_{001l}(TREATMENT)_{kl} + \xi_{002l}V_{kl} + \xi_{00kl} \)

\(\gamma_{01kl} = \xi_{010l} \quad \xi_{00kl} \sim N(0, \tau_3^2W) \)

Level 4: \(\gamma_{02kl} = \xi_{020l} \)
Using the same logic as in three-level BRD with treatment at Level 2 and random block effect model, the MDES for four-level BCRA design with treatment at Level 3 and random block effect model is:

\[
MDES = M_{L-g^*_4-1}
\times \sqrt{\frac{\rho_4 \omega_4 (1 - R^2_{4T})}{P(1 - P)LK} + \frac{\rho_3(1 - R^2_4)}{P(1 - P)K} + \frac{\rho_2(1 - R^2_3)}{P(1 - P)KJ} + \frac{(1 - \rho_2 - \rho_3 - \rho_4)(1 - R^2_2)}{P(1 - P)KJn}}
\]

The Level-4 sample size \((L)\) can be derived from the previous formula as follows:

\[
L = \left(\frac{M_{L-g^*_4-1}}{MDES}\right)^2 \left(\frac{\rho_4 \omega_4 (1 - R^2_{4T})}{P(1 - P)K} + \frac{\rho_3(1 - R^2_4)}{P(1 - P)K} + \frac{\rho_2(1 - R^2_3)}{P(1 - P)KJ} + \frac{(1 - \rho_2 - \rho_3 - \rho_4)(1 - R^2_2)}{P(1 - P)KJn}\right)
\]

The multiplier for one-tailed test is: \(M_{L-g^*_4-1} = t_n + t_{1-\beta}\) with \(L-g^*_4-1\) degrees of freedom. The multiplier for two-tailed test is: \(M_{L-g^*_4-1} = t_{n/2} + t_{1-\beta}\) with \(L-g^*_4-1\) degrees of freedom. \(n\) = average number of individuals per Level 2. \(J\) = average sample size for Level 2 (Class #). \(K\) = average sample size for Level 3 (School #). \(P\) = average proportion of this sample that is treatment group. \((K_T / K)\). \(\rho_2\), \(\rho_3\), and \(\rho_4\) are unconditional ICCs at Levels 2, 3, and 4, respectively. \(\omega_4 = \frac{\tau^2_4}{\tau^2_T}\) indicates treatment effect heterogeneity across Level 4, which is proportion of the variance between Level-4 clusters on the treatment effect to the between level-four-cluster residual variance (unconditional model). \(R^2_T = 1 - \frac{\sigma^2_Y}{\sigma^2}\) indicates the proportion of individual variance (at Level 1) predicted by covariates. \(R^2_2 = 1 - \tau^2_{2|Y}/\tau^2_2\) indicates the proportion of variance between Level-2 groups explained by Level-2 covariates. \(R^2_3 = 1 - \tau^2_{3|Y}/\tau^2_3\) indicates the proportion of variance between Level-3 groups explained by Level-3 covariates. \(R^2_{4T} = 1 - \tau^2_{4T|Z}/\tau^2_T\) indicates the proportion of variance between level-4 blocks on the treatment effect explained by Level-4 covariates. When it is unclear how much the block-level covariate can reduce the block-treatment variance, it will be conservative to set \(R^2_{4T} = 0\).

5. Regression Discontinuity (RD) Design

As discussed in the text, for the RD design, Schochet (2008b) summarized six types of commonly used cluster design based on the unit of treatment assignment and sampling framework. Based on the MDES formulas for the randomized experiments and design effect for their corresponding RD, the MDES for six types of RD can be shown next.
Model 5.1. Blocked Individual RD Design With Fixed Effects (RD2_{1f}): Analogous to the Two-Level Fixed Effect Blocked Individual Random Assignment Design (BIRA2_{1f}).

