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In many intervention studies, therapy outcome evaluations, and educational field

trials, random treatment assignment of clusters rather than persons is desirable for

political feasibility, logistics, or ecological validity. However, cluster randomized

designs are widely regarded as lacking statistical precision. This article considers

when and to what extent using a pretreatment covariate can increase experimental
precision. To answer this question, the author first optimizes allocation of resources
within and between clusters for the no-covariate case. Optimal sample sizes at each

level depend on variation within and between clusters and on the cost of sampling

at each level. Next, the author considers optimal allocation when a covariate is

added. In this case, the explanatory power of the covariate at each level becomes

highly relevant for choosing optimal sample sizes. A key conclusion is that statis-

tical analysis that fully uses information about the covariate-outcome relationship

can substantially increase the efficiency of the cluster randomized trial, especially

when the cost of sampling clusters is high and the covariate accounts for substantial

variation between clusters. Recent multilevel studies indicate that these conditions

are common.

The advantages of randomized experiments in fa-

cilitating causal inference are widely recognized.

Randomization probabilistically equates treatment

groups on all pretreatment covariates. As a result, a

confidence interval for a treatment contrast quantifies

uncertainty about the magnitude of causal impact of

the treatments. Such unambiguous causal inferences

are not possible in quasi-experiments (intervention

studies widiout randomization) because the confound-

ing effects of measured or unmeasured pretreatment

influences cannot be eliminated with certainty.
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This article considers design issues that arise in

cluster randomized trials, that is, experiments in

which clusters of persons rather than persons them-

selves are assigned at random to treatments. Such

clusters might be classrooms, schools, therapy groups,

clinics, health maintenance organizations (HMOs),

neighborhoods, program sites, or even entire cities or

towns. There are many settings in which cluster ran-

domized experiments are more feasible or desirable

than experiments based on the randomized assign-

ment of individuals to treatments. First, it may be

politically or logistically impossible to assign children

to preschools, patients to therapists, or residents to

neighborhoods. Yet random assignment of pre-

schools, therapists, or neighborhoods may be quite

feasible. Second, even when it is possible to assign

persons within clusters to treatments, it may be unde-

sirable because of "diffusion of treatments" (Cook &

Campbell, 1979). If half the teachers within a school

are assigned to an in-service training program, they

may share their new learning with colleagues who do

not attend. Third, and perhaps most important, results

of demonstration projects based on random assign-

ment of clusters may generalize better to the policy

contexts they are designed to inform. The unit of as-

signment and treatment—the cluster—is often the unit
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of reform. After the research is completed, a pre-

school or a therapist will adopt a new approach for all

clients, not for a randomly selected half.

Despite its appeal, researchers have often regarded

cluster randomization with suspicion because it com-

plicates the analysis and is assumed to lack statistical

precision.

Data Analysis

Walsh (1947) showed that if clusters are the unit of

randomization, p values based on conventional analy-

ses will generally be too small. The greater the vari-

ability between clusters, the more severe the bias. He

showed how to use information about the intracluster

correlation to estimate the bias associated with con-

ventional confidence intervals and tests. Kish (1965)

related use of the intracluster correlation coefficient in

cluster randomized trials to the design effect in

sample surveys based on cluster sampling. Cornfield

(1978) wrote: "Randomization by cluster accompa-

nied by an analysis appropriate to randomization by

individual is an exercise in self-deception" (p. 101).

Variability between clusters can arise for two rea-

sons. First, persons are typically nonrandomly se-

lected into the intact clusters that are the unit of ran-

domization, and these selection effects can create

intercluster variation on the outcome. Second, even if

no such selection effects are present, the shared ex-

perience within a classroom, therapy group, or HMO

can create intercluster outcome variation that is extra-

neous to the treatment effect.

Classical experimental design texts (e.g., Kirk,

1982) recommend the nested analysis of variance

(ANOVA) for such designs. Unfortunately, these

methods do not apply well when the data are unbal-

anced (unequal sample sizes per cluster) or when co-

variates are available. Recently, however, more ap-

propriate analytic methods have become available

under the label of multilevel models (Goldstein,

1987), hierarchical linear models (Bryk & Rauden-

bush, 1992), or random coefficient models (Longford,

1993). Raudenbush (1993) showed how these meth-

ods duplicate classical ANOVA results for a variety

of designs and generalize application to the more

complex data that arise in large-scale field studies.

