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METHODOLOGICAL STUDIES

PowerUp!: A Tool for Calculating Minimum Detectable
Effect Sizes and Minimum Required Sample Sizes for
Experimental and Quasi-Experimental Design Studies

Nianbo Dong
Vanderbilt University, Nashville, Tennessee, USA

Rebecca Maynard
University of Pennsylvania Graduate School of Education, Philadelphia, Pennsylvania, USA

Abstract: This paper and the accompanying tool are intended to complement existing supports for
conducting power analysis tools by offering a tool based on the framework of Minimum Detectable
Effect Sizes (MDES) formulae that can be used in determining sample size requirements and in
estimating minimum detectable effect sizes for a range of individual- and group-random assignment
design studies and for common quasi-experimental design studies. The paper and accompanying tool
cover computation of minimum detectable effect sizes under the following study designs: individual
random assignment designs, hierarchical random assignment designs (2-4 levels), block random
assignment designs (2-4 levels), regression discontinuity designs (6 types), and short interrupted time-
series designs. In each case, the discussion and accompanying tool consider the key factors associated
with statistical power and minimum detectable effect sizes, including the level at which treatment
occurs and the statistical models (e.g., fixed effect and random effect) used in the analysis. The tool also
includes a module that estimates for one and two level random assignment design studies the minimum
sample sizes required in order for studies to attain user-defined minimum detectable effect sizes.

Keywords: Power analysis, minimum detectable effect size, multilevel experimental, quasi-
experimental designs

Experimental and quasi-experimental designs are widely applied to evaluate the effects
of policy and programs. It is important that such studies be designed to have adequate
statistical power to detect meaningful size impacts, if they occur. Some excellent tools have
been developed to estimate the statistical power of studies with particular characteristics
to detect true impacts of a particular size or larger—referred to as minimum detectable
effect sizes (MDES)—for both individual and group-randomized experiments (e.g., Optimal
Design Version 2.0, Spybrook, Raudenbush, Congdon, & Martinez, 2009; and Hedges &
Rhoads, 2010; Konstantopoulos, 2009). This article and the associated computational tools
in the accompanying workbook, PowerUp!, use the framework of MDES formulae in these
other tools to define and apply formulae to compute MDES under a variety of experimental
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and quasi-experimental study designs and to estimate the minimum required sample size
(MRSS) to achieve a desired level of statistical analysis under various study designs and
assumptions.

The article begins with a discussion of the various study designs included in the
PowerUp! tool. The second section discusses study designs and the design qualities that
are associated with statistical power, MDES, and MRSS for various study goals and
designs. The third section of the article presents a framework for selecting the minimum
relevant effect size (MRES) to focus on when designing a study and defines the basic
computational formulas for determining MDES, given study design parameters. The fourth
section describes the use of the PowerUp! tools for estimating MRES, and the fifth section
discusses the use of PowerUp! tools for estimating MRSS for studies with particular goals
and design parameters.

STUDY DESIGNS

PowerUp! focuses on two broad classes of experimental designs, individual random as-
signment (IRA) and cluster random assignment (CRA) designs, and two classes of quasi-
experimental designs—regression discontinuity (RD) designs and interrupted time series
(ITS) designs. In total, the PowerUp! tool covers 21 design variants, the key features of
which are summarized in Table 1.

Experimental Designs

Experimental design studies involve random assignment of study units to conditions, gen-
erally treatment or control. If experimental design studies are well implemented and the
data are properly analyzed, they generate unbiased estimates of both the average effects
of the program, policy, or practice being tested and the confidence intervals around the
estimated impacts (Boruch, 1997; Murnane & Willett, 2010; Orr, 1998).

Individual Random Assignment (IRA) designs are the most common and simplest
experimental design and involve the random assignment of individual analysis units to
treatment or control conditions (see Table 1, Model 1.0). These are also referred to in
the literature as “completely randomized controlled trials” or “simple random assignment”
designs. In cases where the treatment and control groups are equal in size, formulas found in
sample design textbooks can be used for computing statistical power and minimum sample
sizes needed to achieve certain minimum detectable effect sizes (MDES; e.g., see Orr,
1998). However, when groups are unequal in size and when randomization has occurred
among individuals within blocks or strata (i.e., blocked individual random assignment or
BIRA designs), it is more complicated to find, interpret, and apply the formulas for such
computations (see Table 1, Models 2.1–2.5).

Cluster Random Assignment (CRA) designs have been gaining popularity in education
research (Kirk, 1995). These designs entail random assignment of clusters of analysis units
(e.g., classes of students or whole schools of teachers) to the treatment or control condition.
In the simplest case, all clusters in a study sample are randomized either individually or
within “blocks” (e.g., defined by district or state), resulting in what is referred to as CRA
(or group) designs. These models generally fall into one of two categories—simple CRA
designs (see Table 1, Models 3.1–3.3) or blocked CRA (BCRA) designs (see Table 1,
Models 4.1–4.5). In simple CRA designs, top-level clusters (e.g., schools containing
teachers and students) are randomly assigned to the treatment or control condition (e.g.,
see Borman et al., 2007; Cook, Hunt, & Murphy, 2000). In contrast, in BCRA designs,
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Table 1. Study designs and analyses included in the PowerUp! tools

subclusters of individuals within top-level clusters (blocks) are randomly assigned to the
treatment or control condition (e.g., see Nye, Hedges, & Konstantopoulos, 1999).

To determine the MDES for a particular sample size and allocation or the minimum
required sample size (MRSS) to achieve a target MDES, it is necessary to account for
both the particular qualities of the study design and the implication of that design for the
analytic models to be used. For example, IRA design studies typically use simple multiple
regression models, whereas CRA design studies generally use hierarchical linear models
(HLMs) that account for clustering of the analysis units (e.g., students within classrooms
or students within classrooms, schools, and districts). Blocked random assignment designs,
whether IRA or CRA, typically entail meta-analyzing the results of ministudies of each
sample using the fixed or random block effect model.

PowerUp! supports computation of both MDES and MRSS for a variety of IRA
and CRA designs that are distinguished by whether the study sample is blocked prior
to assigning units to treatment or control condition and by the number of levels of
clustering, and the level at which random assignment occurs. For example, Model 1.0
(IRA and N IRA) entails neither blocking not clustering, whereas Model 2.1 (BIRA2 1c
and N BIRA2 1c) refers to a BIRA design that assumes constant effects across the
assignment blocks. Model 3.1 (CRA2 2r and N CRA2 2r) pertains to a design with two
levels of sample clustering, assignment to treatment or control condition is at the second
level (e.g., students are the units for analysis and classes of students are randomized to
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Table 2. Examples of blocked random assignment designs

Note c = constant block effects model; f = fixed block effects model; r = random block effects
model.

condition), and impacts are estimated using a random effects model. Model 3.3 (CRA4 4r
and N CRA4 4r) is similar to Model 3.1, except that pertain to a design with four levels
of sample clustering and random assignment occurring at the fourth level.

The suffix of the worksheet names in PowerUp! shown in Table 1, columns 7 and 8,
denote key characteristics of the study design and intended analytic model. For example,
for Models 2.1 through 2.4, denoted by BIRAi jk, i takes on the values of 2 through 4 to
denote the levels of blocking; j takes on the values of 1 through 3 to denote the level at
which random assignment occurs (e.g., students = 1, schools = 2, and districts or states =
3); k takes on values of c, f, and r, denoting the assumptions to be used in estimating the
effects of the treatment. A “c” denotes the assumption of constant treatment effects across
blocks, an “f” denotes the assumption that the block effect is fixed (i.e., each block has
specific treatment effect that could differ across block), and an “r” denotes the assumption
that the block effect is random (i.e., the treatment effects can randomly vary across blocks).

In general, the decision about whether to use a fixed block effect model or a random
block effect model depends on the sampling scheme used in the study and the population
to which the results will be generalized. If the study uses a random sample drawn from a
population to which the results are expected to generalize, the random block effect model
would be appropriate. However, if the intent is to generalize the findings only to the study
sample, a fixed block effect would be appropriate, with the block indicators functioning
as covariates controlling for the treatment effects of block membership. With this model,
estimates of the average treatment effect and its standard error are computed by averaging
the block-specific treatment effects and computing the standard error of that average,
whereas with the random block effect, model estimates one average treatment effect across
all blocks and one standard error. Key properties of these models are illustrated in Table 2.

The first three blocked random assignment design models in the tool kit pertain to
two-level designs. Model 2.1 (used in PowerUp! worksheets BIRA2 1c and N BIRA2 1c)
assumes treatment effects are constant across blocks and that results pertain to the population
groups similar to the student sample; Models 2.2 (used in BIRA2 1f and N BIRA2 1f)
assumes that the treatment effects within blocks (e.g., schools) are fixed, but they may
differ across blocks, and that the estimated impacts pertain to population groups similar to
the schools represented in the sample; and Model 2.3 (used in BIRA2 1r and N BIRA2 1r)
assumes that the treatment effects may vary randomly across blocks and that the estimated
average effect is generalizable to the reference population for the study (e.g., all students
and schools).

Models 2.4 and 2.5 (used in BIRA3 1r and N BIRA3 1r, and BIRA4 1r and
N BIRA4 1r, respectively) assume that random assignment occurs at Level 1 (e.g., stu-
dents) and that impacts of the treatment vary randomly across higher levels (e.g., classrooms,
schools, districts).
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Models 4.1 through 4.5 are counterpart BCRA models (denoted as BCRAi jk and
N BCRAi jk). Models 4.1 and 4.4 (BCRA3 2f and BCRA4 3f) assume that random as-
signment occurs at Level 2 and Level 3, respectively (e.g., school and district, respectively)
and that the treatment effects are fixed across blocks, as in the case of Model 2.2. Models
4.2 and 4.3 are similar to Models 2.4 and 2.5, except that the random assignment occurred
at Level 2. Model 4.5 is similar to Model 2.5, except that it assumes that random assignment
occurred at Level 3, not Level 1.

Quasi-Experimental Designs

In quasi-experimental designs, comparison groups are identified by means other than
random assignment (e.g., students scoring just above the cut-point on the test used to
select the treatment group, which consists of those with scores below the cut-point;
students in matched schools not offering the treatment). Although there is a rich literature
demonstrating the limitations of quasi-experimental methods for estimating treatment
effects, quasi-experimental methods will continue to be used when it is not practical or
feasible to conduct a study using random assignment to form the treatment and comparison
groups. Thus, PowerUp! includes tools for estimating MDES and MRSS for studies that
use two quasi-experimental—RD designs and ITS designs.

RD designs compare outcomes for the treatment group (e.g., students with low pretest
scores or schools designated in need of improvement based on the percentage of students
scoring below proficient on a state test) with a comparison group that was near the threshold
for selection for the treatment on the basis of some characteristic that is measured using an
ordinal scale (e.g., the pretest score or the percentage of students scoring below proficient
on the state test), but that was not selected. Under certain conditions, studies that compare
groups on either side of this selection threshold will yield unbiased estimates of the local
average treatment effect for individuals whose “score” on the selection criterion is in the
vicinity of the selection threshold or “discontinuity” (Bloom, 2009; Cook & Wong, 2007;
Imbens & Lemieux, 2008; Schochet, 2008b; Schochet et al., 2010; Shadish, Cook, &
Campbell, 2002; Thistlethwaite & Campbell, 1960; Trochim, 1984). In recent years, RD
designs have been applied to study the effects on academic achievement of a variety of
policies and practices, including class size reductions (Angrist & Lavy, 1999), mandatory
summer school (Jacob & Lefgren, 2004; Matsudaira, 2008), and the federal Reading First
Program (Gamse et al., 2008).

For sample design purposes, RD designs can be mapped to corresponding random
assignment study designs in terms of the unit of assignment to treatment and the sam-
pling framework (Schochet, 2008b). PowerUp! includes tools for estimating MDES for six
specific RD designs described in Table 1:

• Model 5.1: “Students are the unit of assignment and site (school or district) effects are
fixed” (Schochet, 2008b, p. 5). This corresponds to the two-level BIRA designs with
fixed effects and treatment at Level 1 (Table 1, Model 2.2).

• Model 5.2: “Students are the units of assignment and site effects are random” (Schochet,
2008b, p. 5). This corresponds to two-level BIRA designs with random block effects
(Table 1, Model 2.3).

• Model 5.3: “Schools are the unit of assignment and no random classroom effects”
(Schochet, 2008b, p. 5). This corresponds to two-level simple CRA designs (Table 1,
Model 3.1).
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• Model 5.4: “Schools are the units of assignment and classroom effects are random”
(Schochet, 2008b, p. 6). This corresponds to three-level simple CRA designs with treat-
ment at Level 3 (Table 1, Model 3.2).

• Model 5.5: “Classrooms are the units of assignment and school effects are fixed” (Scho-
chet, 2008b, p. 5). This corresponds to three-level BCRA designs with fixed effects and
treatment at Level 2 (Table 1, Model 4.1).

• Model 5.6: “Classrooms are the units of assignment and school effects are random”
(Schochet, 2008b, p. 6). This corresponds to three-level BCRA designs with treatment
at Level 2 and random effects across clusters (Table 1, Model 4.2).

ITS designs are used to estimate treatment impact by comparing trends in the outcome
of interest prior to the introduction of the treatment and after (Bloom, 1999). They have
been used primarily in large-scale program evaluations where program or policy decisions
did not include or allow selecting participants or sites using a lottery. Examples include
evaluations of the Accelerated Schools reform model (Bloom, 2001), First Things First
school reform initiative (Quint, Bloom, Black, & Stephens, 2005), Talent Development
(Kemple, Herlihy, & Smith, 2005), Project GRAD (Quint et al., 2005), and the Formative
Assessments of Student Thinking in Reading program (Quint, Sepanik, & Smith, 2008).