Within two-level hierarchical linear model framework, the treatment effect can be estimated by:

Level 1: \[Y_{ij} = \beta_{0j} + \beta_{1j}(TREATMENT)_{ij} + \beta_{2j}X_{ij} + \beta_{3j}(Z_{ij} - Z_0) + r_{ij}, \]
\[r_{ij} \sim N(0, \sigma^2_{X}) \]
\[\beta_{0j} = \gamma_{00} + \mu_{0j} \]
Level 2: \[\beta_{1j} = \gamma_{10} + \mu_{1j} \]
\[\beta_{2j} = \gamma_{20} \]
\[\beta_{3j} = \gamma_{30} \]

\(Z_{ij}\) is the assignment variable, and \(Z_0\) is the cutoff score. \(\mu_{0j}, \text{ for } j \in \{1, 2, ..., J\}\), are fixed effects associated with each block mean, constrained to have a mean of zero; \(\mu_{1j}, \text{ for } j \in \{1, 2, ..., J\}\), are fixed effects associated with each block treatment effect, constrained to have a mean of zero.

\[MDES = M_{Jn-2J-g_1^*} \sqrt{\frac{D(1 - R^2_1)}{JnP(1 - P)}} \]

The Level-2 sample size \((J)\) can be derived from the above formula as below:

\[J = \left(\frac{M_{Jn-2J-g_1^*}}{MDES} \right)^2 \frac{D(1 - R^2_1)}{nP(1 - P)} \]

\(n = \text{average number of individuals per block.} \ g_1^* = \text{number of level-1 covariates.} \ \sigma^2 = \text{Level-1 (individual-level) variance (unconditional model).} \ R^2_1 = 1 - (\sigma^2_X/\sigma^2), \text{indicating the proportion of level-1 variance explained by covariates.} \ P = \text{the average proportion of this sample that is treatment group (n_T/n).} \ D \text{ is design effect (see Schochet, 2008b, Tables 4.1, 4.2, 4.3 for more information).} \)

Note that the model could include quadratic or cubic terms of the assignment variable as well as the interaction terms of the assignment variable with treatment indicator. When higher order terms or/and interaction involve, the statistical power will decrease (Schochet, 2008b). This applies to all the following RD designs.

Model 5.2. Blocked Individual RD Design With Random Effects (RD2_{1r}): Analogous to Two-Level Random Effect Blocked Individual Random Assignment Design With Treatment at Level 1 (BIRA2_{1r}).

Within two-level hierarchical linear model framework, the treatment effect can be estimated by:

Level 1: \[Y_{ij} = \beta_{0j} + \beta_{1j}(TREATMENT)_{ij} + \beta_{2j}X_{ij} + \beta_{3j}(Z_{ij} - Z_0) + r_{ij}, \]
\[r_{ij} \sim N(0, \sigma^2_{X}) \]
\[\beta_{0j} = \gamma_0 + \gamma_1 W_j + \mu_{0j} \]

Level 2:
\[\begin{align*}
\beta_{1j} &= \gamma_{10} + \gamma_{11} W_j + \mu_{1j} \\
\beta_{2j} &= \gamma_{20} \\
\beta_{3j} &= \gamma_{30}
\end{align*} \]

\(Z_{ij} \) is the assignment variable, and \(Z_0 \) is the cutoff score.

\[MDES = M_{j-g^*-1} \sqrt{\frac{\rho \omega (1 - R_{2T}^2)}{J}} + D \left(\frac{(1 - \rho)(1 - R_{1T}^2)}{P(1 - P)Jn} \right) \]

The Level-2 sample size \((J) \) can be derived from the previous formula as follows:

\[J = \left(\frac{M_{j-g^*-1}}{MDES} \right)^2 \left(\rho \omega (1 - R_{1T}^2) + D \left(\frac{(1 - \rho)(1 - R_{1T}^2)}{P(1 - P)Jn} \right) \right) \]

The multiplier for one-tailed test is: \(M_{j-g^*-1} = t_a + t_{1-\beta} \) with \(J-g^*-1 \) degrees of freedom. The multiplier for two-tailed test is: \(M_{j-g^*-1} = t_{a/2} + t_{1-\beta} \) with \(J-g^*-1 \) degrees of freedom. \(n \) = average sample size for Level 1 (Students #). \(P \) is the average proportion of this sample that is treatment group \((n_T/n)\). \(g^* \) = number of block-level covariates. \(\tau_{1T}^2 = \) variance of the treatment effect between blocks (unconditional model). \(\tau_{2T}^2 = \) Level-2 (between group-level) variance (unconditional model). \(\sigma^2 = \) Level-1 (individual-level) variance (unconditional model). \(\rho = \frac{\tau_{2T}^2}{\tau_{1T}^2 + \sigma^2} \), unconditional intraclass coefficient (ICC).