Statistical Precision

Aversion to cluster randomized designs is based in

part on a widespread perception that they lack statis-

tical precision. When the analysis is done correctly,

the standard error of the treatment contrast will typi-

cally depend more heavily on the number of clusters

than on the number of participants per cluster. Studies

with large numbers of clusters tend to be expensive.

Blair and Higgins (1985) provided a lucid discussion

of the influence of the intracluster correlation on pre-

cision and power. Murray et al. (1994) provided a

thorough review of design options for coping with

poor precision in trials for which whole communities

are assigned to treatments.

Planning Cluster Randomized Trials

In this article, I argue that sound planning for clus-

ter-randomized trials, based on now-standard hierar-

chical statistical models, can help ensure the design of

affordable studies with adequate statistical precision.

Such planning involves careful choice of sample

sizes and evaluation of alternative designs.

Choosing Sample Sizes

In planning individualized randomized trials, a key

consideration is the total sample size, which will

strongly influence experimental precision. Planning

of cluster randomized trials is more complex in that

two sample sizes—the within-cluster sample size and

the total number of clusters—contribute to experi-

mental precision.

In many cluster-based interventions, the sample

size per cluster is under the researchers' control. Ex-

amples include school-based interventions designed

to prevent mental health disorders and related sub-

stance abuse (Jones, 1992; Rosenbaum, Flewelling,

Bailey, Ringwalt, & Wilkinson, 1994), community-

based health-promotion trials (Johnson et al., 1990;

Murray et al., 1994), evaluations of residential treat-

ment programs (Friedman & Glickman, 1987), and

community-based care (Goldberg, 1994; Lehman,

Slaughter, & Myers, 1992). Sampling large numbers

of persons per cluster will constrain the number of

clusters one can afford to sample, especially when

individual-level data collection is expensive as, for

example, when individual psychological assessments

or biological assays are required. In these cases, I

shall approach planning from the perspective of opti-

mal allocation; Choosing the optimal within-cluster

sample size is a prelude to deciding on the total num-

ber of clusters.
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In other cases, cluster size will be immutable as, for

example, when married couples are assigned at ran-

dom to alternative approaches of family therapy.

Whether the within-cluster sample size is determined

by optimal allocation or by nature, both the within-

and between-cluster sample sizes will contribute to

precision, but the relative importance of these two

sample sizes will depend on whether covariates are

used.

Use of Covariates

It is widely known that the precision of an experi-

ment using individual random assignment can be sub-

stantially increased by using a pretreatment covariate.

The added precision depends on the explanatory

power of the covariate. For example, Porter and

Raudenbush (1987) gave an example in which adding

a single covariate has the same effect on precision as

doubling the sample size. In cluster randomized trials,

assessing the added value of the covariate is more

complex because it depends on the explanatory power

of the covariate, size of the variance components, and

costs of sampling at each level. An analysis of optimal

allocation of resources may reveal that the optimal

within-cluster sample size when using the covariate is

quite different from the optimal sample size for the

design without the covariate.

Optimal Design

In choosing between two designs (e.g., a design

without a covariate as compared with a design with a

covariate), one proceeds as follows. First, one as-

sesses optimal allocation separately for each design,

given assumptions about costs and variance compo-

nents. Second, one computes the standard error of the

treatment contrast for each design. I define the opti-

ma] design for a given set of assumptions as the de-

sign that yields the smaller standard error.1 A design

is uniformly optimal if, for all plausible assumptions

about costs and variance components, it produces the

smaller standard error. This approach is readily gen-

eralized to comparisons of multiple designs (e.g., us-

ing blocking vs. covariance analysis vs. no covari-

ables). In this article, I restrict attention to two designs

(i.e., with and without the covariate) for simplicity.

Optimal Allocation and Precision With
No Covariate

Let us consider a simple setting in which one

wishes to compare an experimental group E and a

control group C on a posttreatment, continuous, inter-

val scale outcome variable, Y. It is not possible to

assign persons at random to treatments; rather / clus-

ters, each of size n, will be assigned at random into

equal size groups of Jf2. Thus, the total sample size

will be nj with nJ/2 persons in E and nJ/2 persons in

C. In addition, one has access to a prerandomization

covariate, X, measured on each of the nJ subjects. A

simple linear model for this scenario, ignoring the

covariate, is

Y<i = "Vo + TfiS,• + "j + *& (1)

for ( = ! , . . . ,« subjects within y = 1 , . . . , / clusters;

Sj takes on a value of 0.5 for those in the experimental

group and -0.5 for those in the control group; y0 is the

grand mean; yl is the treatment contrast defined as the

mean difference between the two groups; it is typi-

cally assumed that u} ~ N(0, T2), ei} ~ N(0, a2). The ays

are assumed independent for all j and the efjs are

assumed independent for all i and j with Uj and etj

independent of each other. Here T2 is the between-

cluster variance, and o-2 is the within-cluster variance.