A challenge with ITS designs is establishing a credible basis for determining the extent
to which changes occurring after the onset of the intervention can be attributed reasonably
to the intervention rather than to other factors. One strategy for improving the ability to
parse out effects of co-occurring factors that can affect observed differences in outcomes
between the pre- and postintervention period is to use both before-and-after comparisons
within the time series (e.g., schools before and after the introduction of the treatment) and
comparison of the time series for the treatment units with a matched group of units that
never received the treatment.

PowerUp! includes tools for estimating the MDES and the minimum sample size
requirements for ITS design studies that involve up to two levels of clustering (see Table 1,
Model 6.0). For example, as in the applications just cited, the treatment is often delivered
at the cohort level, whereas the analysis is conducted at the student level, and the school is
used as constant or fixed effect.

FACTORS THAT AFFECT MDES AND MRSS

Smartly designed evaluations have sample sizes large enough that, should the program,
policy, or practice under study have a meaningful size impact, there is a high probability
that the study will detect it. However, knowing how large a sample is sufficient for this
purpose depends on a number of factors, some of which can only be “guesstimated” prior to
conducting the study. Moreover, some of these factors are discretionary (i.e., based on the
evaluator’s judgment) and others are inherent (i.e., depend on the nature of the intervention
and the study design). Put another way, discretionary factors are statistical qualifications
decided on by the evaluator, whereas inherent factors are characteristics of the true effect,
which is not known, and of the basic study design, which typically is conditioned by factors
outside of the evaluator’s control (e.g., the size and nature of the units of intervention and
the properties of the outcomes of interest).

There are six prominent discretionary factors associated with statistical power of
particular study samples and sample size requirements to achieve a specified statistical
power. One is the minimum relevant size impact, by which we mean the smallest size
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impact it is important to detect, if it exists. The second is the adopted level of statistical
significance (α) or probability of making a Type I error (i.e., concluding there is an impact
when there really is not). Commonly, evaluators set alpha equal to .05. A third discretionary
factor is the desired level of statistical power (1-β), where β is the probability of making
a Type II error (failing to detect a true impact if it occurs). Commonly, evaluators adopt a
power level of .80. A fourth factor pertains to use of one-tailed or two-tailed testing, with
two-tailed testing being most common. A fifth factor relates to use covariates to reduce
measurement error (Bloom, 2006; Bloom, Richburg-Hayes, & Black, 2007), and a sixth
factor relates to whether to assume fixed or random effects across sample blocks or clusters,
which relates to the intended application of the study findings.

There are five especially notable inherent factors associated with the MDES or required
sample size estimates associated with particular evaluation goals: (a) the size of the true
average impact of the treatment or intervention (typically expressed in effect-size units), (b)
for cluster (group) designs, the intraclass correlations (ICCs) indicating the fraction of the
total variance in outcome that lies between clusters, (c) the number of sample units within
clusters, (d) the proportion of the sample expected to be in the treatment (or comparison)
group (Bloom, 2006; Bloom et al., 2008; Hedges & Rhoads, 2010; Konstantopoulos, 2008a,
2008b; Raudenbush, 1997; Raudenbush, Martinez, & Spybrook, 2007; Schochet, 2008a),
and (e) the minimum relevant effect size (MRES). For blocked random assignment design
studies, the variability in impacts across blocks or effect size heterogeneity also affects the
MDES and MRSS (Hedges & Rhoads, 2010; Konstantopoulos, 2008a, 2009; Raudenbush
et al., 2007).1

For RD design studies, an inherent factor in determining MDES or MRSS is the ratio
of the asymptotic variances of impact estimators of RD design and experimental design,
referred to as the “design effect.” For single-level RD design studies, the design effect can
be expressed as 1/(1 − ρ2

T S), where ρT S is the correlation between treatment status and the
criterion measure used to determine whether the unit was assigned to the treatment group
(Schochet, 2008b). Notably, ρT S will vary depending on three factors: (a) the distribution
of the criterion measure in the population that is represented by the study sample, (b) the
location of the cut-off score in this distribution, and (c) the proportion of the sample that is
in the treatment group (Schochet, 2008b). The resulting consequence of the design effect
for the statistical power of a particular study design is detailed in the appendix and described
in Schochet (2008b).

PowerUp! allows the user to compute either the MDES or the MRSS for studies by
specifying inherent and discretionary factors, based on the best available information about
them. For example, the user can specify assumed unconditional ICCs, drawing on resources
such as Hedges and Hedberg (2007) and the average size of clusters, based on demographic
data. The user can then set values for discretionary factors, such as the desired level of
statistical precision, the nature of statistical controls that will be used, and the relative size
of the treatment and comparison groups. Within each design, the user may select other
design features, including the number of levels of clustering or blocking, the nature of the
cluster or block effect, and the expected level of sample attrition.

The MRES is both one of the most important factors and one that requires considerable
judgment on the part of the evaluator. It also is frequently not explicitly discussed in
evaluation design reports or considered in evaluating study findings.

1The effect size variability and effect size heterogeneity have different definitions but both indicate
the variability/heterogeneity of treatment effect vary across block.
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SELECTING THE MRES

Most often power analysis entails estimating and evaluating MDES for specific sample
sizes and designs. PowerUp! is designed to encourage and facilitate designing studies with
adequate power to detect impacts equal to or larger than an established minimum size that
has relevance for policy or practice. We refer to this as the MRES. In some cases, there is an
empirical or policy basis for establishing a minimum size impact that is relevant and, thus,
for a “target” MRES to use in designing a study or as the basis for judging the adequacy of an
existing study sample to estimate reliably whether a treatment has a meaningful effect. The
two obvious considerations in deciding on the MRES are cost and actual size of impact. For
example, a costly educational intervention such as lowering class size would have practical
relevance only if it generates relatively large impacts on student achievement, whereas a
low-cost intervention such as financial aid counseling would need to have only modest
impacts on college attendance for it the findings to have practical relevance. Alternatively,
often there may be threshold effects that are needed before an intervention would be judged
to be important for policy. For example, even a low-cost intervention that moves student
achievement 1 or 2 points on a 500-point scale is not likely to have practical importance,
regardless of whether or not the study findings are statistically significant.

Educators frequently describe their goals for changes in policy or practice in terms of
their potential to close achievement gaps (e.g., between gender or race/ethnic groups) or in
relation to an average year of student growth in the outcome of interest. It is important to
note that these types benchmarks are sensitive to the metrics used (Bloom, Hill, Black &
Lipsey, 2008; Hill, Bloom, Black, & Lipsey, 2007). Thus, it is generally best to determine
the minimum relevant size impact in some natural unit (like test score gains or percentage
point reductions in dropout rates) for determining the minimum relevant size impact and,
subsequently, convert this to effect size units (the MRES).

COMPUTING THE MDES

A convenient way to determine whether a completed study has adequate statistical power
is to compute the MDES and compare this with the MRES. A priori, the goal is to design
the study such that the MDES is less than or equal to the MRES and, thereby, maximize the
chance that, if no impacts are detected, it is pretty certain that any true impacts escaping
detection were sufficiently small as to have no practical or policy significance.

In contrast to the MRES, which is independent of the study design, the MDES depends
on the actual sample design that was (or will be) implemented. Specifically, it is the
minimum true effect size that a particular study can detect with a specified level of statistical
precision and power. The MDES depends on a variety of characteristics of the actual study
including the study design, the extent and nature of clustering, the total sample size available
for analysis (e.g., taking account of sample attrition), and the allocation of the sample to
treatment and control conditions.

In general, the formula for estimating the MDES can be expressed as

MDES = Mv ∗ SE/σ

where Mv is the sum of two t statistics (Bloom, 1995, 2005, 2006; Murray, 1998). For
one-tailed tests, Mv = tα + t1−β with v degrees of freedom (v is a function of sample size
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Figure 1. One-tailed multiplier (Mv = tα + t1−β ) (color figure available online).
Note: Adapted from “The Core Analytics of Randomized Experiments for Social Research” (Fig-
ure 1, p. 22) by H. S. Bloom, 2006, MDRC Working Papers on Research Methodology, New York,
NY: Manpower Demonstration Research Corporation. Copyright 2006 by MDRC. Adapted with
permission. The two-tailed multiplier: Mv = tα/2 + t1−β .

and number of covariates) and for two-tailed tests (which are typically applied in studies
designed to measure treatment effects), Mv = tα/2 + t1−β . SE is the standard error of the
treatment effect estimate, and σ is the pooled total standard deviation of the outcome.
Throughout this article and in the accompanying tools, the effect size has been defined as
the difference in raw score units of the outcome of interest, divided by the pooled total
standard deviation.

Figure 1 illustrates the construct of the multiplier for one-tailed tests. It is the smallest
distance in standard error (t statistic) units such that, if the null hypothesis (H0 : ȲT −
ȲC = 0) is true, the Type I error is equal to α and, if the alternative hypothesis (Ha :
ȲT − ȲC > 0) is true, the Type II error is equal to β. Put another way, the MDES is
the smallest size true effect we expect to be able to detect with the specified power and
precision.

It is possible to calculate the MDES for any study design as long as the ratio of the
SE to σ is known and other key assumptions about the study design and analytic model
have been specified (e.g., the sample size and its allocation across clusters and to treatment
conditions, the level at which random assignment occurs, the number of covariates and
their explanatory power, and the level of sample attrition). For example, in the two-level
simple CRA design where treatment is at Level 2 (Table 1, Model 3.1), the treatment effect
can be estimated using a two-level HLM:

Level 1: Yij = β0j + β1jXij + rij , rij ∼ N
(
0, σ 2

|X
)

Level 2:
β0j = γ00 + γ01(TREATMENT)j + γ02Wj + μ0j , μ0j ∼ N

(
0, τ 2

|W
)

β1j = γ10

Reduced form: Yij = γ00 + γ01(TREATMENT)j + γ02Wj + γ10Xij + μ0j + rij
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In this case, the MDES formula from Bloom (2006, p. 17) is as follows 2:

MDES = MJ−g∗−2

√
ρ(1 − R2

2)

P (1 − P )J
+ (1 − ρ)(1 − R2

1)

P (1 − P )Jn

where

Multiplier for one-tailed test: MJ−g∗−2 = tα + t1−β with J–g∗–2 degrees of freedom;
Multiplier for two-tailed test: MJ−g∗−2 = tα/2 + t1−β with J–g∗–2 degrees of freedom;
J = the total number of clusters;
g∗ = the number of group covariates used;

ρ = τ 2

τ 2+σ 2 is the unconditional intra-class coefficient (ICC);

τ 2 = Level-2 (between group-level) variance in the unconditional model (without any
covariates);

σ 2 = Level-1 (individual-level) variance in the unconditional Model;
R2

1 = 1 − (σ 2
|X/σ

2) is the proportion of variance in the outcome measure occurring at Level
1 that is explained by covariates, X;

R2
2 = 1 − (τ 2

|W/τ
2) is the proportion of the within group variance (at Level 2) that is

explained by the covariates, W;
P = the proportion of this sample assigned to the treatment group (JT /J );

Sample attrition reduces statistical power by lowering the size of the analytic sample.3

For the two-level simple CRA design, attrition might occur at both levels. Suppose the
sample retention rates ( = 1- the percentage of the study sample lost to follow up) at Levels
1 and 2 are r1 and r2, respectively, the revised MDES formula containing the retention rates4

2When there is only one Level-2 covariate, W, the variance of the main effect of treatment is esti-

mated by (Raudenbush, 1997) as follows: var(γ̂01|W ) = 4(τ2
|w+σ 2/n)

J
[1 + 1

J−4 ], where, γ̂01 is the point
estimate of treatment effect; W is a Level-2 covariate, and var(γ̂01 |W ) represents the variance of treat-
ment effect estimate after adjusting covariate, W; τ̂ 2

|w is the Level-2 variance after adjusting covariate,
and σ 2 is the level-1 variance; J is the total number of Level-2 units (clusters) and n is the sample

size per cluster. The MDES can be expressed as: MDES = MJ−g∗−2

√
ρ(1−R2

2 )
P (1−P )J + (1−ρ)(1−R2

1 )
P (1−P )Jn

√
1 + 1

J−4

The MDES formula derived by Bloom (2006) ignores the factor
√

1 + 1
J−4 . The reason is that this

adjustment has no practical significance for very small samples (i.e., samples less than 30). For
example, for J = 6, 10, 14, 20, and 30, respectively, the MDES calculated from Bloom’s formula is
18%, 7%, 5%, 3%, and 2% smaller than what would have been estimated including the small sample
correction. Similarly, the standard error formulas for three-level hierarchical randomized assignment
designs derived by other researchers did not include such a factor (e.g., Hedges & Rhoads, 2010;
Konstantopoulos, 2008b; Schochet, 2008a; Spybrook, 2007), to be consistent we use the MDES
formula by ignoring this factor.

3In addition to affecting the MDES and MRSS, sample attrition also may introduce the threat of
bias (U.S. Department of Education, What Works Clearinghouse, 2008). PowerUp! does not address
the threat of bias due to sample attrition.

4An alternative approach to handling attrition in power analysis is to calculate the required sample
size to meet MDES when there is no attrition and then adjust this sample size by dividing (1-attrition
rate).
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is

MDES = MJr2−g∗−2

√
ρ(1 − R2

2)

P (1 − P )Jr2
+ (1 − ρ)(1 − R2

1)

P (1 − P )Jnr2r1

In addition to Bloom’s (1995, 2005, 2006) work on the background and computation
of MDES, the specific formulae for SEs used in the PowerUp! tools rely on the work of
others. For example, formulae for the two-level simple CRA design studies (Table 1, Model
3.1) draw on Raudenbush (1997); those for two-level BIRA designs (Table 1, Models 2.2
and 2.3) draw on Raudenbush and Liu (2000); those for three-level simple CRA designs
(Table 1, Model 3.2) and for three-level BIRA or BCRA designs (Table 1, Models 2.4,
3.1 and 3.2) draw on Hedges and Rhoads (2010), Konstantopoulos (2008a, 2008b, 2009),
Schochet (2008a), and Spybrook (2007); those for four-level BCRA designs with treatment
at Level 3 (Table 1, Models 4.4 and 4.5) draw on Spybrook (2007); those for the various RD
designs (Table 1, Models 5.1–5.6) draw on Schochet (2008b); and those for the ITS designs
(Table 1, Model 6.0) draw on Bloom (1999, 2003). Notably, because the SE can be expressed
in terms of the pooled standard deviation of the outcome, it also could be expressed in terms
that are related to the SE, such as the unconditional ICC or the R2. The MDES formulae
for four-level simple cluster designs and the other four-level blocked random assignment
designs were derived following similar logic as applied for the aforementioned designs.
The MDES formulae for all of the designs previously described and listed in Table 1 are
presented in the appendix.