\(\omega = \frac{\tau_{1T}^2}{\tau_{2T}^2} \) indicates treatment effect heterogeneity, which is the ratio of the variance of the treatment effect between blocks to the between-block residual variance. \(R_{1T}^2 = 1 - (\sigma_X^2 / \sigma^2) \), indicating the proportion of Level-1 variance explained by covariates. \(R_{2T}^2 = 1 - \frac{\tau_{2T}^2}{\tau_{1T}^2} \) indicates the proportion of variance between Level-2 blocks on the treatment effect explained by Level-2 covariates. When it is unclear how much the block-level covariate can reduce the block-treatment variance, it will be conservative to set \(R_{2T}^2 = 0 \). \(D \) is design effect (see Schochet, 2008b, Tables 4.1, 4.2, 4.3 for more information). Note that the design effect only affects the level-1 term.

Model 5.3. Cluster RD Design Sample With Two Levels of Clustering and Random Effects (RDC.2r): Analogous to Two-Level Simple Cluster Random Assignment Design With Treatment at Level 2 (Model 3.1 CRA2.2r).

The treatment effect can be estimated by a two-level hierarchical linear model:

Level 1:
\[Y_{ij} = \beta_{0j} + \beta_{1j} X_{ij} + r_{ij}, \quad r_{ij} \sim N(0, \sigma_X^2) \]

Level 2:
\[\begin{align*}
\beta_{0j} &= \gamma_{00} + \gamma_{01}(TREATMENT)_j + \gamma_{02}(Z_j - Z_0) + \gamma_{03} W_j + \mu_{0j}, \mu_{0j} \sim N(0, \tau_{1W}^2) \\
\beta_{1j} &= \gamma_{10}
\end{align*} \]

\(Z_j \) is the assignment variable, and \(Z_0 \) is the cutoff score.

\[MDES = M_{j-g^*-2} \sqrt{D \left(\frac{\rho (1 - R_{1T}^2)}{P(1 - P)J} + \frac{(1 - \rho)(1 - R_{1T}^2)}{P(1 - P)Jn} \right)} \]
The Level-2 sample size (J) can be derived from the previous formula as follows:

$$J = \left(\frac{M_{J-g^*-2}}{\text{MDES}} \right)^2 D \left(\frac{\rho(1 - R_g^2)}{P(1 - P)} + \frac{(1 - \rho)(1 - R_2^2)}{P(1 - P)n} \right)$$

The multiplier for one-tailed test is: $M_{J-g^*-2} = t_\alpha + t_1 - \beta$ with $J - g^*-2$ degrees of freedom. The multiplier for two-tailed test is: $M_{J-g^*-2} = t_{\alpha/2} + t_1 - \beta$ with $J - g^*-2$ degrees of freedom. J is the total number of clusters. $\rho = \frac{\tau^2}{\tau^2 + \sigma^2}$, is the unconditional ICC. $\tau^2 = \text{Level-2 (between group-level) variance (unconditional model)}$. $\sigma^2 = \text{Level-1 (individual-level) variance (unconditional model)}$. $R_1^2 = 1 - (\sigma^2_X / \sigma^2)$, indicating the proportion of Level-1 variance explained by covariates. $R_2^2 = 1 - (\tau^2_W / \tau^2)$, indicating the proportion of Level-2 variance explained by covariates. $g^2 = \text{the number of group covariates used}$. $P = \text{the proportion of this sample that is treatment group (J_T / J)}$. $D = \text{design effect}$ (see Schochet, 2008b, Tables 4.1, 4.2, 4.3 for more information).

Model 5.4 (RDC_3r): Analogous to Three-Level Simple Cluster Random Assignment Design With Treatment at Level 3 (Model 3.2 CRA3_3r).

The treatment effect can be estimated by a three-level hierarchical linear model:

Level 1: $Y_{ijk} = \beta_0 + \beta_1X_{ijk} + r_{ijk}$, \hspace{1cm} $r_{ijk} \sim N(0, \sigma^2)$

Level 2: $\begin{align*}
\beta_0 + \gamma_0 & = \gamma_{00} + \gamma_{01k}W_{jk} + \mu_{0jk} \\
\beta_1 + \gamma_1 & = \gamma_{10} \\
\gamma_{00} & = \xi_{000} + \xi_{001}(\text{TREATMENT})_k + \xi_{002}(Z_k - Z_0) + \xi_{003}V_k + \xi_{004}
\end{align*}$

