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Abstract Recommendations for practice are routinely included in articles that report educa-
tional research. Robinson et al. suggest that reports of primary research should not routinely do
so. They argue that single primary research studies seldom have sufficient external validity to
support claims about practice policy. In this article, I draw on recent statistical research that has
formalized subjective notions about generalizability from experiments. I show that even rather
large experiments often do not support generalizations to policy-relevant inference populations.
This suggests that single primary studies are unlikely to be sufficiently generalizable to support
recommendations for practice.
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The process of basic research, development of interventions, and evaluation of their effects in
education involves distinctively different activities and skills. Each phase of this process is a
serious intellectual endeavor, but the activities, settings that support them, and skills required to
carry out the work are themselves quite different in each phase. Basic research (e.g., on
learning) might well be carried out via laboratory studies. The development of interventions
based on research findings would typically require small-scale studies in schools or other field
settings. Evaluation of the impact of an intervention would typically require much larger-scale
experiments or quasi-experiments conducted in field settings. Moreover, each phase requires
personnel with specialized knowledge and skills. It would be unusual to find a researcher who is
expert in all three of them and rarer still to find a single study that incorporated all of these
aspects of the research, development, and evaluation process.

Robinson et al. (2013) propose a healthy separation between scientific research in
education and prescriptions for practice (practice policies). I believe that this separation
would reflect a healthy (and appropriate) respect for the distinct methods and skills required
for each phase of research. For example, it is well known in the implementation research
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community that not all interventions can be implemented well, and this limitation may doom
an intervention whose impact would seem highly plausible given laboratory research.Moreover, it
is useful to remember that in education as well as other fields such as labor research, medicine, and
even business, most large-scale evaluations fail to confirm that promising interventions have the
expected impacts (Coalition for Evidenced Based Policy, 2013). Therefore, it does not necessarily
follow that small-scale research findings would be confirmed in larger-scale evaluation studies,
let alone have the intended effects when implemented in practice.

The authors also make a broader point about the kinds of evidence that are required to
provide a strong warrant for claims about generalizability. I am sympathetic to their claim
that strong evidence is required to justify broad generalizability of causal effects. However, I
would like to focus on one aspect of generalization, namely generalization of treatment
effects from a study sample to a policy-relevant inference population. Generalization from a
study sample to a policy-relevant population is somewhat less demanding than causal
generalization of the form discussed by Robinson et al. (2013), but it is more tractable.
Generalization in this more limited sense is a necessary condition for valid evidence-based
policy recommendations, and emerging evidence supports the contention that few single
studies meet even this limited sense of generalizability to policy-relevant populations.

Generalization based on probability sampling (which is sometimes called random sampling
or representative sampling) is supported by a strong technical rationale. It can support unbiased
estimates of population quantities and defensible estimates of their sampling uncertainties.
Unfortunately, except for research based on secondary analyses of large-scale surveys, virtually
no research in education uses probability samples. Instead, the research is conducted with
convenience samples of schools and students. While some attempts may be made to assure
“representativeness,” probability sampling is not used, and the concept of representativeness is
more a rhetorical claim than a concept with any technical meaning in statistics (see Kruskal and
Mosteller 1979).

Moreover, I believe that probability sampling is actually ill suited to most education policy
research for three reasons. First, there are often many targets of inference. A single research
study may be intended to inform policy choices in a number of diverse settings, leading to
several policy-relevant inference populations. Second, the inference populations are often not
known in advance; they are discovered after the study has been conducted. Third, the study
sample may not even be part of the inference population, because a study in one state is used to
draw inferences in another state. For example, the Tennessee class size experiment was
conducted to draw policy inferences in Tennessee (albeit without a probability sample of
schools from the state). However, it has since been applied to draw inferences about class size
effects in several other states, which was not planned in advance, and the study sample (drawn
in Tennessee) was not part of the inference populations in other states.