These MDES formulas are the basis for the PowerUp! tools in the accompanying
Microsoft Excel workbook.

COMPUTING MRSS

The same formulae that are used to compute MDES can be manipulated to work in reverse
to determine the minimum size sample required to ensure that the MDES for a study will
be less than or equal to the minimum size that is relevant for policy or practice (the MRES).
For example, using the MDES formula for a two-level CRA design study in the preceding
example (Table 1, Model 3.1), the sample size (J) can be expressed as follows:

J =
(
MJr2−g∗−2

MDES

)2
(
ρ
(
1 − R2

2

)
P (1 − P )r2

+ (1 − ρ)
(
1 − R2

1

)
P (1 − P )nr2r1

)

Because the multiplier, MJr2−g∗−2, is a function of J, PowerUp! solves for the sample
size through an iterative process that is illustrated next.

USING THE PowerUp! TOOLS

PowerUp! users have options to compute an MDES or to determine the MRSS by selecting
the core study design features from among the 21 identified in Table 1. PowerUp! is a user-
friendly, flexible tool that complements existing power analysis software by answering one
of two questions, based on user-supplied assumptions: (a) What is the minimum size of
true impact that will have a specified likelihood of being detected (i.e., the MDES), given
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a specified study design, sample size, and allocation to treatment and control condition?
and (b) for a given study design, what is the MRSS to have the desired power to detect a
true impact (if such exists) that is at or above a minimum size that is relevant for policy or
practice (i.e., the MRES)?

Computing MDES

In general, one would want to estimate the MDES in cases where there is an existing
sample design—for example, to determine whether a completed study used a sufficiently
large sample to expect that it would have detected impacts of a given size or larger, if
they occurred. Put another way, one could determine whether the study was likely to have
uncovered true impacts that were equal to or larger than a specified MRES.

The first step in using the tool is to determine the basic study design, using Table 1
and then select the corresponding Tab in the PowerUp! tool. For example, to compute
the MDES for a study that used simple IRA of students to treatment or control condition
corresponds to Model 1.0 (IRA) in Table 1. Thus, the user would to select Tab 1.0 IRA to
enter the tool for computing the study’s MDES (see Table 3). Once locating the relevant
worksheet, the user has the opportunity to supply relevant assumptions and preferences
in the highlighted cells. These include the desired statistical precision and power (i.e., α,
whether a one- or two-tailed test is being used, and 1-β), assumptions about the analytic
models that were used to estimate impacts (i.e., the proportion of variance in the outcome
explained by the model and the number of covariates used), and characteristics of the study
sample (i.e., total size and proportion assigned to treatment condition).

Table 3 shows input and output for computing the MDES for a study that randomly
assigned 240 individuals to treatment or control condition in equal proportion. The user
in this example specified an alpha level of .05, a two-tailed test, 80% power, and an R2 of

Table 3. Sample tool for computing the MDES for a simple individual random assignment design
study (see Table 1, Model 1.0 and PowerUp! Tab 1.0 IRA; available in color online)
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Table 4. Sample tool for computing the MDES for a two-level blocked individual random assign-
ment design study with random effects (see Table 1, Model 2.3 and PowerUp! Tab 2.3 BIRA2 1r;
available in color online)

.60. After inputting these user-supplied assumptions, PowerUp! returned an estimate of the
MDES equal to .230 (shown in bold at the bottom of the worksheet).

Estimating the MDES for a BIRA design study is similar, only the user would select a
Tab corresponding to the relevant version of Model 2, depending on whether there are two,
three, or four levels of clustering and whether the analytic model assumes constant, fixed, or
random effects, respectively. Table 4 illustrates the worksheet for Model 2.3, which has two
levels of clustering and assumes random effects. In general, the tools for blocked random
assignment designs work similarly to those just stated, with the addition of treatment effect
heterogeneity parameters (ω) that denote assumptions about the variability of the treatment
effect across certain level of blocks, standardized by the outcome variation at that level of
block (Hedges & Rhoads, 2010; Konstantopoulos, 2008a, 2009). Furthermore, the block-
level variance explained is the proportion of variance between blocks on the treatment
effect that is explained by block-level covariates, not the block-mean variance explained.

An example of studies for which it would be appropriate to use these block random
assignment designs is for the recently completed study of charter schools (Gleason, Clark,
Tuttle, & Dwoyer, 2010), where lotteries were used to assign eligible charter school appli-
cants for oversubscribed schools to admission (treatment group) or not (control group) for
the particular charter school to which they applied (the block). In analyzing the data from
this randomized block design study, it was assumed that the effects were unique to each
charter school.

For a CRA design, the user would select the relevant Model 3 or Model 4 tab from the
PowerUp! tools. Models 3.1 through 3.3 all pertain to simple CRA designs but differ in
the number of levels of clustering. For example, a study in which treatment occurred at the
cluster level closest to the unit of analysis (e.g., randomization occurred at the classroom
level and students were the unit of analysis), the user should select Model 2.2 (CRA2 2r). If
schools were randomized to treatment or control status and students clustered in classrooms
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Table 5. Sample tool for computing the MDES for a four-level simple cluster random assignment
design study with treatment at Level 4 (see Table 1, Model 3.3 and PowerUp! Tab 3.3 CRA4 4r;
available in color online)

were the unit of analysis, the user should select Model 3.2; if districts were randomized to
treatment or control conditions, but students clustered in schools and classrooms were the
unit of analysis, the user should select Model 3.3.

In addition to the input required for IRA design studies, for CRA designs, the user also
needs to provide information on the unconditional ICCs between the analysis units and
the clusters, assumptions about the proportion of variance in the outcome explained by the
estimation model for each level of the data, and details about the size of sample clusters
as well as the overall sample. The medium shaded cells in Table 5 illustrate these input
parameters for a design with four levels of clustering and where the treatment occurs at the
highest level of clustering (Table 1, Model 3.3, and PowerUp! Tab 3.3 CRA4 4r).

In this particular example, the user selected the same basic parameters as in the
previous example shown in Table 3 (e.g., alpha level, two-tailed testing, power standard,
and proportion assigned to treatment condition). However, in this case, the user also needed
to provide assumptions or actual data about the ICCs at the various levels, the proportion
of variance in the outcomes explained by covariates (Rj

2) at the various levels, the number
of sample units randomized, and the average number of units in each of the clusters. In this
particular example, there are 1,200 analysis units, clustered as follows: 10 Level-1 units
per Level 2 cluster, 2 Level-2 units per Level 3 cluster; 3 Level-3 units per Level 4 cluster,
and 20 Level-4 units. The user specified that covariates will be included in the Levels 1 to
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4 analyses and that covariates will explain half of the variance in the outcome measured
at each level. With only one covariate in the Level 4 analysis (which is the level at which
randomization was conducted), the MDES is estimated to be .292 standard deviations
(shown in the dark shaded box at the bottom).

For BCRA designs, the user selects one of the Model 4 tabs from the PowerUp! tools.
As with the BIRA models, the appropriate tab depends on the level of blocking at which
random assignment occurred and whether the analysis is designed to estimate fixed or
random effects.

As previously discussed, the PowerUp! tool uses formulas for computing the MDES
and minimum sample size requirements for RD designs that are “derivative” of those used
for random assignment designs. Essentially, in an RD design, the treatment and control
groups are determined not by randomization but by a specific rule for sorting based on a
continuous criterion variable. As a result, for any given set of study design parameters (e.g.,
alpha level, one- or two-tailed test, power level, and MRES), the MDES and MRSS are
considerably larger than under an IRA design. PowerUp! has built into the MDES formulas
estimates of the “penalty” (formally referred to as the “design effect”) based on work by
Schochet (2008b).

The design effect can be thought of as the multiplier on the sample size requirement
needed for the RD design to have similar statistical power to a block random assignment
design study. For example, Schochet (2008b) found that, for a study in which the optimal
functional form is linear, the criterion measure is normally distributed, the cutoff score is
at the mean, and 50% of the sample is in the treatment group, the estimated design effect
is 2.75. Drawing on this work, PowerUp! includes this value as the default design effect in
the RD design tools. Of importance, Schochet (2008b, p. 10) noted that “the linearity (and
constant treatment effects) assumptions will likely provide a lower bound on RD design
effects.” Thus, PowerUp! users may want to modify this default.

Table 6 illustrates the PowerUp! tool for computing the MDES for Model 5.2
(PowerUp! Tab 5.2 RD2 1r), which would apply to a study in which students were the
units of assignment and school effects are random. This model is analogous to two-level
random effect block random assignment designs (Table 1, Model 2.3 and PowerUp! Tab 2.3
BIRA2 1r). In addition to the parameters required to calculate MDES for two-level random
effect blocked random assignment design study (e.g., the treatment effect heterogeneity,
ω, and the proportion of variance between blocks on the treatment effect explained by the
block-level covariates), the user also needs to accept or change the default design effect.

For ITS design studies, the user needs to specify four design parameters that are unique
to the ITS design: (a) the number of baseline years of data; (b) the follow-up year of interest;
and (c) whether an additional comparison group is used; and (d) if an additional comparison
group is used, its size relative to that of the number of treatment group units.

Table 7 illustrates the MDES calculation for an ITS design study with alpha level of .05,
using a two-tailed test, and 80% power. The ICC for the cohorts is 0.02, with five waves of
baseline data, six program schools, and 200 students per school. The proportion of variance
of between-cluster (cohort) explained by a cohort-level covariate is 0.2. The impact is
estimated in the second observation period following the treatment. For this example, the
MDES is estimated to be 0.20 assuming the study sample does not include any no-treatment
comparison units and 0.24 if two thirds of the sample consists of nontreatment comparison
units. The reason the MDES increases if some of the sample comes from no-treatment
comparison units is that, holding sample size constant, the no-treatment comparison units
increase the standard error of the impact estimate increases due to the need to make
additional comparisons.
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Table 6. Sample tool for computing the MDES for regression discontinuity design analogous to
two-level blocked individual random assignment design with random effects (see Table 1, model 5.2
and PowerUp! Tab 5.2 RD2 1r; available in color online)

Determining the MRSS to Achieve Study Goals

The logical way to design a study is to begin by determining the most appropriate, feasible
study design. The first step is to determine whether it is feasible to conduct an experimental
design evaluation. The second step is to determine the appropriate units for assignment to
treatment condition and for analysis, considering factors like the natural unit for delivering
the intervention, the potential for contamination of the control group, and the likelihood of
gaining necessary cooperation from partner organizations and individuals. The third step
is to determine the MRES (see previous discussion), considering factors such as the cost
of the intervention and the nature of the target outcome (e.g., student test scores, or high
school graduation rates), their means and standard deviations for target populations, and
“normal” changes in the levels over time. The fourth step is to use this information in
estimating how large the study sample needs to be to achieve the study objectives.

Typically, design teams arrive at their target sample sizes in one of two ways. One way
is to figure out how large a sample can be supported by the evaluation dollars, determine the
MDES implied by that sample size, and rationalize it. Another common strategy is to use a
trial-and-error approach to computing the MDES for various sample sizes until converging
on an “acceptable” MDES. The PowerUp! sample size estimation tools use variants of the
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Table 7. Sample tool for computing the MDES for an interrupted time series design study: Three-
level blocked design with random effects at Level 2 and constant effects at Level 3 (see Table 1,
Model 6.0 and PowerUp! Tab ITS; available in color online)

formulae used to calculate MDES to compute sample size requirements for user-defined
MDES (which should be the same or smaller than the MRES). It does this through an
iterative process, which we have automated through an Excel macro that works as follows:

• Step 1. An initial “guesstimate” of the sample size (individuals, clusters or blocks) has
been set at 30.

• Step 2. An estimate of the multiplier and the MRSS is calculated using the formulas
based on the “guesstimate” of the sample size.

• Step 3. If the “guestimate” of the sample size differs from that calculated using the
formula, the “guestimate” is replaced with the average of the original “guestimate” and
the calculated sample size, and the program goes back to Step 2.

• The process stops when the difference between the calculated sample size and “guesti-
mate” is within ±0.1.

PowerUp! includes a tab for computing minimum required sample sizes to achieve a
specified MRES under user-defined parameters for each of the 21 study design configura-
tions specified in Table 1. The example shown in Table 8 pertains to a simple two-level CRA
design study where the analysis will be conducted using a two-level HLM with student
nested within schools and assuming random effects. In this example, the user’s desired
MDES is 0.25 standard deviations. The user also has specified an alpha of .05, two-tailed
tests of statistical significance, and 80% power level. The user has assumed an ICC of 0.20,
that there will be an average of 60 students per school, and that 90% of the schools and 80%
of the students in the original study sample will be retained in the analysis. The analysis will
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Table 8. A sample tool for computing the minimum required sample size for simple two-level
cluster random assignment design with treatment occurring at Level 2 (see Table 1, Model 3.1 and
PowerUp! Tab N CRA2 2r; available in color online)

include one student-level covariate that explains 50% of student-level variance, and one
school-level covariate explaining 70% of school-level variance. Using these user-supplied
parameters, PowerUp! estimates that the study sample should include 41 schools (2,460
students).