Level 3: $\begin{align*}
\gamma_{01} & = \xi_{10} \\
\gamma_{10} & = \xi_{100}
\end{align*}$

$$\text{MDES} = M_{K-g^*_3-2} \sqrt{D \left(\frac{\rho_3(1 - R_3^2)}{P(1 - P)K} + \frac{\rho_2(1 - R_2^2)}{P(1 - P)JK} + \frac{(1 - \rho_2 - \rho_3)(1 - R_1^2)}{P(1 - P)Kn} \right)}$$

The Level-3 sample size (K) can be derived from the previous formula as follows:

$$K = \left(\frac{M_{K-g^*_3-2}}{\text{MDES}} \right)^2 D \left(\frac{\rho_3(1 - R_3^2)}{P(1 - P)} + \frac{\rho_2(1 - R_2^2)}{P(1 - P)J} + \frac{(1 - \rho_2 - \rho_3)(1 - R_1^2)}{P(1 - P)Kn} \right)$$

Z_k is the assignment variable, and Z_0 is the cutoff score. Multiplier for one-tailed test: $M_{K-g^*_3-2} = t_\alpha + t_1 - \beta$ with $K - g^*_3-2$ degrees of freedom. Multiplier for two-tailed test: $M_{K-g^*_3-2} = t_{\alpha/2} + t_1 - \beta$ with $K - g^*_3-2$ degrees of freedom. J is average sample size for Level 2 (Classes #). $\rho_3 = \frac{\tau^2_3}{\tau^2_3 + \tau^2_1 + \sigma^2}$ is the unconditional ICC at level 3. $\rho_2 = \frac{\tau^2_2}{\tau^2_2 + \sigma^2}$ is the unconditional ICC at level 2. $\tau^2_2 = \text{Level-3 variance (unconditional model)}$. $\tau^2_1 = \text{Level-2 variance (unconditional model)}$. $\sigma^2 = \text{individual-level variance (unconditional model)}$. $R_1^2 = 1 - (\sigma^2_X / \sigma^2)$, defined as the proportion of individual variance (at Level 1) predicted by covariates, X. $R_2^2 = 1 - (\tau^2_W / \tau^2_2)$, defined as the proportion of group variance (at Level
predicted by covariates, \(W \), \(R_2^2 = 1 - (\tau_{Y|X}^2/\tau_T^2) \), defined as the proportion of group variance (at Level 3) predicted by covariates, \(V \), \(g_2^2 = \text{number of group covariates used at Level 3} \). \(P \) is the proportion of this sample that is treatment group (\(K_T/K \)). \(D \) = design effect (see Schochet, 2008b, Tables 4.1, 4.2, 4.3 for more information).

Model 5.5 (RD3.2f): Analogous to Three-Level Fixed Effect Blocked Cluster Random Assignment Design With Treatment at Level 2 (Model 4.1 BCRA3.2f).

Within three-level hierarchical linear model framework, the treatment effect can be estimated by:

Level 1: \(Y_{ijk} = \beta_{0jk} + \beta_{1jk}X_{ijk} + r_{ijk}, \quad r_{ijk} \sim N(0, \sigma_{r}^2) \)

Level 2: \(\beta_{0jk} = \gamma_{00k} + \gamma_{01k}(\text{TREATMENT})_{jk} + \gamma_{02k}(Z_{jk} - Z_0) + \gamma_{03k}W_{jk} + \mu_{0jk} \)

\(\beta_{1jk} = \gamma_{10k}, \quad \mu_{0jk} \sim N(0, \tau_{\mu}^2) \)

Level 3: \(\gamma_{00k} = \xi_{000} + \xi_{00k} \)

\(\gamma_{01k} = \xi_{010} + \xi_{01k} \)

\(\gamma_{02k} = \xi_{020} \)

\(\gamma_{03k} = \xi_{030} \)

\(\gamma_{10k} = \xi_{100} \)

\(Z_{jk} \) is the assignment variable, and \(Z_0 \) is the cutoff score. \(\xi_{00k} \), for \(k \in \{1, 2, ..., K\} \), are fixed effects associated with each block mean, constrained to have a mean of zero; \(\xi_{01k} \), for \(k \in \{1, 2, ..., K\} \), are fixed effects associated with each block treatment effect, constrained to have a mean of zero.