Recent research has begun to formalize subjective notions about generalization in ways that
shed light on the requirements for external validity and causal generalization when probability
sampling has not been used (e.g., Hedges and O'Muircheartaigh 2010; O'Muircheartaigh and
Hedges 2013; Stuart et al. 2011; Tipton 2013; Tipton and Hedges 2013). This work is all in the
same spirit in that it formalizes generalization as a problem of estimating an average treatment
effect (and its sampling uncertainty) in a well-defined inference population. Thus, generaliz-
ability is framed as a statistical estimation problem: How well can the population average
treatment effect be estimated from a given study sample?

This makes it possible to apply well understood technical methods of statistical estima-
tion to study the generalization problem. For example, because the properties of bias and
variance (or standard error) are used to characterize the performance of statistical estimators,
we can employ these concepts to characterize generalizability as the performance of
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estimators of the population average treatment effect. Note that either large bias or large
variance (or both) might undermine a generalizability claim. Moreover, framing generaliz-
ability as a statistical estimation problem exposes the fact that more than one estimator might
be derived from a single study sample and there is a problem of selecting the best or at least a
good estimator. For example, the conventional estimate of treatment effect is typically not
the most generalizable estimate of the population average treatment effect.

This approach starts with the assumption that it makes no sense to say that a treatment
effect is generalizable without defining the inference population to which generalizations are
supposed to apply. In other words, to say a research result is generalizable makes no sense
unless you say generalizable to what. Usually the target of generalization is the average
treatment effect in some inference population of interest. By referring to the average
treatment effect, we acknowledge that the treatment effect may not be identical for every
unit in the population, a point to which we will return later.

While this framework is straightforward, it leads to several immediate implications. For
example, if a generalizability claim must be accompanied with a specific target of general-
ization, then it follows that the results of a study might be quite generalizable to some policy-
relevant inference populations, less so to others and not at all to yet others. The factor
limiting generalizability might be bias of the estimate in the population average treatment
effect, the variance of that estimate, or both. To evaluate generalizability claims, it is
essential to have some evidence about both bias and variance (or a functionally related
quantity such as the standard error of the estimate).

If the study sample was a simple random probability sample from the inference popula-
tion, generalization (that is estimation of the population average treatment effect) would be
reasonably straightforward. However, it is more likely that the probability sample would be a
multistage cluster sample (e.g., obtained by first sampling schools, then students within
schools). It is worth noting that when two-stage probability sampling is used, the conven-
tional analysis of a balanced cluster randomized or randomized block experimental design
does not yield an unbiased estimate of the population average treatment effect when cluster
(e.g., school) sizes are not identical in the population (see Hedges and O'Muircheartaigh
2010). An unbiased estimate can easily be computed by weighting, but this example
illustrates that even under ideal conditions (e.g., probability sampling), more than one
estimator (of the population average treatment effect) is possible and attention to issues of
generalization is necessary in the analysis.

If treatment effects do not vary in the inference population (and if the study sample is a
subset of it), then an internally valid study's estimate of the treatment effect will be an
unbiased estimate of the population average treatment effect, and generalizability is straight-
forward. Unfortunately, surprisingly little is known about the variation in treatment effects.
Most of what we know comes from the handful of interactions that happen to have been
estimated (usually with designs that are underpowered to test interactions, because they are
not the primary focus of the study). Thus, we do not have convincing bodies of evidence
about the nature of variation in treatment effects and their correlates.

This is important because if treatment effects do vary, then this variation has implications for
the estimation of the population average treatment effect. All of the methods that have been
proposed to make population inferences from nonprobability samples require that there is a set
of covariates that are measured on both the units in the study sample and the units in the
inference population (from either a census or a probability sample) that explain the variation in
the treatment effects. This requirement has been called coherence (e.g., by Stuart et al. 2011) or
ignorability of sampling of treatment effects given the covariates (e.g., by Hedges and
O'Muircheartaigh 2010). Note that this requirement is parallel to those used in estimation with
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missing data (see, e.g., Little and Rubin 2002) or in using covariates to reduce bias in
observational studies and quasi-experiments (see, e.g., Rosenbaum and Rubin 1983).

In education experiments, the units of analysis are often schools, so census data can be
obtained from collections such as the National Center for Education Statistics (NCES)
common core of data, US Census data, or from state data systems which often have quite
extensive public-use data on schools. The surveys conducted by NCES provide even richer
data on national probability samples, and if these data have been collected within study
samples, they can provide a rich covariate set with which to explain plausible variation in
treatment effects.