Users may find the PowerUp! tools useful for exploring the implications for sample size
requirements of varying the study design parameters. For example, it would be relatively
easy to assess the sensitivity of the MRSS to the ICC level, to decisions about blocking, or
to higher R2 that would result from investing in good pretest measures.

CONCLUSION

PowerUp! is intended as a complement to, not a replacement for, other sample design tools.
One goal in developing this tool is to encourage and enable evaluators who are planning new
evaluations to more accurately estimate the size samples needed to ensure a high probability
that the study will detect meaningful size impacts, should they result from the intervention.
A second goal is to make it easier for those who are judging the findings from existing
research to estimate how large an impact would need to be in order for the study to have a
reasonable chance of observing a statistically significant difference between the treatment
and control groups. A third goal is make it easy for evaluators to see how sensitive evaluation
findings may be to factors that are inherent to the particular intervention and setting for the
study (e.g., the units for delivering the intervention, the age and demographics of the study
sample, important outcomes), as well as discretionary factors (e.g., study design, levels of
statistical power and precision required, fixed or random effects, control variables).
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PowerUp! makes key assumptions study designs transparent. It also invites users to
examine the sensitivity of their estimated sample size requirements or MDES to various
assumptions and decisions of the evaluator. For example, it would be easy for an evaluator
to determine how much more sample would be required if the goal were to generate a
population estimate of the impact rather than simply a sample estimate, determine the
expected decrease in the MDES or the MRSS if sample attrition could be reduced by 10
percentage points, estimate the “cost” of blocking as opposed to using a simple random
assignment design, determine how sensitive the MDES or minimum sample size estimate
are to the assumed ICC, and estimate the difference in the MDES for a give sample size if
the evaluator opts to use an experimental design rather than an RD or ITS design.

PowerUp! makes it easy for the user to explore the implications of sample design
decisions and user-supplied assumptions about unknowns, such as the ICC, explanatory
power of covariates, and ultimate sample attrition rates. By using Microsoft Excel as the
platform for this tool, we have made it possible for others to not only use the tool as we
have designed it but also to adapt and enhance it to meet other objectives.
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APPENDIX

Statistical Models, Minimum Detectable Effect Size (MDES), and Sample Size
Calculation Formula

General Notes

These notations apply to the MDES formulas listed next. P is the proportion of this sample
that is treatment group. n is the average sample size for Level 1 (Students #). J is the average
sample size for Level 2 (Classes #). K is the average sample size for Level 3 (School #).
L is the total sample size for Level 4 (District #). ρ2 (or ρ), ρ3, and ρ4 are unconditional
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intra-class correlation (ICC) at Levels, 2, 3, and 4, respectively. R2
m is the proportion of

level-m variance explained by covariate at level m (m could be 1 – 4).R2
hT is the proportion of

variance between level-h blocks on the treatment effect explained by block-level covariates

(h could be 2 – 4). ωh = τ 2
T h

τ 2
h

indicates treatment effect heterogeneity (Hedges & Rhoads,

2010; Konstantopoulos, 2008b, 2009) across level-h block, which is proportion of the
variance between level-h blocks on the treatment effect to the between level-h-block residual
variance. For example, in two-level random effect block random assignment design (the

model details are below), ω = τ 2
T 2

τ 2
2

indicates treatment effect heterogeneity across block.

Note that ρω = τ 2
T 2

τ 2
2 +σ 2 , which is effect size variability. The multiplier (Mv) for one-tailed

test and two-tailed test are tα+ t1−β and tα/2+ t1−β , respectively, with v degrees of freedom
which is the function of the sample size and number of covariates depending on the study
designs and analysis models.

1. Individual Random Assignment (IRA) Design

The treatment effect can be estimated by the following ordinary least square model:

Yi = β0 + β1(TREATMENT)i + β2Xi + ei, ei ∼ N (0, σ 2
|X)

MDES formula is given by Bloom (2006, p. 12):

MDES = Mn−k∗−2

√
1 − R2

A

nP (1 − P )

The sample size (n = nT + nC) can be derived from the previous formula as follows:

n =
(
Mn−k∗−2

MDES

)2 ( 1 − R2
A

P (1 − P )

)

P = the proportion of this sample that is randomized treatment, i.e., nT /(nT+nC). k∗

= the number of covariates. R2
A = 1 − (σ 2

|X/σ
2), defined as the proportion of variance in

the outcome predicted by covariates, X. σ 2 = variance in unconditional model (without
any covariates). Multiplier for one-tailed test: Mn−k∗−2 = tα + t1−β with n- k∗-2 degrees
of freedom. Multiplier for two-tailed test: Mn−k∗−2 = tα/2 + t1−β with n- k∗-2 degrees of
freedom. α is the type-I error, and β is the type-II error, i.e., (1-β) is the power.

Note that the multiplier,Mn−k∗−2, is a function of n, however, n can be solved through
iterations.

2. Blocked Individual Random Assignment (BIRA) Design

Recall that in BIRA design, treatment is at individual level (Level 1).
Model 2.1. Two-Level BIRA Design, Constant Block Effect Model (BIRA2 1c).
The constant block effect model assumes that the treatment effect is constant across

block. The statistical model only includes block dummy variables, which differentiate the
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intercepts. The fixed block effect model assumes that each block has its own the treatment
effect. The statistical model includes both block dummy variables and the interaction terms
of block dummies and TREATMENT variable.

For the constant block effect model, within two-level hierarchical linear model frame-
work, we have

Level 1: Yij = β0j + β1j (TREATMENT)ij + β2jXij + rij

Level 2:
β0j = γ00 + μ0j

β1j = γ10

β2j = γ20

Reduced form: Yij = γ00 + γ10(TREATMENT)ij + γ20Xij + μ0j + rij

μ0j , for j ∈ {1, 2, ..., J }, are associated with each block mean, constrained to have a mean
of zero.

Bloom (2006, p. 13) derived a MDES formula for the unconditional model (without
covariate adjustment). The adapted MDES formula with covariate adjustment is

MDES = MJn−J−g∗
1 −1

√
(1 − R2

1)

JnP (1 − P )

The Level-2 sample size (J) can be derived from the previous formula as follows:

J =
(
MJn−J−g∗

1 −1

MDES

)2 ( (1 − R2
1)

nP (1 − P )

)

Multiplier for one-tailed test: MJn−J−g∗−1 = tα + t1−β with Jn − J − g∗ − 1 degrees
of freedom. Multiplier for two-tailed test:MJn−J−g∗−1 = tα/2 + t1−β with Jn− J − g∗ − 1
degrees of freedom. R2

1 is the proportion of pooled unexplained variation in the outcome
predicted by the blocks and covariates. n is the average number of individuals per block. J
is the number of blocks. g∗

1 is the number of covariates. P is the proportion of this sample
that is treatment group (nT /n).

Model 2.2. Two-Level Blocked Individual Random Assignment Design, Fixed Block
Effect Model (BIRA2 1f).

For the fixed block effect model, within two-level hierarchical linear model framework,
we have

Level 1: Yij = β0j + β1j (TREATMENT)ij + β2jXij + rij , rij ∼ N
(
0, σ 2

|X
)

Level 2:
β0j = γ00 + μ0j

β1j = γ10 + μ1j

β2j = γ20

Reduced form: Yij = γ00 + γ10(TREATMENT)ij + γ20Xij + μ0j

+μ1j (TREATMENT)ij + rij



PowerUp! A Tool for MDES and MRES 47

μ0j , for j ∈ {1, 2, ..., J }, are fixed effects associated with each block mean, constrained to
have a mean of zero; μ1j , for j ∈ {1, 2, ..., J }, are fixed effects associated with each block
treatment effect, constrained to have a mean of zero.

MDES = MJn−2J−g∗
1

√ (
1 − R2

1

)
JnP (1 − P )

The Level-2 sample size (J) can be derived from the previous formula as follows:

J =
(
MJn−2J−g∗

1

MDES

)2
( (

1 − R2
1

)
nP (1 − P )

)

n = average number of individuals per block. g∗
1 = number of Level-1 covariates.R2

1 =
proportion of variance in the outcome predicted by blocks and Level-1 covariates. P = the
average proportion of this sample that is treatment group (nT /n).

Model 2.3. Two-Level Blocked Individual Random Assignment Design, Random
Block Effect Model (BIRA2 1r).

Within two-level hierarchical linear model framework, the unconditional model i:

Level 1: Yij = β0j + β1j (TREATMENT)ij + rij , rij ∼ N (0, σ 2)

Level 2:
β0j = γ00 + μ0j

(
μ0j

μ1j

)
∼ N

((
0
0

)
,

[
τ 2

2

τ2T 2 τ
2
T 2

])

β1j = γ10 + μ1j

Reduced form: Yij = γ00 + γ10(TREATMENT)ij + μ0j + μ1j (TREATMENT)ij + rij .

The variance of TREATMENT derived by Raudenbush and Liu (2000) is as follows:

Var(γ̂10) = τ 2
T 2 + 4σ 2/n

J
.

ρ = τ 2
2

τ 2
2 +σ 2 , unconditional intraclass coefficient (ICC).

ω = τ 2
T 2

τ 2
2

indicates treatment effect heterogeneity, which is the ratio of the variance
of the treatment effect between blocks to the between-block residual variance. Note that
ρω = τ 2

T 2

τ 2
2 +σ 2 , which is effect size variability.

The conditional model is

Level 1: Yij = β0j + β1j (TREATMENT)ij + β2jXij + rij , rij ∼ N
(
0, σ 2

|X
)

Level 2:

β0j = γ00 + γ01Wj + μ0j

β1j = γ10 + γ11Wj + μ1j .

(
μ0j

μ1j

)
∼ N

((
0
0

)
,

[
τ 2

2|W
τ2T 2|W τ 2

T 2|W

])

β2j = γ20
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MDES = MJ−g∗−1

√
ρω
(
1 − R2

2T

)
J

+ (1 − ρ)
(
1 − R2

1

)
P (1 − P )Jn

The Level-2 sample size (J) can be derived from the previous formula as follows:

J =
(
MJ−g∗−1

MDES

)2
(
ρω
(
1 − R2

2T

)+ (1 − ρ)
(
1 − R2

1

)
P (1 − P )n

)

The multiplier for a one-tailed test is: MJ−g∗−1 = tα + t1−β with J-g∗-1 degrees of
freedom. The multiplier for two-tailed test: MJ−g∗−1 = tα/2 + t1−β with J-g∗-1 degrees of
freedom. n = average sample size for Level 1 (Students #). P = the average proportion
of this sample that is treatment group (nT /n). g∗ = number of block-level covariates.
R2

1 = 1 − σ 2
|X/σ

2 indicates the proportion of individual variance (at Level 1) predicted
by covariates. R2

2T = 1 − τ 2
T 2|W/τ

2
T 2 indicates the proportion of variance between Level-2

blocks on the treatment effect explained by Level-2 covariates. When it is unclear how much
the block-level covariate can reduce the block-treatment variance, it will be conservative to
set R2

2T = 0.
Model 2.4. Three-Level Blocked Individual Random Assignment Design, Random

Block Effect Model (BIRA3 1r).
Within three-level hierarchical linear model framework, the treatment effect can be esti-
mated by

Level 1: Yijk = β0jk + β1jk(TREATMENT)ijk + β2jkXijk + rijk rijk ∼ N
(
0, σ 2

|X
)

Level 2:

β0jk = γ00k + γ01kWjk + μ0jk

β1jk = γ10k + γ11kWjk + μ1jk

(
μ0jk

μ1jk

)
∼ N

((
0
0

)
,

[
τ 2

2|W
τ2T 2|W τ 2

T 2|W

])

β2jk = γ20k

Level 3:

γ00k = ξ000 + ξ001Vk + ς00k

γ10k = ξ100 + ξ101Vk + ς10k

(
ς00k

ς10k

)
∼ N

((
0
0

)
,

[
τ 2

3|V
τ3T 3|V τ 2

T 3|V

])

γ01k = ξ010

γ11k = ξ110

γ20k = ξ200

Based on the standard error of treatment effect estimate formula that derived by Hedges
and Rhoads (2010) and Konstantopoulos (2008b), the MDES for three-level BIRA with
treatment at Level 1 and random block effect model is as follows:

MDES = MK−g∗
3−1

√
ρ3ω3

(
1 − R2

3T

)
K

+ ρ2ω2
(
1 − R2

2T

)
JK

+ (1 − ρ2 − ρ3)
(
1 − R2

1

)
P (1 − P )JKn

The Level-3 sample size (K) can be derived from the previous formula as follows:

K =
(
MK−g∗

3−1

MDES

)2
(
ρ3ω3

(
1 − R2

3T

)+ ρ2ω2
(
1 − R2

2T

)
J

+ (1 − ρ2 − ρ3)
(
1 − R2

1

)
P (1 − P )Jn

)
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The multiplier for one-tailed test is: MK−g∗
3−1 = tα + t1−β with K-g∗

3 -1 degrees of
freedom. Multiplier for two-tailed test is: MK−g∗

3−1 = tα/2 + t1−β with K-g∗
3 -1 degrees of

freedom. J = average sample size for Level 2 (Classes #). n = average sample size for Level
1 (Students #). P = the average proportion of this sample that is treatment group (nT /n). ρ3

= τ 2
3

τ 2
3 +τ 2

2 +σ 2 is unconditional ICC at Level 3. ρ2 = τ 2
2

τ 2
3 +τ 2

2 +σ 2 is unconditional ICC at Level 2.

τ 2
3 = Level-3 variance (unconditional model). τ 2

2 = Level-2 variance (unconditional model).

σ 2 = individual-level variance (unconditional model). ω3 = τ 2
T 3

τ 2
3

indicates treatment effect

heterogeneity across Level 3, which is the proportion of the variance between schools
on the treatment effect to the between-school residual variance (unconditional model).