\[
MDES = M_{K(J-2)-g_2^2} \sqrt{D \left(\frac{\rho_2(1 - R_2^2)}{P(1 - P)JK} + \frac{(1 - \rho_2)(1 - R_2^2)}{P(1 - P)JKn} \right)}
\]

The Level-3 sample size (\(K \)) can be derived from the previous formula as follows:

\[
K = \left(\frac{M_{K(J-2)-g_2^2}}{MDES} \right)^2 D \left(\frac{\rho_2(1 - R_2^2)}{P(1 - P)J} + \frac{(1 - \rho_2)(1 - R_2^2)}{P(1 - P)Jn} \right)
\]

The multiplier for one-tailed test is: \(M_{K(J-2)-g_2^2} = t_\alpha + t_{1-\beta} \) with \(K(J-2)-g_2^2 \) degrees of freedom. The multiplier for two-tailed test is: \(M_{K(J-2)-g_2^2} = t_{\alpha/2} + t_{1-\beta} \) with \(K(J-2)-g_2^2 \) degrees of freedom. \(J = \text{average sample size for Level 2 (Classes #)} \). \(P \) = the proportion of this sample that is treatment group (\(J_T/J \)). \(g_2^2 \) = the number of Level 2 covariates. \(\rho = \frac{\tau^2}{\tau^2 + \sigma^2} \), is the unconditional ICC. \(\tau^2 \) = Level-2 (between group-level) variance (unconditional model). \(\sigma^2 \) = Level-1 (individual-level) variance (unconditional model). \(R_2^2 = 1 - (\sigma_{Y|X}^2/\sigma^2) \), indicating the proportion of Level-1 variance explained by covariates. \(R_2^2 = 1 - (\tau_{W|Y}^2/\tau^2) \), indicating the proportion of Level-2 variance explained by covariates. \(D \) = design effect (see Schochet, 2008b, Tables 4.1, 4.2, 4.3 for more information).

Model 5.6 (RD3.2r): Analogous to Three-Level Random Effect Blocked Cluster Random Assignment Design With Treatment at Level 2 (Model 4.2 BCRA3.2r).
Within three-level hierarchical linear model framework:

Level 1: \(Y_{ijk} = \beta_{0jk} + \beta_{1jk}X_{ijk} + r_{ijk} \quad r_{ijk} \sim N(0, \sigma^2_X) \)

Level 2: \(\begin{align*}
\beta_{0jk} &= \gamma_{00k} + \gamma_{01k}(TREATMENT)_{jk} + \gamma_{02k}(Z_{jk} - \bar{Z}_0) + \gamma_{03k}W_{jk} + \mu_{0jk} \\
\mu_{0jk} &\sim N(0, \tau^2_{0W}) \\
\gamma_{00k} &= \xi_{000} + \xi_{001}V_k + \xi_{00k} \\
\gamma_{01k} &= \xi_{010} + \xi_{011}V_k + \xi_{01k} \\
\gamma_{02k} &= \xi_{020} \\
\gamma_{03k} &= \xi_{030} \\
\gamma_{10k} &= \xi_{100}
\end{align*} \)

Level 3:

\(Z_{jk} \) is the assignment variable, and \(Z_0 \) is the cutoff score.

\[
MDES = M_{K-g^*_1} \sqrt{\frac{\rho_3\omega(1-R^2_3)}{K}} + D \left(\frac{\rho_2(1-R^2_3)}{P(1-P)JK} + \frac{(1-\rho_2-\rho_3)(1-R^2_3)}{P(1-P)JKn} \right)
\]

The Level-3 sample size \((K) \) can be derived from the previous formula as follows:

\[
K = \left(\frac{M_{K-g^*_1}}{MDES} \right)^2 \left(\frac{\rho_3\omega_3(1-R^2_3)}{P(1-P)J} + D \left(\frac{\rho_2(1-R^2_3)}{P(1-P)J} + \frac{(1-\rho_2-\rho_3)(1-R^2_3)}{P(1-P)Jn} \right) \right)
\]