Equation 1 models the dependence between obser-

vations in the same cluster via the random effect, Uj.

Thus, the covariance between a pair of observations

YtJ and Yt,j (outcomes of two persons /' and i" located

in the same cluster./) is T2, and the correlation between

these two observations is the intracluster correlation

(2)

As Equation 2 shows, the intracluster correlation is

the proportion of variance in the outcome that lies

between clusters.

This model assumes conditional independence, that

is, given the random effect associated with a cluster,

the responses of persons within the cluster are inde-

pendent. This assumption will be unrealistic in some

settings. For example, suppose that classrooms were

assigned at random to experimental and control con-

ditions, where the experimental treatment involved

cooperative learning (Slavin, 1983). By design, the

intervention promotes a high degree of interaction

among subgroups of students within the experimental

but not within the control condition. An appropriate

statistical model for such data would represent the

1 Alternatively, optimally could be defined with respect

to maximizing power, but this requires specification of ef-

fect size and makes the presentation to follow a bit more

complicated.
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additional clustering in the experimental classrooms,

for example, by use of a three-level hierarchical

model (Bryk & Raudenbush, 1992, chap. 8) where

cooperative learning groups within experimental

classrooms represent a level in the model. Although

the implications of such a model for research planning

are beyond the scope of this article, I caution the

reader to consider the realism of model assumptions;

I consider the implications of more complex models

for future work on planning later (see Final Remarks

section).

In the framework of Equation 1, if p = 0, an "in-

dividual-level analysis" that ignores the clusters will

give an appropriate estimate of the treatment effect

and the standard error. However, if p > 0, as pointed

out by Walsh (1947), such an analysis would produce

a negatively biased estimate of the standard error of

the treatment contrast, yielding a liberal test of sig-

nificance and too-short confidence interval. Even

small departures of p from zero can produce consid-

erable bias.

The standard analysis for Equation 1 in the case of

balanced data is the mixed, two-factor nested

ANOVA (Kirk, 1982, p. 460, Table 1). Clusters are

the random factor and treatments the fixed factor. Un-

der the assumptions associated with Equation 1, this

analysis gives estimates and F tests for the between-

cluster variance component and the treatment con-

trast. The F test for treatments is the ratio of the

between-treatment mean square to the between-

cluster mean square; the F test for residual cluster

variation within treatments is the ratio of the between-

cluster mean square to the within-cluster mean square

(see Table 1).

If interest is confined to the treatment contrast, a

simple t test of group differences with the cluster

means as the sample data will duplicate the nested

ANOVA in the case of balanced data. Hopkins (1982)

provided a lucid discussion of the relationship be-

tween nested analyses and aggregated analyses.

Some authors have recommended testing residual

variation between clusters first; if such variation is

found nonsignificant, the variation within and be-

tween clusters is pooled to yield a more powerful test

of treatment group differences. This type of prelimi-

nary testing, however, is known to yield underesti-

mates of uncertainty about treatments when cluster

variation is found nonsignificant (Fabian, 1991).

Thus, a Type II error in testing for cluster effects

increases the probability of a Type I error in testing

treatment effects. In the sequel, I avoid the two-step

testing procedure on these grounds; retention of the

null hypothesis of no cluster effects may be presumed

a Type II error in most cases of practical interest.

Estimates

The restricted maximum likelihood (REML) esti-

mate of the treatment contrast and its variance are

where

4A
Var(-9,) = —

A = T2 + o-2/n.