ω2 = τ 2
T 2

τ 2
2

indicates treatment effect heterogeneity across Level 2, which is the proportion of
the variance between classrooms on the treatment effect to the between-classroom residual
variance (unconditional model). τ 2

3|V = Level-3 variance conditional on Level-3 covariate,
V . τ 2

2|W = Level-2 variance conditional on Level-2 covariate, W. σ 2
|X = individual-level

variance conditional on Level-1 covariate, X. R2
1 = 1 − σ 2

|X/σ
2 indicates the proportion of

individual variance (at Level 1) predicted by covariates. R2
2T = 1 − τ 2

T 2|W/τ
2
T 2 indicates the

proportion of variance between Level-2 blocks on the treatment effect explained by Level-
2 covariates. R2

3T = 1 − τ 2
T 3|V /τ

2
T 3 indicates the proportion of variance between Level-3

blocks on the treatment effect explained by Level-3 covariates. g∗
3 = the number of group

covariates used at Level 3. When it is unclear how much the block-level covariate can
reduce the block-treatment variance, it will be conservative to set R2

3T = 0; R2
2T = 0.

Model 2.5. Four-Level Blocked Individual Random Assignment Design, Random
Block Effect Model (BCRA4 1r).

Within four-level hierarchical linear model framework, the treatment effect can be
estimated by:

Level 1: Yijkl = β0jkl + β1jkl(TREATMENT)ijkl + β2jklXijkl + rijkl, rijkl ∼ N
(
0, σ 2

|X
)

Level 2:

β0jkl = γ00kl + γ01klWjkl + μ0jkl

β1jkl = γ10kl + γ11klWjkl + μ1jkl,

(
μ0jkl

μ1jkl

)
∼ N

((
0
0

)
,

[
τ 2

2|W
τ2T 2|W τ 2

T 2|W

])
β2jkl = γ20kl

Level 3:

γ00kl = ξ000l + ξ001lVkl + ς00kl

γ10kl = ξ100l + ξ101lVkl + ς10kl,

(
ς00kl

ς10kl

)
∼ N

((
0
0

)
,

[
τ 2

3|V
τ3T 3|V τ 2

T 3|V

])
γ01kl = ξ010l

γ11kl = ξ110l

γ20kl = ξ200l

Level 4:

ξ000l = ψ0000 + ψ0001Zl + υ000l

ξ001l = ψ0010

ξ100l = ψ1000 + ψ1001Zl + υ100l ,

(
υ000l

υ100l

)
∼ N

((
0
0

)
,

[
τ 2

4|Z
τ4T 4|Z τ 2

T 4|Z

])
ξ101l = ψ1010

ξ010l = ψ0100

ξ110l = ψ1100

ξ200l = ψ2000
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Following the same logic of two- and three-level block random assignment designs
with treatment at Level 1, the MDES formula for four-level designs can be expressed as
follows:

MDES = ML−g∗
4−1

×
√
ρ4ω4

(
1 − R2

4T

)
L

+ρ3ω3
(
1 − R2

3T

)
LK

+ρ2ω2
(
1 − R2

2T

)
LKJ

+ (1 − ρ2 − ρ3 − ρ4)
(
1 − R2

1

)
P (1 − P )LKJn

The Level-4 sample size (L) can be derived from the previous formula as follows:

L =
(
ML−g∗

4−1

MDES

)2(
ρ4ω4

(
1 − R2

4T

)+ ρ3ω3
(
1 − R2

3T

)
K

+ ρ2ω2
(
1 − R2

2T

)
KJ

+ (1 − ρ2 − ρ3 − ρ4)
(
1 − R2

1

)
P (1 − P )KJn

)

The multiplier for one-tailed test is: ML−g∗
4−1 = tα+ t1−β with L-g∗

4 -1 degrees of
freedom. The multiplier for two-tailed test is: ML−g∗

4−1 = tα/2+ t1−β with L-g∗
4 -1 degrees

of freedom. n = average number of individuals per Level 2. P = average proportion of
this sample that is treatment group (nT /n). J = average sample size for Level 2 (Class #).

K = average sample size for Level 3 (School #). ρ4 = τ 2
4

τ 2
4 +τ 2

3 +τ 2
2 +σ 2 is the unconditional

ICC at Level 4. ρ3 = τ 2
3

τ 2
4 +τ 2

3 +τ 2
2 +σ 2 is the unconditional ICC at Level 3. ρ2 = τ 2

2

τ 2
4 +τ 2

3 +τ 2
2 +σ 2

is the unconditional ICC at Level 2. τ 2
4 = Level-3 variance (unconditional model). τ 2

3 =
Level-3 variance (unconditional model). τ 2

2 = Level-2 variance (unconditional model).

σ 2 = individual-level variance (unconditional model). ω4 = τ 2
T 4

τ 2
4

indicates treatment effect
heterogeneity across Level 4, which is proportion of the variance between level-4 clusters on
the treatment effect to the between Level-4-cluster residual variance (unconditional model).

ω3 = τ 2
T 3

τ 2
3

indicates treatment effect heterogeneity across Level 3, which is proportion of the

variance between level-3 clusters on the treatment effect to the total between Level-3-cluster
residual variance (unconditional model). ω2 = τ 2

T 2

τ 2
2

indicates treatment effect heterogeneity
across Level 2, which is proportion of the variance between Level-2 clusters on the treatment
effect to the total between Level-2-cluster residual variance (unconditional model). R2

1 =
1 − (σ 2

|X/σ
2), defined as the proportion of individual variance (at level one) predicted by

covariates, X. R2
2T = 1 − τ 2

T 2|W/τ
2
T 2 indicates the proportion of variance between Level-

2 blocks on the treatment effect explained by Level-2 covariates. R2
3T = 1 − τ 2

T 3|V /τ
2
T 3

indicates the proportion of variance between level-3 blocks on the treatment effect explained
by Level-3 covariates. R2

4T = 1 − τ 2
T 4|Z/τ

2
T 4 indicates the proportion of variance between

Level-4 blocks on the treatment effect explained by level-4 covariates.

3. Simple Cluster Random Assignment (CRA) Design

Recall that in hierarchical random assignment designs, treatment is at top level.
Model 3.1. Two-Level CRA Design Where Treatment Is at Level 2 (CRA2 2r).
The treatment effect can be estimated by a two-level hierarchical linear model:
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Level 1: Yij = β0j + β1jXij + rij , rij ∼ N
(
0, σ 2

|X
)

Level 2:
β0j = γ00 + γ01(TREATMENT)j + γ02Wj + μ0j , μ0j ∼ N

(
0, τ 2

|W
)

β1j = γ10

Reduced form: Yij = γ00 + γ01(TREATMENT)j + γ02Wj + γ10Xij + μ0j + rij

The MDES formula from Bloom (2006, p. 17) is

MDES = MJ−g∗−2

√
ρ
(
1 − R2

2

)
P (1 − P )J

+ (1 − ρ)
(
1 − R2

1

)
P (1 − P )Jn

Sample attrition reduces statistical power by lowering the size of the analytic sample.
For two-level cluster random assignment (CRA) design, attrition might occur at both levels.
Suppose the retention rates ( = 1-attrition rates) at Levels 1 and 2 are r1 andr2, respectively,
the MDES formula containing the retention rates is

MDES = MJr2−g∗−2

√
ρ
(
1 − R2

2

)
P (1 − P )J r2

+ (1 − ρ)
(
1 − R2

1

)
P (1 − P )Jnr2r1

The Level-2 sample size (J) can be derived from the previous formula as follows:

J =
(
MJr2−g∗−2

MDES

)2
(
ρ
(
1 − R2

2

)
P (1 − P )r2

+ (1 − ρ)
(
1 − R2

1

)
P (1 − P )nr2r1

)

The multiplier for one-tailed test is:MJr2−g∗−2 = tα + t1−β with J r2 − g∗ − 2 degrees
of freedom. The multiplier for two-tailed test is:MJr2−g∗−2 = tα/2 + t1−β with J r2 − g∗ − 2
degrees of freedom. τ 2 = Level-2 (between group-level) variance in unconditional model
(without any covariates). σ 2 = Level-1 (individual-level) variance in unconditional model

(without any covariates). ρ = τ 2

τ 2+σ 2 , unconditional intraclass coefficient (ICC). R2
1 =

1 − (σ 2
|X/σ

2), defined as the proportion of individual variance at Level 1 predicted by
covariates, X. R2

2 = 1 − (τ 2
|W/τ

2), defined as the proportion of group variance (at Level 2)
predicted by covariates, W. g∗ = the number of group covariates used. P = the proportion
of this sample that is treatment group (JT /J ).

Model 3.2. Three-Level CRA Design Where Treatment Is at Level 3 (CRA3 3r).
The treatment effect can be estimated by a three-level hierarchical linear model:

Level 1: Yijk = β0jk + β1jkXijk + rijk, rijk ∼ N
(
0, σ 2

|X
)

Level 2:
β0jk = γ00k + γ01kWjk + μ0jk, μ0jk ∼ N (0, τ 2

2|W )
β1jk = γ10k

Level 3:
γ00k = ξ000 + ξ001(TREATMENT)k + ξ002Vk + ς00k

γ01k = ξ010, ς00k ∼ N
(
0, τ 2

3|V
)

γ10k = ξ100
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Based on the variance (or standard error) of treatment effect estimate formula that
derived by Hedges and Rhoads (2010), Konstantopoulos (2008a), Schochet (2008a), and
Spybrook (2007), the MDES for three-level CRA design is

MDES = MK−g∗
3−2

√
ρ3
(
1 − R2

3

)
P (1 − P )K

+ ρ2
(
1 − R2

2

)
P (1 − P )JK

+ (1 − ρ2 − ρ3)
(
1 − R2

1

)
P (1 − P )JKn

The Level-3 sample size (K) can be derived from the previous formula as follows:

K =
(
MK−g∗

3−2

MDES

)2
(
ρ3
(
1 − R2

3

)
P (1 − P )

+ ρ2
(
1 − R2

2

)
P (1 − P )J

+ (1 − ρ2 − ρ3)
(
1 − R2

1

)
P (1 − P )Jn

)

Multiplier for one-tailed test: MK−g∗
3−2 = tα + t1−β with K-g∗

3 -2 degrees of freedom.
Multiplier for two-tailed test:MK−g∗

3−2 = tα/2 + t1−β with K-g∗
3 -2 degrees of freedom. J =

average sample size for Level 2 (Classes #). ρ3 = τ 2
3

τ 2
3 +τ 2

2 +σ 2 is the unconditional ICC at Level

3. ρ2 = τ 2
2

τ 2
3 +τ 2

2 +σ 2 is the unconditional ICC at Level 2. τ 2
3 = Level-3 variance (unconditional

model). τ 2
2 = Level-2 variance (unconditional model). σ 2 = individual-level variance

(unconditional model).R2
1 = 1 − (σ 2

|X/σ
2), defined as the proportion of individual variance

(at Level 1) predicted by covariates, X. R2
2 = 1 − (τ 2

2|W/τ
2
2 ), defined as the proportion of

group variance (at Level 2) predicted by covariates, W. R2
3 = 1 − (τ 2

3|V /τ
2
3 ), defined as the

proportion of group variance (at Level 3) predicted by covariates, V . g∗
3 = the number of

group covariates used at Level 3. P = the proportion of this sample that is treatment group
(KT /K).

Model 3.3. Four-Level CRA Design Where Treatment Is at Level 4 (CRA4 4r).
The treatment effect can be estimated by a four-level hierarchical linear model:

Level 1: Yijkl = β0jkl + β1jklXijkl + rijkl, rijkl ∼ N
(
0, σ 2

|X
)

Level 2:
β0jkl = γ00kl + γ01klWjkl + μ0jkl

β1jkl = γ10kl μ0jkl ∼ N
(
0, τ 2

2|W
)

Level 3:
γ00kl = ξ000l + ξ001lVkl + ς00kl

γ01kl = ξ010l ς00kl ∼ N
(
0, τ 2

3|V
)

γ10kl = ξ100l

Level 4:

ξ000l = ψ0000 + ψ0001(TREATMENT)l + ψ0002Zl + υ000l

ξ001l = ψ0010 υ000l ∼ N
(
0, τ 2

4|Z
)

ξ010l = ψ0100

ξ100l = ψ1000

Following the same logic of two- and three-level CRA designs, the MDES formula for
four-level CRA designs can be expressed as follows:

MDES = ML−g∗
4−2

×
√
ρ4(1 − R2

4)

P (1 − P )L
+ ρ3

(
1 − R2

3

)
P (1 − P )KL

+ ρ2
(
1 − R2

2

)
P (1 − P )JKL

+ (1 − ρ2 − ρ3 − ρ4)
(
1 − R2

1

)
P (1 − P )JKLn
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The Level-4 sample size (L) can be derived from the previous formula as follows:

L =
(
ML−g∗

4−2

MDES

)2(ρ4
(
1 − R2

4

)
P (1 − P )

+ ρ3
(
1 − R2

3

)
P (1 − P )K

+ ρ2
(
1 − R2

2

)
P (1 − P )JK

+ (1 − ρ2 − ρ3 − ρ4)
(
1 − R2

1

)
P (1 − P )JKn

)

The multiplier for one-tailed test:ML−g∗
4 −2 = tα + t1−β with L-g∗

4 -2 degrees of freedom.
The multiplier for two-tailed test: ML−g∗

4−2 = tα/2 + t1−β with L-g∗
4 -2 degrees of freedom.

g∗
4 = the number of Level 4 covariates. ρ4 = τ 2

4

τ 2
4 +τ 2

3 +τ 2
2 +σ 2 , is the unconditional ICC at

Level 4. R2
4 = 1 − (τ 2

4|Z/τ
2
4 ), defined as the proportion of Level-4 variance predicted by

covariates, Z. P = the proportion of this sample that is treatment group (LT /L). All the
other notations are same as in three-level CRA design.