The multiplier for one-tailed test is: \(M_{K-g^*_1} = t_{a} + t_{1-\beta} \) with \(K\cdot g^*_1 - 1 \) degrees of freedom. The multiplier for two-tailed test is: \(M_{K-g^*_1} = t_{a/2} + t_{1-\beta} \) with \(K\cdot g^*_1 - 1 \) degrees of freedom. \(n = \) average number of individuals per Level 2. \(J = \) average sample size for Level 2 (Classes #). \(P = \) the proportion of this sample that is treatment group \((J_T/J) \). \(\rho_3 = \frac{t^2_3}{t^2_2+t^2_2+\sigma^2} \) is the unconditional ICC at Level 3. \(\rho_2 = \frac{t^2_2}{t^2_2+t^2_2+\sigma^2} \) is the unconditional ICC at Level 2. \(t^2_3 = \) level-3 variance (unconditional model). \(t^2_2 = \) Level-2 variance (unconditional model). \(\omega = \frac{t^2_3}{t^2_2} \) indicates treatment effect heterogeneity across block (school), which is the proportion of the variance between schools on the treatment effect to the between-school residual variance. \(R^2_1 = 1 - \sigma^2_{IX}/\sigma^2 \) indicates the proportion of individual variance (at Level 1) predicted by covariates. \(R^2_2 = 1 - \tau^2_{2W}/\tau^2_2 \) indicates the proportion of variance between Level-2 groups explained by Level-2 covariates. \(R^2_{3T} = 1 - \tau^2_{3W}/\tau^2_3 \) indicates the proportion of variance between Level-3 blocks on the treatment effect explained by Level-3 covariates. \(g^* = \) number of group covariates used at Level 3. \(D = \) design effect (see Schochet, 2008b, Tables 4.1, 4.2, 4.3 for more information). Note that design effect only affects Level-1 and Level-2 terms.

6. Interrupted Time Series (ITS) Design

The time-series design (Bloom, 2003; Quint et al., 2005) compares student scores before and after a schoolwide intervention while modeling the underlying preintervention trend.
over time and the departures from that trend during the postintervention years. Those departures from the preintervention trend provide the estimates of the intervention effects.

The analytic model for this time series is multilevel with students nested within cohorts within each school. Each school provides estimates of intervention effects; schools thus constitute blocks in this design. Following Bloom’s (2003) suggestion, the analysis can proceed as follows:

Series 1: These time series analyses assess whether there are improvements in the scores on each of the performance variables for any series of grade level cohorts in the intervention schools after the intervention begins. Using student-level scores on the respective performance variable in each cohort as the dependent variable, this analysis examines differences between the years prior to the intervention and those afterwards. Two cohort-level (Level 2) variables model change over time in the analysis. One variable, denoted in the following models as \(T \), indicates where in the time series each student cohort was located. The other variable, denoted in the models below as \(D_t \), is a set of dummy variables that indicates that the cohort was in the intervention \((D_t = 1)\) or not \((D_t = 0)\) for each year after the onset of the intervention.

First, we present a simple model to estimate the program effect at the second implementation year with four waves of baseline information by assuming that the intervention effect is constant across schools:

Level 1 (student)

\[
Y_{ijk} = \beta_{0jk} + \beta_{1jk} C_{ijk} + r_{ijk} r_{ijk} \sim N(0, \sigma^2)
\]

Level 2 (cohort: random effect)

\[
\begin{align*}
\beta_{0jk} &= \beta_{00k} + \beta_{01k} T_{jk} + \beta_{02k} X_{jk} + \sum_{t=0}^{2} \beta_{0(3+t)k} (D_t)_{jk} \\
+ \mu_{0jk} \begin{pmatrix} \mu_{0jk} \\ \mu_{1jk} \end{pmatrix} &\sim N \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix} \right) \begin{pmatrix} \tau_{00} \\ \tau_{01} \tau_{11} \end{pmatrix} \\
\beta_{1jk} &= \beta_{10k} + \mu_{1jk}
\end{align*}
\]

Level 3 (school: constant effect)

\[
\begin{align*}
\beta_{00k} &= \gamma_{000} + \sum_m \gamma_{00m} S_m \\
\beta_{01k} &= \gamma_{010} \\
\beta_{02k} &= \gamma_{020} \\
\beta_{0(3+t)k} &= \gamma_{0(3+t)0}, t = 0, 1, 2. \\
\beta_{10k} &= \gamma_{100}
\end{align*}
\]