The strategy used by these methods is to match (explicitly or implicitly) the study sample
to the inference population on a set of covariates that make the sampling of treatment effects
ignorable. Usually a large set of covariates will be used to increase the likelihood that the
ignorability assumption will be met, but they will be incorporated into a single variable that
summarizes the information in all the covariates (e.g., a propensity score reflecting propen-
sity of units with a given ensemble of covariate values to be in the study sample) (see, e.g.,
Hedges and O'Muircheartaigh 2010).

Once a covariate set has been summarized, estimates of population average treatment
effects can be obtained in several ways. The simplest is to stratify the distribution of the
covariate (e.g., the propensity score). Five to seven strata have been shown to be adequate to
control at least 90 % of the bias arising from variation in the covariate (see Cochran 1968 or
Rosenbaum and Rubin 1983). Then the portion of the study sample in each stratum is used
to estimate the treatment effect within that stratum. The estimate of the population average
treatment effect is the weighted average of the treatment effects in each stratum, and its
variance is a simple function of the weights and the variances of the treatment effects in each
stratum. If the strata are chosen to have equal proportions of the population distribution (e.g.,
if five strata are divided at the quintiles of the distribution of the covariate), then the weights
will be equal (e.g., 1/5 for five strata defined by population quintiles), the estimate of the
population average treatment effect will be the simple (unweighted) average of the treatment
effects in each stratum, and the variance will be the simple average of the variances divided
by the number of strata.

Note that in this methodology, the treatment effect depends on the covariate. The function of
the study sample is to provide estimates of the treatment effect for each stratum of the covariate
distribution. If the ignorability assumption is met, the treatment effect is the same for units that
have the same covariate value, whether they are in the inference population or not. Therefore, it
is irrelevant whether the study sample is a subset of the inference population. The method
estimates the average treatment effect in a population that has the same composition (on the
covariate) as the inference population. A similar approach is used in demography where it is
called standardization (that is, standardizing a population composition so that comparisons
between desired quantities in two different populations are not confounded with difference in
population composition) (see, e.g., Kitagawa 1964). It is also used in economics to form index
numbers and to decompose effects to isolate the impact of changes in population composition
(see, e.g., Oaxaca 1973). Finally, it is used in survey research (see, e.g., Rosenberg 1962 or
Kalton 1968), and it is a basic tool in the analysis of missing data (see Little and Rubin 2002).

If the study sample were a probability sample of the inference population, the proportion of
the study sample in each stratum would be the same as the proportion of the inference
population in that stratum. In a nonprobability sample, the proportion of the study sample in
a stratum may be quite different from the proportion of the inference population in that stratum.
The degree to which the proportions match in each stratum is a reflection of how representative
the covariate distribution (and therefore the treatment effect distribution) in the study sample is
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of the inference population. The degree to which the proportions are different (that is, the study
sample and the inference population do not match) inflates the variance of the estimate of the
population average treatment effect.

If it is possible to obtain an estimate of the treatment effect in each stratum (and if the
ignorability conditions are met), then the estimate of the population average treatment effect
will have reasonably small bias. If the number of study sample units within a stratum is small,
the variance of the treatment effect estimate in that stratum will be large, and the variance of the
combined estimate will also be large. If there are strata in which treatment effects cannot be
estimated (e.g., strata that do not include some units assigned to the treatment group and some
units assigned to the control group in the study sample), then the study sample simply does not
support any estimate of the average treatment effect in the inference population. Another way to
characterize the latter situation is to say that the variance of the estimate of the population
average treatment effect is infinite.

The problem of strata in which treatment effects cannot be estimated is analogous to
undercoverage in sample surveys and has the same consequences. One way this can be
handled is to change the definition of the inference population, which is equivalent to
acknowledging that the study is not able to provide inferences to the desired population,
but can to some related populations. For some policy purposes, this may be acceptable if the
newly defined inference population can be defined in a meaningful way (e.g., all of a state
except the five most rural counties). Another approach is to impute treatment effects to the
strata where they are missing. Of course, this approach involves substituting assumptions for
data, but it too may be acceptable in some situations. However, neither of these responses is
what is typically done. Rather, the conventional treatment effect estimate (and its standard
error) is taken at face value as applying to the inference population.