4. Blocked CRA (BCRA) Design

In BCRA design, treatment is at subcluster level.
Model 4.1. Three-Level Blocked Cluster Random Assignment Design (Treatment at

Level 2), Fixed Block Effect Model (BCRA3 2f).
Within three-level hierarchical linear model framework, the treatment effect can be

estimated by:

Level 1: Yijk = β0jk + β1jkXijk + rijk rijk ∼ N
(
0, σ 2

|X
)

Level 2:
β0jk = γ00k + γ01k(TREATMENT)jk + γ02kWjk + μ0jk

β1jk = γ10k μ0jk ∼ N
(
0, τ 2

2|W
)

Level 3:

γ00k = ξ000 + ς00k

γ01k = ξ010 + ς01k

γ02k = ξ020

γ10k = ξ100

ς00k , for k ∈ {1, 2, ..., K}, are fixed effects associated with each block mean, constrained
to have a mean of zero; ς01k , for k ∈ {1, 2, ..., K}, are fixed effects associated with each
block treatment effect, constrained to have a mean of zero.

Based on the variance of treatment effect estimate formula that derived by Spybrook
(2007), the MDES for three-level BCRA design with treatment at Level 2 and fixed block
effect model is

MDES = MK(J−2)−g∗
2

√
ρ2
(
1 − R2

2

)
P (1 − P )JK

+ (1 − ρ2)
(
1 − R2

1

)
P (1 − P )JKn
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The Level-3 sample size (K) can be derived from the previous formula as follows:

K =
(
MK(J−2)−g∗

2

MDES

)2
(
ρ2
(
1 − R2

2

)
P (1 − P )J

+ (1 − ρ2)
(
1 − R2

1

)
P (1 − P )Jn

)

The multiplier for one-tailed test: MK(J−2)−g∗
2

= tα + t1−β with K(J-2)-g∗
2 degrees

of freedom. The multiplier for two-tailed test: MK(J−2)−g∗
2

= tα/2 + t1−β with K(J-2)-g∗
2

degrees of freedom. J = average sample size for Level 2 (Classes #). P = the proportion

of this sample that is treatment group (JT /J ). ρ2 = τ 2

τ 2+σ 2 , unconditional ICC. τ 2 =
Level-2 (between group-level) variance in unconditional model (without any covariates).
σ 2 = Level-1 (individual-level) variance in unconditional model (without any covariates).
R2

1 = 1 − (σ 2
|X/σ

2), defined as the proportion of individual variance at Level 1 predicted
by covariates, X. R2

2 = 1 − (τ 2
|W/τ

2), defined as the proportion of group variance (at Level
2) predicted by blocks and covariates, W. g∗

2 = the number of Level 2 covariates.
Model 4.2. Three-Level BCRA Design (Treatment at Level 2), Random Block Effect

Model (BCRA3 2r).
Within three-level hierarchical linear model framework:

Level 1: Yijk = β0jk + β1jkXijk + rijk rijk ∼ N
(
0, ρ2

|X
)

Level 2:
β0jk = γ00k + γ01k(TREATMENT)jk + γ02kWjk + μ0jk μ0jk ∼ N

(
0, τ 2

2|W
)

β1jk = γ10k

Level 3:

γ00k = ξ000 + ξ001Vk + ς00k

γ01k = ξ010 + ξ011Vk + ς01k

(
ς00k

ς01k

)
∼ N

((
0
0

)
,

[
τ 2

3|V
τ3T 3|V τ 2

T 3|V

])
γ02k = ξ020

γ10k = ξ100

Based on the variance (or standard error) of treatment effect estimate formula that
derived by Hedges and Rhoads (2010), Konstantopoulos (2008a), Schochet (2008a), and
Spybrook (2007), the MDES for three-level BCRA design with treatment at Level-2 and
random block effect model is:

MDES = MK−g∗
3−1

√
ρ3ω

(
1 − R2

3T

)
K

+ ρ2
(
1 − R2

2

)
P (1 − P )JK

+ (1 − ρ2 − ρ3)
(
1 − R2

1

)
P (1 − P )JKn

The Level-3 sample size (K) can be derived from the previous formula as follows:

K =
(
MK−g∗

3 −1

MDES

)2
(
ρ3ω3

(
1 − R2

3T

)+ ρ2
(
1 − R2

2

)
P (1 − P )J

+ (1 − ρ2 − ρ3)
(
1 − R2

1

)
P (1 − P )Jn

)

The multiplier for one-tailed test is: MK−g∗
3−1 = tα + t1−β with K-g∗

3 -1 degrees of
freedom. The multiplier for two-tailed test is: MK−g∗

3−1 = tα/2 + t1−β with K-g∗
3 -1 degrees

of freedom. n = average number of individuals per Level 2. J = average sample size for
Level 2 (Classes #). P = the proportion of this sample that is treatment group (JT /J ).

ρ3 = τ 2
3

τ 2
3 +τ 2

2 +σ 2 is the correlation among students at the same school with different classes
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(unconditional model). ρ2 = τ 2
2

τ 2
3 +τ 2

2 +σ 2 is the correlation among students at the same school

with same classes (unconditional model). τ 2
3 = between group-level variance (Level-3)

(unconditional model). τ 2
2 = between group-level variance (Level-2) (unconditional model).

σ 2 = individual-level variance (unconditional model). ω = τ 2
T 3

τ 2
3

indicates treatment effect

heterogeneity across block (school), which is the proportion of the variance between schools
on the treatment effect to the between-school residual variance. τ 2

3|V = between group-level
variance (Level-3) (conditional model). τ 2

2|W = between group-level variance (Level-2)
(conditional model). σ 2

|X = individual-level variance (conditional model).R2
1 = 1 − σ 2

|X/σ
2

indicates the proportion of individual variance (at Level 1) predicted by covariates. R2
2 =

1 − τ 2
2|W/τ

2
2 indicates the proportion of variance between Level-2 groups explained by

level-2 covariates.R2
3T = 1 − τ 2

T 3|V /τ
2
T 3 indicates the proportion of variance between level-

3 blocks on the treatment effect explained by Level-3 covariates. g∗
3 = the number of group

covariates used at Level 3.
Model 4.3. Four-Level BCRA Design (Treatment at Level 2), Random Block Effect

Model (BCRA4 2r).
Within four-level hierarchical linear model framework, the treatment effect can be

estimated by:

Level 1: Yijkl = β0jkl + β1jklXijkl + rijkl, rijkl ∼ N
(
0, σ 2

|X
)
, rijkl ∼ N

(
0, σ 2

|X
)

Level 2:
β0jkl = γ00kl + γ01kl(TREATMENT)jkl + γ02klWjkl + μ0jkl

β1jkl = γ10kl, μ0jkl ∼ N (0, τ 2
2|W )

Level 3:

γ00kl = ξ000l + ξ001lVkl + ς00kl

γ01kl = ξ010l + ξ011lVkl + ς01kl,

(
ς00kl

ς01kl

)
∼ N

((
0
0

)
,

[
τ 2

3|V
τ3T 3|V τ 2

T 3|V

])
γ02kl = ξ020l

γ10kl = ξ100l

Level 4:

ξ000l = ψ0000 + ψ0001Zl + υ000l

ξ001l = ψ0010

ξ010l = ψ0100 + ψ0101Zl + υ010l ,

(
υ000l

υ010l

)
∼ N

((
0
0

)
,

[
τ 2

4|Z
τ4T 4|Z τ 2

T 4|Z

])
ξ011l = ψ0110

ξ020l = ψ0200

ξ100l = ψ1000

Following the same logic as in three-level blocked individual random assignment
(BIRA) design with treatment at Level 1 and random block effect model:

MDES = ML−g∗
4−1√

ρ4ω4
(
1 − R2

4T

)
L

+ ρ3ω3
(
1 − R2

3T

)
LK

+ ρ2
(
1 − R2

2

)
P (1 − P )LKJ

+ (1 − ρ2 − ρ3 − ρ4)
(
1 − R2

1

)
P (1 − P )LKJn
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The Level-4 sample size (L) can be derived from the above formula as below:

L =
(
ML−g∗

4−1

MDES

)2(
ρ4ω4

(
1 − R2

4T

)+ ρ3ω3
(
1 − R2

3T

)
K

+ ρ2
(
1 − R2

2

)
P (1 − P )KJ

+ (1 − ρ2 − ρ3 − ρ4)
(
1 − R2

1

)
P (1 − P )KJn

)

The multiplier for one-tailed test is: ML−g∗
4−1 = tα+ t1−β with L-g∗

4 -1 degrees of
freedom. The multiplier for two-tailed test is: ML−g∗

4−1 = tα/2+ t1−β with L-g∗
4 -1 degrees

of freedom. n = average number of individuals per level 2. J = average sample size for
Level 2 (Class #). P = average proportion of this sample that is treatment group (JT /J ). K
= average sample size for Level 3 (School #). L = total sample size for Level 4 (District

#). ρ2, ρ3, and ρ4 are the unconditional ICCs at Levels 2, 3, and 4, respectively. ω4 = τ 2
T 4

τ 2
4

indicates treatment effect heterogeneity across Level 4, which is proportion of the variance
between Level-4 clusters on the treatment effect to the between Level-4-cluster residual
variance (unconditional model). ω3 = τ 2

T 3

τ 2
3

indicates treatment effect heterogeneity across

Level 3, which is proportion of the variance between Level-3 clusters on the treatment
effect to the total between Level-3-cluster residual variance (unconditional model). R2

1
= 1 − σ 2

|X/σ
2 indicates the proportion of individual variance (at Level 1) predicted by

covariates. R2
2 = 1 − τ 2

2|W/τ
2
2 indicates the proportion of variance between Level-2 groups

explained by Level-2 covariates. R2
3T = 1 − τ 2

T 3|V /τ
2
T 3 indicates the proportion of variance

between Level-3 blocks on the treatment effect explained by Level-3 covariates. R2
4T =

1 − τ 2
T 4|Z/τ

2
T 4 indicates the proportion of variance between Level-4 blocks on the treatment

effect explained by Level-4 covariates. When it is unclear how much the block-level
covariate can reduce the block-treatment variance, it will be conservative to set R2

3T = 0;
R2

4T = 0.
Model 4.4. Four-Level BCRA Design (Treatment at Level 3), Fixed Block Effect

Model (BCRA4 3f).
Within four-level hierarchical linear model framework, the treatment effect can be

estimated by:

Level 1: Yijkl = β0jkl + β1jklXijkl + rijkl, rijkl ∼ N
(
0, σ 2

|X
)

Level 2:
β0jkl = γ00kl + γ01klWjkl + μ0jkl

β1jkl = γ10kl μ0jkl ∼ N (0, τ 2
2|W )

Level 3:
γ00kl = ξ000l + ξ001l(TREATMENT)kl + ξ002lVkl + ς00kl

γ01kl = ξ010l ς00kl ∼ N
(
0, τ 2

3|V
)

γ10kl = ξ100l

Level 4:

ξ000l = ψ0000 + ψ0001Zl + υ000l

ξ001l = ψ0010 + ψ0011Zl + υ001l

ξ002l = ψ0020

ξ010l = ψ0100

ξ100l = ψ1000
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υ000l , for l ∈ {1, 2, ..., L}, are fixed effects associated with each block mean, constrained to
have a mean of zero; υ001l , for l ∈ {1, 2, ..., L}, are fixed effects associated with each block
treatment effect, constrained to have a mean of zero.

Using the same logic as in three-level BRD with treatment at Level 2 and fixed block
effect model (Spybrook, 2007), the MDES for four-level BCRA design with treatment at
Level 3 and fixed block effect model is:

MDES = ML(K−2)−g∗
3

√
ρ3
(
1 − R2

3

)
P (1 − P )LK

+ ρ2
(
1 − R2

2

)
P (1 − P )LKJ

+ (1 − ρ2 − ρ3)
(
1 − R2

1

)
P (1 − P )LKJn

The Level-4 sample size (L) can be derived from the previous formula as follows:

L =
(
ML(K−2)−g∗

3

MDES

)2
(
ρ3
(
1 − R2

3

)
P (1 − P )K

+ ρ2
(
1 − R2

2

)
P (1 − P )KJ

+ (1 − ρ2 − ρ3)
(
1 − R2

1

)
P (1 − P )KJn

)

The multiplier for one-tailed test is: ML(K−2)−g∗
3

= tα + t1−β with L(K-2)-g∗
3 degrees

of freedom. The multiplier for two-tailed test is: ML(K−2)−g∗
3
= tα/2 + t1−β with L(K-2)-g∗

3
degrees of freedom. n = average number of individuals per Level 2. P = average proportion
of this sample that is treatment group (nT /n). J = average sample size for Level 2 (Class
#). K = average sample size for Level 3 (School #). P = average proportion of this sample

that is treatment group (KT /K). g∗
3 is the number of Level 3 covariates. ρ3 = τ 2

3

τ 2
3 +τ 2

2 +σ 2 is

the unconditional ICC at Level 3. ρ2 = τ 2
2

τ 2
3 +τ 2

2 +σ 2 is the unconditional ICC at level 2. τ 2
3 =

Level-3 variance (unconditional model). τ 2
2 = Level-2 variance (unconditional model).σ 2 =

individual-level variance (unconditional model). R2
1 = 1 − σ 2

|X/σ
2 indicates the proportion

of individual variance (at Level 1) predicted by covariates. R2
2 = 1 − τ 2

2|W/τ
2
2 indicates

the proportion of variance between Level-2 groups explained by Level-2 covariates. R2
3

= 1 − τ 2
3|V /τ

2
3 indicates the proportion of variance between Level-3 groups explained by

block and Level-3 covariates.
Model 4.5. Four-Level BCRA Design (Treatment at Level 3), Random Block Effect