Reduced Form:

\[
Y_{ijk} = \gamma_{000} + \sum_m \gamma_{00m} S_m + \gamma_{010} T_{jk} + \gamma_{020} X_{jk} + \sum_{t=0}^{2} \gamma_{0(3+t)0} (D_t)_{jk} + \gamma_{100} C_{ijk} \\
+ \mu_{0jk} + C_{ijk} \mu_{1jk} + r_{ijk}
\]
\[Y_{ijk} = \text{Score for student, } i \text{ at time, } j \text{ in school, } k. \ C_{ijk} = \text{Covariate for student, } i \text{ at time, } j \text{ in school, } k. \ S_m = \text{Dummy variable indicating School } m \text{ (representing the blocking factor).} \]

\[X_{jk} = \text{Cohort-level covariate.} \ T_{jk} = \text{Test year for student } i \text{ (ranging from } -4 \text{ through } +2). \ D_t = \text{Dummy variables indicating the intervention status for cohort at follow-up year } t = 0, 1, \text{ and } 2. \ y_{000} = \text{Grand mean score for students at the baseline in the reference school.} \]

\[\gamma_{000} \]

\[\gamma_{00} = \text{Difference in the grand mean score for students at baseline in the other schools comparing with the reference school.} \]

\[\gamma_{010} = \text{Linear trend.} \]

\[\gamma_{020} \]

\[\gamma_{0(3+t)0} = \text{Deviations from trend for follow-up year } t = 0, 1, \text{ and } 2. \]

\[\gamma_{100} = \text{Coefficient of the student-level covariate.} \]

\[\mu_{0} = \text{Random error term for cohort at time, } j \text{ in school, } k. \]

\[\mu_{1} = \text{Random error term in the slope of student-level covariate for cohort at time, } j \text{ in school, } k. \]

\[r_{ijk} = \text{Random error term for student, } i \text{ at time, } j \text{ in school, } k. \]

The previous model will estimate the program effects (\(\gamma_{0(3+t)0} \)) in terms of deviations from the trend for the follow-up years, and it assumes that the school effect is constant. This is a strong assumption; and the schools could have differential effects. Bloom (2003) proposed a school fixed effects model by estimating the program effects separately by school, then average them by weighting them equally. The previous model can be extended to capture Bloom’s idea by adding school dummies in the Level-3 Equation 3 to predict Level-2 parameters, that is, adding the interaction terms of school dummies and the other variables in the reduced model. The reduced form model can be expressed as:

\[
Y_{ijk} = \gamma_{000} + \sum_m \gamma_{00m} S_m + \gamma_{010} T_{jk} + \gamma_{020} X_{jk} + \sum_{t=0}^{2} \gamma_{0(3+t)0} (D_t)_{jk} + \gamma_{100} C_{ijk} \\
+ \sum_m \gamma_{01m} S_m * T_{jk} + \sum_m \gamma_{02m} S_m * X_{jk} + \sum_m \sum_{t=0}^{2} \gamma_{0(3+t)m} S_m * (D_t)_{jk} \\
+ \sum_m \gamma_{00m} S_m * C_{ijk} + \mu_{0jk} + C_{ijk} \mu_{1jk} + r_{ijk}
\]

\(\gamma_{01m} = \text{Difference in linear trends for the other school comparing with the reference school.} \)

\(\gamma_{02m} = \text{Difference in slopes of the mean cohort scores for the other schools comparing with the reference school.} \)

\(\gamma_{0(3+t)m} = \text{Difference in deviations from trends for follow-up year } t = 0, 1, \text{ and } 2 \text{ for the other schools comparing with the reference school.} \)

\(\gamma_{00m} = \text{Difference in coefficient of the student-level covariate for the other schools comparing with the reference school.} \)

The estimates of the program effects in the follow-up years in terms of deviations from the baseline year are \(\gamma_{0(3+t)0} \), and \(\gamma_{0(3+t)0} + \gamma_{0(3+t)m} \) for the reference schools and all other schools. The simple average of these estimates will be the estimate of the intervention effect within the framework of the school fixed effect model.

Series 2: An important limitation of the above analyses is that observed differences in the student performance scores before and after the intervention begins in a school do not necessarily indicate that the differences were due to the intervention. This issue can be addressed by including similar schools that do not receive the intervention as comparison schools, that is, schools located in the same districts and thereby subject to the same local context as the intervention schools. This comparison will serve to account for differences in a school’s pattern of achievement that might be attributed to factors other than the intervention. Expanded from the models in Series 1, an additional dummy
variable will indicate whether the student’s cohort was located in an intervention school or comparison school. The interaction of intervention and school type will examine whether treatment cohorts in program schools outperformed cohorts in comparison schools in the same period.