Applications of these methods to a few large-scale experiments in education are instructive
and provide some empirical evidence about generalizability. One application is to the Tennessee
class size experiment (Hedges and O'Muircheartaigh 2010). The Tennessee class size experi-
ment has been called “one of the great education experiments of the century” by Mosteller,
Light, and Sachs (1996). The experiment was conducted to assess the effects of substantial class
size reduction (from an average of 22 to 15) on academic achievement of elementary school
children (see Nye et al. 2000). Initially, every school district in the state of Tennessee was
invited to participate in the experiment. In order to participate, schools had to agree to (1) the
random assignment of both teachers and students to classes, (2) keep each student's class size
assignment the same for the 4 years of the experiment, and (3) give the research team access to
the students in order to verify actual class sizes and administer tests. A total of 79 elementary
schools throughout the state eventually participated in the experiment. Several analyses of the
data suggested interactions that implied that treatment effects were heterogeneous. The set of
covariates measured in the experiment was limited (we used a set of ten covariates), and they (or
reasonable proxies of them) were measured in the US census so that the values for various
potential inference populations could be constructed using the 1 % sample of the 1990 census
microdata (available at IPUMS). The inference populations (we considered several) were
subsets of the national population of children who were 9 to 10 years old in April 1990, the
same age as the children in the Tennessee class size experiment. The data permitted us to
develop estimates of the average treatment effect for children in the state of Tennessee. The
estimate for the state of Tennessee was almost identical to that given by the conventional
analysis of the experiment (it differed by less than 1 %), but the standard error was only about
15 % larger, which suggests that the results might generalize fairly well to the state of
Tennessee. However, generalizability was considerably worse for other potential policy-
relevant inference populations. For example, the point estimate for the population average
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treatment effect in Los Angeles was about half as large as the conventional estimate, and the
standard error was six times as large so that the standard error was twice the size of the point
estimate in Los Angeles. We interpreted these results as indicating that the results generalized
poorly to Los Angeles.

We agree with Robinson et al. (2013) that a series of replicated studies would generally
provide a better basis for generalization. The methods described above can be applied to
collections of replicated studies. These methods were applied to the data from three
experiments involving a total of 90 middle schools in Texas (see O'Muircheartaigh and
Hedges 2013). In this case, the treatment was a software-based intervention that uses
dynamic representations to help students learn how to solve rates and proportions problems
(Roschelle et al. 2010). The initial inference population was the set of 1,713 public middle
schools in Texas with seventh grade classrooms in 2009 that were not charter schools. The
covariate set was slightly larger involving 26 covariates chosen from the state's academic
excellence indicators system, which provides data on all public schools in Texas. In spite of
relatively wide dispersal of the study sample throughout the state, it was not possible to
generalize the results of the experiment with any degree of confidence to the entire state. It
was, however, possible to characterize the quality of the generalization (that is, estimate the
mean and variance of the average treatment effect) for different school districts in the state.

These examples illustrate that even large single experiments may not be able to provide
generalizable estimates to the populations that are obvious targets of inference. It also illustrates
that even if a study is generalizable to some inference populations, it may not be very
generalizable to others. One might criticize these particular empirical demonstrations because
the covariate sets they chose are not large enough to guarantee that the crucial ignorability
condition is met. However, if anything, these examples illustrate how difficult it is to support
generalizability from a single study. Amore comprehensive list of covariates would likelymake
population coverage even more difficult and generalizability less likely. In other words, these
examples are likely to have overestimated generalizability, not underestimated it.

These empirical demonstrations suggest that we should be skeptical of any single study
claiming to provide evidence that is generalizable enough to provide a basis for policy and
practice recommendations. Such a study should be required to present substantial evidence
to support the claim because even large and well-designed studies may fail that test. It would
appear that collections of studies assembled in research syntheses would seem to be more
likely to provide evidence that could support broad generalizations. However, the example
of the studies in Texas shows that even collections of replicated studies may not be
generalizable to the obvious policy-relevant populations.
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