Model (BCRA4 3r).
Within four-level hierarchical linear model framework, the treatment effect can be

estimated by:

Level 1: Yijkl = β0jkl + β1jklXijkl + rijkl, rijkl ∼ N
(
0, σ 2

|X
)

Level 2:
β0jkl = γ00kl + γ01klWjkl + μ0jkl, μ0jkl ∼ N

(
0, τ 2

2|W
)

β1jkl = γ10kl

Level 3:
γ00kl = ξ000l + ξ001l(TREATMENT)kl + ξ002lVkl + ς00kl

γ01kl = ξ010l ς00kl ∼ N (0, τ 2
3|V )

γ10kl = ξ100l
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Level 4:

ξ000l = ψ0000 + ψ0001Zl + υ000l

ξ001l = ψ0010 + ψ0011Zl + υ001l

ξ002l = ψ0020

(
υ000l

υ001l

)
∼ N

((
0
0

)
,

[
τ 2

4|Z
τ4T 4|Z τ 2

T 4|Z

])
ξ010l = ψ0100

ξ100l = ψ1000

Using the same logic as in three-level BRD with treatment at Level 2 and random block
effect model, the MDES for four-level BCRA design with treatment at Level 3 and random
block effect model is:

MDES = ML−g∗
4−1

×
√
ρ4ω4

(
1 − R2

4T

)
L

+ ρ3
(
1 − R2

3

)
P (1 − P )LK

+ ρ2
(
1 − R2

2

)
P (1 − P )LKJ

+ (1 − ρ2 − ρ3 − ρ4)(1 − R2
1)

P (1 − P )LKJn

The Level-4 sample size (L) can be derived from the previous formula as follows:

L =
(
ML−g∗

4−1

MDES

)2(
ρ4ω4

(
1 − R2

4T

)+ ρ3
(
1 − R2

3

)
P (1 − P )K

+ ρ2
(
1 − R2

2

)
P (1 − P )KJ

+ (1 − ρ2 − ρ3 − ρ4)
(
1 − R2

1

)
P (1 − P )KJn

)

The multiplier for one-tailed test is: ML−g∗
4−1 = tα+ t1−β with L-g∗

4 -1 degrees of
freedom. The multiplier for two-tailed test is: ML−g∗

4−1 = tα/2+ t1−β with L-g∗
4 -1 degrees

of freedom. n = average number of individuals per Level 2. J = average sample size for
Level 2 (Class #). K = average sample size for Level 3 (School #). P = average proportion
of this sample that is treatment group (KT /K). ρ2, ρ3, and ρ4 are unconditional ICCs at

Levels 2, 3, and 4, respectively. ω4 = τ 2
T 4

τ 2
4

indicates treatment effect heterogeneity across
Level 4, which is proportion of the variance between Level-4 clusters on the treatment effect
to the between level-four-cluster residual variance (unconditional model).R2

1 = 1 − σ 2
|X/σ

2

indicates the proportion of individual variance (at Level 1) predicted by covariates. R2
2 =

1 − τ 2
2|W/τ

2
2 indicates the proportion of variance between Level-2 groups explained by

Level-2 covariates. R2
3 = 1 − τ 2

3|V /τ
2
3 indicates the proportion of variance between Level-3

groups explained by Level-3 covariates. R2
4T = 1 − τ 2

T 4|Z/τ
2
T 4 indicates the proportion of

variance between level-4 blocks on the treatment effect explained by Level-4 covariates.
When it is unclear how much the block-level covariate can reduce the block-treatment
variance, it will be conservative to set R2

4T = 0.

5. Regression Discontinuity (RD) Design

As discussed in the text, for the RD design, Schochet (2008b) summarized six types of
commonly used cluster design based on the unit of treatment assignment and sampling
framework. Based on the MDES formulas for the randomized experiments and design
effect for their corresponding RD, the MDES for six types of RD can be shown next.
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Model 5.1. Blocked Individual RD Design With Fixed Effects (RD2 1f): Analogous to
the Two-Level Fixed Effect Blocked Individual Random Assignment Design (BIRA2 1f).

Within two-level hierarchical linear model framework, the treatment effect can be
estimated by:

Level 1: Yij = β0j + β1j (TREATMENT)ij + β2jXij + β3j (Zij − Z0) + rij ,

rij ∼ N (0, σ 2
|X)

Level 2:

β0j = γ00 + μ0j

β1j = γ10 + μ1j

β2j = γ20

β3j = γ30

Zij is the assignment variable, and Z0 is the cutoff score. μ0j , for j ∈ {1, 2, ..., J }, are
fixed effects associated with each block mean, constrained to have a mean of zero; μ1j , for
j ∈ {1, 2, ..., J }, are fixed effects associated with each block treatment effect, constrained
to have a mean of zero.

MDES = MJn−2J−g∗
1

√
D
(
1 − R2

1

)
JnP(1 − P )

The Level-2 sample size (J) can be derived from the above formula as below:

J =
(
MJn−2J−g∗

1

MDES

)2 (
D(1 − R2

1)

nP (1 − P )

)

n = average number of individuals per block. g∗
1 = number of level-1 covariates. σ 2 =

Level-1 (individual-level) variance (unconditional model). R2
1 = 1 − (σ 2

|X/σ
2), indicating

the proportion of level-1 variance explained by covariates. P = the average proportion of
this sample that is treatment group (nT /n). D is design effect (see Schochet, 2008b, Tables
4.1, 4.2, 4.3 for more information).

Note that the model could include quadratic or cubic terms of the assignment variable
as well as the interaction terms of the assignment variable with treatment indicator. When
higher order terms or/and interaction involve, the statistical power will decrease (Schochet,
2008b). This applies to all the following RD designs.

Model 5.2. Blocked Individual RD Design With Random Effects (RD2 1r): Analo-
gous to Two-Level Random Effect Blocked Individual Random Assignment Design With
Treatment at Level 1 (BIRA2 1r).

Within two-level hierarchical linear model framework, the treatment effect can be
estimated by:

Level 1: Yij = β0j + β1j (TREATMENT)ij + β2jXij + β3j (Zij − Z0) + rij ,

rij ∼ N (0, σ 2
|X)
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Level 2:

β0j = γ00 + γ01Wj + μ0j

β1j = γ10 + γ11Wj + μ1j

(
μ0j

μ1j

)
∼ N

((
0
0

)
,

[
τ 2

2|W
τ2T 2|W τ 2

T 2|W

])
β2j = γ20

β3j = γ30

Zij is the assignment variable, and Z0 is the cutoff score.

MDES = MJ−g∗−1

√
ρω(1 − R2

2T )

J
+D

(
(1 − ρ)(1 − R2

1)

P (1 − P )Jn

)

The Level-2 sample size (J) can be derived from the previous formula as follows:

J =
(
MJ−g∗−1

MDES

)2 (
ρω(1 − R2

2T ) +D

(
(1 − ρ)(1 − R2

1)

P (1 − P )n

))

The multiplier for one-tailed test is: MJ−g∗−1 = tα + t1−β with J-g∗-1 degrees of
freedom. The multiplier for two-tailed test is: MJ−g∗−1 = tα/2 + t1−β with J-g∗-1 degrees
of freedom. n = average sample size for Level 1 (Students #). P is the average proportion
of this sample that is treatment group (nT /n). g∗ = number of block-level covariates. τ 2

T 2
= variance of the treatment effect between blocks (unconditional model). τ 2

2 = Level-
2 (between group-level) variance (unconditional model). σ 2 = Level-1 (individual-level)

variance (unconditional model). ρ = τ 2
2

τ 2
2 +σ 2 , unconditional intraclass coefficient (ICC).

ω = τ 2
T 2

τ 2
2

indicates treatment effect heterogeneity, which is the ratio of the variance of

the treatment effect between blocks to the between-block residual variance. R2
1 = 1 −

(σ 2
|X/σ

2), indicating the proportion of Level-1 variance explained by covariates. R2
2T =

1 − τ 2
T 2|W/τ

2
T 2 indicates the proportion of variance between Level-2 blocks on the treatment

effect explained by Level-2 covariates. When it is unclear how much the block-level
covariate can reduce the block-treatment variance, it will be conservative to set R2

2T = 0.
D is design effect (see Schochet, 2008b, Tables 4.1, 4.2, 4.3 for more information). Note
that the design effect only affects the level-1 term.

Model 5.3. Cluster RD Design Sample With Two Levels of Clustering and Random
Effects (RDC 2r): Analogous to Two-Level Simple Cluster Random Assignment Design
With Treatment at Level 2 (Model 3.1 CRA2 2r).

The treatment effect can be estimated by a two-level hierarchical linear model:

Level 1: Yij = β0j + β1jXij + rij , rij ∼ N
(
0, σ 2

|X
)

Level 2:
β0j = γ00+γ01(TREATMENT)j+γ02(Zj − Z0) + γ03Wj + μ0j , μ0j ∼ N (0, τ 2

|W )
β1j = γ10

Zj is the assignment variable, and Z0 is the cutoff score.

MDES = MJ−g∗−2

√√√√D
(
ρ
(
1 − R2

2

)
P (1 − P )J

+ (1 − ρ)
(
1 − R2

1

)
P (1 − P )Jn

)
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The Level-2 sample size (J) can be derived from the previous formula as follows:

J =
(
MJ−g∗−2

MDES

)2

D

(
ρ
(
1 − R2

2

)
P (1 − P )

+ (1 − ρ)
(
1 − R2

1

)
P (1 − P )n

)

The multiplier for one-tailed test is: MJ−g∗−2 = tα + t1−β with J- g∗-2 degrees of
freedom. The multiplier for two-tailed test is: MJ−g∗−2 = tα/2 + t1−β with J- g∗-2 degrees
of freedom. J = the total number of clusters. ρ = τ 2

τ 2+σ 2 , is the unconditional ICC. τ 2 =
Level-2 (between group-level) variance (unconditional model). σ 2 = Level-1 (individual-
level) variance (unconditional model). R2

1 = 1 − (σ 2
|X/σ

2), indicating the proportion of
Level-1 variance explained by covariates. R2

2 = 1 − (τ 2
|W/τ

2), indicating the proportion of
Level-2 variance explained by covariates. g∗ = the number of group covariates used. P
= the proportion of this sample that is treatment group (JT /J ). D = design effect (see
Schochet, 2008b, Tables 4.1, 4.2, 4.3 for more information).

Model 5.4 (RDC 3r): Analogous to Three-Level Simple Cluster Random Assignment
Design With Treatment at Level 3 (Model 3.2 CRA3 3r).

The treatment effect can be estimated by a three-level hierarchical linear model:

Level 1: Yijk = β0jk + β1jkXijk + rijk, rijk ∼ N
(
0, σ 2

|X
)

Level 2:
β0jk = γ00k + γ01kWjk + μ0jk, μ0jk ∼ N (0, τ 2

2|W )
β1jk = γ10k

Level 3:
γ00k = ξ000 + ξ001(TREATMENT)k + ξ002(Zk − Z0) + ξ003Vk + ς00k

γ01k = ξ010

γ10k = ξ100, ς00k ∼ N
(
0, τ 2

3|V
)

MDES = MK−g∗
3−2

√√√√D
(
ρ3
(
1 − R2

3

)
P (1 − P )K

+ ρ2
(
1 − R2

2

)
P (1 − P )JK

+ (1 − ρ2 − ρ3)
(
1 − R2

1

)
P (1 − P )JKn

)

The Level-3 sample size (K) can be derived from the previous formula as follows:

K =
(
MK−g∗

3−2

MDES

)2

D

(
ρ3
(
1 − R2

3

)
P (1 − P )

+ ρ2
(
1 − R2

2

)
P (1 − P )J

+ (1 − ρ2 − ρ3)
(
1 − R2

1

)
P (1 − P )Jn

)

Zk is the assignment variable, and Z0 is the cutoff score. Multiplier for one-tailed
test: MK−g∗

3−2 = tα + t1−β with K-g∗
3 -2 degrees of freedom. Multiplier for two-tailed test:

MK−g∗
3−2 = tα/2 + t1−β with K-g∗

3 -2 degrees of freedom. J = average sample size for Level

2 (Classes #). ρ3 = τ 2
3

τ 2
3 +τ 2

2 +σ 2 is the unconditional ICC at level 3. ρ2 = τ 2
2

τ 2
3 +τ 2

2 +σ 2 is the

unconditional ICC at level 2. τ 2
3 = Level-3 variance (unconditional model). τ 2

2 = Level-
2 variance (unconditional model). σ 2 = individual-level variance (unconditional model).
R2

1 = 1 − (σ 2
|X/σ

2), defined as the proportion of individual variance (at Level 1) predicted
by covariates, X. R2

2 = 1 − (τ 2
2|W/τ

2
2 ), defined as the proportion of group variance (at Level
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2) predicted by covariates, W. R2
3 = 1 − (τ 2

3|V /τ
2
3 ), defined as the proportion of group

variance (at Level 3) predicted by covariates, V . g∗
3 = the number of group covariates used

at Level 3. P = the proportion of this sample that is treatment group (KT /K). D = design
effect (see Schochet, 2008b, Tables 4.1, 4.2, 4.3 for more information).

Model 5.5 (RD3 2f): Analogous to Three-Level Fixed Effect Blocked Cluster Random
Assignment Design With Treatment at Level 2 (Model 4.1 BCRA3 2f).

Within three-level hierarchical linear model framework, the treatment effect can be
estimated by:

Level 1: Yijk = β0jk + β1jkXijk + rijk, rijk ∼ N
(
0, σ 2

|X
)

Level 2:
β0jk = γ00k + γ01k(TREATMENT)jk + γ02k(Zjk − Z0) + γ03kWjk + μ0jk

β1jk = γ10k, μ0jk ∼ N
(
0, τ 2

2|W
)

Level 3:

γ00k = ξ000 + ς00k

γ01k = ξ010 + ς01k

γ02k = ξ020

γ03k = ξ030

γ10k = ξ100

Zjk is the assignment variable, andZ0 is the cutoff score. ς00k , for k ∈ {1, 2, ..., K}, are
fixed effects associated with each block mean, constrained to have a mean of zero; ς01k , for
k ∈ {1, 2, ..., K}, are fixed effects associated with each block treatment effect, constrained
to have a mean of zero.