Similar to the analysis in Series 1, we will start from the simple model—assuming the school effect is constant. By adding a dummy variable indicating if a school is a program school or a comparison school in Equations 3 and 4, the reduced model is

\[
Y_{ijk} = \gamma_{000} + \sum_m \gamma_{00m} S_m + \gamma_{010} T_{jk} + \gamma_{020} X_{jk} + \sum_{t=0}^2 \gamma_{0(3+t)0} (D_t)_{jk} + \gamma_{100} C_{ijk}
\]

\[
+ \gamma_{00p}(INT)_k + \sum_{t=0}^2 \gamma_{0(3+t)1} (INT)_k * (D_t)_{jk} + \mu_{0jk} + C_{ijk} \mu_{1jk} + r_{ijk}
\]

\((INT)_k \) = Dummy variables indicating if school, k, is an intervention school or comparison school. \(\gamma_{0(3+t)0} \) = Deviations from trend for follow-up year \(t = 0, 1, \) and \(2 \) for the comparison schools. The other notations are same as in Models 1 to 4.

The term \(\gamma_{0(3+t)1} \) represents the average intervention effect in terms of the difference in deviations from the trend for the follow-up years between the intervention schools and comparison schools.

A more complicated fixed school effects model that permits the schools to have differential effects extends Equation 6 by adding the interaction terms of school dummies and the other variables. The reduced model is

\[
Y_{ijk} = \gamma_{000} + \sum_m \gamma_{00m} S_m + \gamma_{010} T_{jk} + \gamma_{020} X_{jk} + \sum_{t=0}^2 \gamma_{0(3+t)0} (D_t)_{jk} + \gamma_{100} C_{ijk}
\]

\[
+ \sum_m \gamma_{01m} S_m * T_{jk} + \sum_m \gamma_{02m} S_m * X_{jk} + \sum_m \sum_{t=0}^2 \gamma_{0(3+t)m} S_m * (D_t)_{jk}
\]

\[
+ \sum_m \gamma_{10m} S_m * C_{ijk} + \gamma_{00p}(INT)_k + \sum_{t=0}^2 \gamma_{0(3+t)1} (INT)_k * (D_t)_{jk} + \mu_{0jk}
\]

\[
+ C_{ijk} \mu_{1jk} + r_{ijk}
\]

\((INT)_k \) = Dummy variables indicating if school, k, is an intervention school or comparison school. \(\gamma_{0(3+t)0} \) = Deviations from trend for follow-up year \(t = 0, 1, \) and \(2 \) for the comparison schools. The other notations are same as in Equations 5 and 6. \(\gamma_{0(3+t)1} \) are the parameter estimates of interest representing the average intervention effect in terms of the difference in deviations from the trend for the follow-up years between the program schools and comparison schools.

Using a cohort random effects model (with school as a constant effect), Bloom (1999, 2003) presented a formula to calculate the MDES. An adapted MDES formula including comparison schools and covariates follows:

\[
MDES = \frac{M}{\sqrt{m}} \left[1 + \frac{1}{p} \sqrt{1 - \frac{\rho(1 - R_2^2)}{1 - \rho}} \right] \sqrt{1 + \frac{1}{T} + \frac{(t_f - \bar{t})^2}{\sum_k (t_k - \bar{t})^2}}
\]
The number of program schools that get treatment \((m)\) can be derived from the previous formula as follows:

\[
m = \left(\frac{M}{MDES}\right)^2 \left(1 + \frac{1}{p}\right) \left(\frac{1}{n} + \frac{\rho(1 - R^2)}{1 - \rho}\right) \left(1 + \frac{1}{T} + \frac{(t_f - \bar{t})^2}{\sum_k (t_k - \bar{t})^2}\right)
\]

where \(n\) is the number of students per school, \(T\) is the number of baseline year, \(t_f\) is the follow-up year of interest, \(\bar{t}\) is the mean baseline year, \(\rho\) is the conditional ICC for cohorts (proportion of total variance of between years), \(M\) is multiplier, for one-tailed test: \(Mm^*T - g^* - 1\) = \(t_{\alpha} + t_{1-\beta}\) with \(m^* T - g^* - 1\) degrees of freedom. For two-tailed test: \(Mm^*T - g^* - 1\) = \(t_{\alpha/2} + t_{1-\beta}\) with \(m^* T - g^* - 1\) degrees of freedom, and \(p\) is the ratio of the number of comparison schools to the number of program schools.