MDES = MK(J−2)−g∗
2

√√√√D
(
ρ2
(
1 − R2

2

)
P (1 − P )JK

+ (1 − ρ2)
(
1 − R2

1

)
P (1 − P )JKn

)

The Level-3 sample size (K) can be derived from the previous formula as follows:

K =
(
MK(J−2)−g∗

2

MDES

)2

D

(
ρ2
(
1 − R2

2

)
P (1 − P )J

+ (1 − ρ2)
(
1 − R2

1

)
P (1 − P )Jn

)

The multiplier for one-tailed test is: MK(J−2)−g∗
2

= tα + t1−β with K(J-2)-g∗
2 degrees

of freedom. The multiplier for two-tailed test is: MK(J−2)−g∗
2

= tα/2 + t1−β with K(J-
2)-g∗

2 degrees of freedom. J = average sample size for Level 2 (Classes #). P = the
proportion of this sample that is treatment group (JT /J ). g∗

2 = the number of Level 2
covariates. ρ = τ 2

τ 2+σ 2 , is the unconditional ICC. τ 2 = Level-2 (between group-level)
variance (unconditional model). σ 2 = Level-1 (individual-level) variance (unconditional
model). R2

1 = 1 − (σ 2
|X/σ

2), indicating the proportion of Level-1 variance explained by
covariates. R2

2 = 1 − (τ 2
|W/τ

2), indicating the proportion of Level-2 variance explained
by covariates. D = design effect (see Schochet, 2008b, Tables 4.1, 4.2, 4.3 for more
information).

Model 5.6 (RD3 2r): Analogous to Three-Level Random Effect Blocked Cluster Ran-
dom Assignment Design With Treatment at Level 2 (Model 4.2 BCRA3 2r).
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Within three-level hierarchical linear model framework:

Level 1: Yijk = β0jk + β1jkXijk + rijk rijk ∼ N
(
0, σ 2

|X
)

Level 2:
β0jk = γ00k + γ01k(TREATMENT)jk + γ02k(Zjk − Z0) + γ03kWjk + μ0jk

β1jk = γ10k μ0jk ∼ N
(
0, τ 2

2|W
)

Level 3:

γ00k = ξ000 + ξ001Vk + ς00k

γ01k = ξ010 + ξ011Vk + ς01k

(
ς00k

ς01k

)
∼ N

((
0
0

)
,

[
τ 2

3|V
τ3T 3|V τ 2

T 3|V

])
γ02k = ξ020

γ03k = ξ030

γ10k = ξ100

Zjk is the assignment variable, and Z0 is the cutoff score.

MDES = MK−g∗
3−1

√√√√ρ3ω
(
1 − R2

3T

)
K

+D

(
ρ2
(
1 − R2

2

)
P (1 − P )JK

+ (1 − ρ2 − ρ3)
(
1 − R2

1

)
P (1 − P )JKn

)

The Level-3 sample size (K) can be derived from the previous formula as follows:

K =
(
MK−g∗

3−1

MDES

)2
(
ρ3ω3

(
1 − R2

3T

)+D

(
ρ2
(
1 − R2

2

)
P (1 − P )J

+ (1 − ρ2 − ρ3)
(
1 − R2

1

)
P (1 − P )Jn

))

The multiplier for one-tailed test is: MK−g∗
3−1 = tα + t1−β with K-g∗

3 -1 degrees of
freedom. The multiplier for two-tailed test is: MK−g∗

3−1 = tα/2 + t1−β with K-g∗
3 -1 degrees

of freedom. n = average number of individuals per Level 2. J = average sample size for
Level 2 (Classes #). P = the proportion of this sample that is treatment group (JT /J ). ρ3

= τ 2
3

τ 2
3 +τ 2

2 +σ 2 is the unconditional ICC at Level 3. ρ2 = τ 2
2

τ 2
3 +τ 2

2 +σ 2 is the unconditional ICC at

Level 2. τ 2
3 = level -3variance (unconditional model). τ 2

2 = Level-2 variance (unconditional

model). σ 2 = individual-level variance (unconditional model). ω = τ 2
T 3

τ 2
3

indicates treatment

effect heterogeneity across block (school), which is the proportion of the variance between
schools on the treatment effect to the between-school residual variance. R2

1 = 1 − σ 2
|X/σ

2

indicates the proportion of individual variance (at Level 1) predicted by covariates. R2
2

= 1 − τ 2
2|W/τ

2
2 indicates the proportion of variance between Level-2 groups explained by

Level-2 covariates. R2
3T = 1 − τ 2

T 3|V /τ
2
T 3 indicates the proportion of variance between

Level-3 blocks on the treatment effect explained by Level-3 covariates. g∗
3 = number of

group covariates used at Level 3. D = design effect (see Schochet, 2008b, Tables 4.1, 4.2,
4.3 for more information). Note that design effect only affects Level-1 and Level-2 terms.

6. Interrupted Time Series (ITS) Design

The time-series design (Bloom, 2003; Quint et al., 2005) compares student scores before
and after a schoolwide intervention while modeling the underlying preintervention trend
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over time and the departures from that trend during the postintervention years. Those
departures from the preintervention trend provide the estimates of the intervention effects.

The analytic model for this time series is multilevel with students nested within cohorts
within each school. Each school provides estimates of intervention effects; schools thus
constitute blocks in this design. Following Bloom’s (2003) suggestion, the analysis can
proceed as follows:

Series 1: These time series analyses assess whether there are improvements in the
scores on each of the performance variables for any series of grade level cohorts in the
intervention schools after the intervention begins. Using student-level scores on the respec-
tive performance variable in each cohort as the dependent variable, this analysis examines
differences between the years prior to the intervention and those afterwards. Two cohort-
level (Level 2) variables model change over time in the analysis. One variable, denoted
in the following models as T , indicates where in the time series each student cohort was
located. The other variable, denoted in the models below as Dt, is a set of dummy variables
that indicates that the cohort was in the intervention (Dt = 1) or not (Dt = 0) for each year
after the onset of the intervention.

First, we present a simple model to estimate the program effect at the second imple-
mentation year with four waves of baseline information by assuming that the intervention
effect is constant across schools:
Level 1 (student)

Yijk = β0jk + β1jkCijk + rijk rijk ∼ N (0, σ 2) (1)

Level 2 (cohort: random effect)

β0jk = β00k + β01kTjk + β02kXjk +
2∑
t=0

β0(3+t)k(Dt )jk

+μ0jk

(
μ0jk

μ1jk

)
∼ N

(
0
0

)(
τ00

τ01 τ11

)
β1jk = β10k + μ1jk (2)

Level 3 (school: constant effect)

β00k = γ000 +
∑
m

γ00mSm

β01k = γ010

β02k = γ020 (3)

β0(3+t)k = γ0(3+t)0, t = 0, 1, 2.

β10k = γ100

Reduced Form:

Yijk = γ000 +
∑
m

γ00mSm + γ010Tjk + γ020Xjk +
2∑
t=0

γ0(3+t)0(Dt )jk + γ100Cijk

+μ0jk + Cijkμ1jk + rijk (4)
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Y ijk = Score for student, i at time, j in school, k. Cijk = Covariate for student, i at
time, j in school, k. Sm = Dummy variable indicating School m (representing the blocking
factor).

Xjk = Cohort-level covariate. Tjk = Test year for student i (ranging from –4 through
+2). Dt = Dummy variables indicating the intervention status for cohort at follow-up year
t = 0, 1, and 2. γ000 = Grand mean score for students at the baseline in the reference school.
γ00m = Difference in the grand mean score for students at baseline in the other schools
comparing with the reference school. γ010 = Linear trend. γ020 = Slopes of the mean cohort
achievement. γ0(3+t)0 = Deviations from trend for follow-up year t = 0, 1, and 2. γ100 =
Coefficient of the student-level covariate. μ0jk = Random error term for cohort at time, j
in school, k. μ1jk = Random error term in the slope of student-level covariate for cohort at
time, j in school, k. rijk = Random error term for student, i at time, j in school, k.

The previous model will estimate the program effects (γ0(3+t)0) in terms of deviations
from the trend for the follow-up years, and it assumes that the school effect is constant.
This is a strong assumption; and the schools could have differential effects. Bloom (2003)
proposed a school fixed effects model by estimating the program effects separately by
school, then average them by weighting them equally. The previous model can be extended
to capture Bloom’s idea by adding school dummies in the Level-3 Equation 3 to predict
Level-2 parameters, that is, adding the interaction terms of school dummies and the other
variables in the reduced model. The reduced form model can be expressed as:

Yijk = γ000 +
∑
m

γ00mSm + γ010Tjk + γ020Xjk +
2∑
t=0

γ0(3+t)0(Dt )jk + γ100Cijk

+
∑
m

γ01mSm ∗ Tjk +
∑
m

γ02mSm ∗Xjk +
∑
m

2∑
t=0

γ0(3+t)mSm ∗ (Dt )jk

+
∑
m

γ10mSm ∗ Cijk + μ0jk + Cijkμ1jk + rijk (5)

γ01m = Difference in linear trends for the other school comparing with the reference school.
γ02m = Difference in slopes of the mean cohort scores for the other schools comparing with
the reference school. γ0(3+t)m = Difference in deviations from trends for follow-up year t =
0, 1, and 2 for the other schools comparing with the reference school. γ10m = Difference in
coefficient of the student-level covariate for the other schools comparing with the reference
school. The other notations are same as in Models 1 to 4.

The estimates of the program effects in the follow-up years in terms of deviations from
the baseline year are γ0(3+t)0, and (γ0(3+t)0+γ0(3+t)m) for the reference schools and all other
schools. The simple average of these estimates will be the estimate of the intervention effect
within the framework of the school fixed effect model.

Series 2: An important limitation of the above analyses is that observed differences
in the student performance scores before and after the intervention begins in a school
do not necessarily indicate that the differences were due to the intervention. This issue
can be addressed by including similar schools that do not receive the intervention as
comparison schools, that is, schools located in the same districts and thereby subject to
the same local context as the intervention schools. This comparison will serve to account
for differences in a school’s pattern of achievement that might be attributed to factors
other than the intervention. Expanded from the models in Series 1, an additional dummy
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variable will indicate whether the student’s cohort was located in an intervention school or
comparison school. The interaction of intervention and school type will examine whether
treatment cohorts in program schools outperformed cohorts in comparison schools in the
same period.

Similar to the analysis in Series 1, we will start from the simple model—assuming the
school effect is constant. By adding a dummy variable indicating if a school is a program
school or a comparison school in Equations 3 and 4, the reduced model is

Yijk = γ000 +
∑
m

γ00mSm + γ010Tjk + γ020Xjk +
2∑
t=0

γ0(3+t)0(Dt )jk + γ100Cijk

+ γ00p(INT)k +
2∑
t=0

γ0(3+t)1(INT)k ∗ (Dt )jk + μ0jk + Cijkμ1jk + rijk (6)

(INT)k = Dummy variables indicating if school, k, is an intervention school or comparison
school. γ0(3+t)0 = Deviations from trend for follow-up year t = 0, 1, and 2 for the comparison
schools. The other notations are same as in Models 1 to 4.

The term γ0(3+t)1 represents the average intervention effect in terms of the difference
in deviations from the trend for the follow-up years between the intervention schools and
comparison schools.

A more complicated fixed school effects model that permits the schools to have differ-
ential effects extends Equation 6 by adding the interaction terms of school dummies and
the other variables. The reduced model is

Yijk = γ000 +
∑
m

γ00mSm + γ010Tjk + γ020Xjk +
2∑
t=0

γ0(3+t)0(Dt )jk + γ100Cijk

+
∑
m

γ01mSm ∗ Tjk +
∑
m

γ02mSm ∗Xjk +
∑
m

2∑
t=0

γ0(3+t)mSm ∗ (Dt )jk

+
∑
m

γ10mSm ∗ Cijk + γ00p(INT)k +
2∑
t=0

γ0(3+t)1(INT )k ∗ (Dt )jk + μ0jk

+Cijkμ1jk + rijk (7)

The notations in Equation 7 are same as in Equations 5 and 6. γ0(3+t)1 are the parameter
estimates of interest representing the average intervention effect in terms of the difference
in deviations from the trend for the follow-up years between the program schools and
comparison schools.

Using a cohort random effects model (with school as a constant effect), Bloom (1999,
2003) presented a formula to calculate the MDES. An adapted MDES formula including
comparison schools and covariates follows:

MDES = M√
m

√
1 + 1

p

√
1

n
+ ρ(1 − R2

2)

1 − ρ

√√√√1 + 1

T
+ (tf − t̄)2∑

k

(tk − t̄)2
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The number of program schools that get treatment (m) can be derived from the previous
formula as follows:

m =
(

M

MDES

)2 (
1 + 1

p

)(
1

n
+ ρ(1 − R2

2)

1 − ρ

)⎛⎝1 + 1

T
+ (tf − t̄)2∑

k

(tk − t̄)2

⎞
⎠

where n is the number of students per school, T is the number of baseline year, tf is
the follow-up year of interest, t̄ is the mean baseline year, ρ is the conditional ICC for
cohorts (proportion of total variance of between years), M is multiplier, for one-tailed
test: Mm∗T−g∗−1 = tα + t1−β with m ∗ T − g∗ − 1 degrees of freedom. For two-tailed test:
Mm∗T−g∗−1 = tα/2 + t1−β withm ∗ T − g∗ − 1 degrees of freedom, and p is the ratio of the
number of comparison schools to the number of program schools.