(3)

(4)

Thus, the treatment contrast estimate is the difference

between the mean outcomes in the two groups with a

variance that is efficiently estimated via REML by

4 * mean square between clusters

Table 1
Analysis of Variance for a Balanced, Two-Group Cluster

Randomized Design Without Covariates (Case I)

Source df MS Expected MS

Treatment 1

Clusters within / - 2

treatment

Persons within /(« - 1)

clusters

+ er2

Note. Estimates are as follows: y, = Y..E - Y..c; cr2

In the case of balanced data (equal ns in all clusters),

estimation of Equation 1 by REML duplicates the

familiar results of the nested ANOVA, as presented in

Table 1 (Rao & Kleffe, 1988, pp. 35-37). When the

data are unbalanced, REML estimation requires an

iterative procedure because the treatment contrast es-

timate and the variance components estimates are mu-

tually dependent in the case of unbalanced data (see

Raudenbush, 1993, for an extensive discussion of how

mixed linear regression models estimated via REML

duplicate and generalize classical ANOVA proce-

dures).
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Cost of Data Collection

In planning the study, one must consider cost. In

particular, T monetary units are available. It is esti-

mated that, once one has sampled a cluster, it costs C1

to enroll each subject, while the cost of sampling each

additional cluster is C2. Thus, the total cost of the

study is

500

T = C2). (6)

In many settings, more complex cost functions will

be needed. For example, it may be far more costly to

sample experimental clusters than control clusters be-

cause of large costs associated with implementing the

experimental intervention. I consider this issue later

(see Final Remarks section), while using the simple

cost function of Equation 6 for illustrative purposes.

Optimal Allocation

The cost constraint of Equation 6 defines J as

T
J =

nC, + C2'
(7)

Thus the variance of the treatment contrast (Equation

3) is expressible as a function of total resources avail-

able, the relative costs of sampling at each level,

and n:

4(T
2 + cr2/n) * ( C2)

(8)

Minimizing Equation 8 with respect to n yields

"n(optimal)," that is, the sample size n per cluster

that minimizes the sampling variance of the treatment

contrast:

o- C2
n(optimal) = — * -y / —.

T
(9)

This result duplicates the familiar result of Cochran

(1977; see also Snijders & Bosker, 1993) for mini-

mizing the variance of the population mean estimate

in a survey using a balanced two-stage cluster sample

with simple random sampling of clusters and then

simple random sampling of persons within clusters.

Equation 9 shows that a large n per cluster is most

advisable when the variability within clusters is large

in relation to the variability between them and when

the cost of sampling additional clusters is large in

relation to the cost of sampling persons.

To illustrate, I now set T = 500, C1 = 1, and o-2 +

T2 = 1, so that

+ CV
2 = p; o-2 = 1 - p.

(10)

Table 2 provides n(optimal), the corresponding J,

and the sampling variance of the treatment contrast

estimates under various assumptions about intraclus-

ter correlations and cost. Intracluster correlations

ranging from small to large include .01, .05, .10, .20,

and .50. The cost of sampling clusters is viewed as

twice, 10 times, or 50 tunes that of sampling persons

within clusters.

Table 2 gives the results that are expected. Small

intracluster correlations and expensive sampling of

clusters favor large ns. The variance estimates can be

put in perspective by noting that if the treatment

groups are separated by 0.30 standard deviations, a

variance of 0.0225 or smaller would be needed to

provide a power of roughly 0.50 to detect the treat-

ment effect at the 5% level of significance. Table 2

therefore assigns an asterisk to those scenarios pro-

ducing a sampling variance less than 0.0225 as a

rough indicator of the designs producing a modicum

of precision. It is clear that planners run into serious

Table 2

Optimal Sample Sizes and Corresponding Sampling

Variances as a Function of the Intracluster Correlation

and Cost Based on an Analysis That Ignores

the Covariate

Intracluster

correlation (p)

.01

.01

.01

.05

.05

.05

.10

.10

.10

.20

.20

.20

.50

.50

.50

Cluster/

person

cost ratio

(C2)

2

10

50

2

10

50

2

10

50

2

10

50

2

10

50

n(optimal)

14

31

70

6

14

31

4

9

21

3

6

14

1

3

7

J

31

12

4

61

21

6

80

26

7

104

31

8

146

38

9

Var (},)

.0103*

.0138*

.0232

.0133*

.0226

.0522

.0156*

.0304

.0811

.0186*

.0426

.1317

.0233

.0693

.2606

Note. An asterisk indicates a scenario that produces a sampling
variance less than 0,0225 as an indicator of the designs producing
a modicum of precision.
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problems when the intracluster correlation and the

cost of sampling clusters are simultaneously large. I

now consider how using a covariate can improve

things.

Optimal Allocation and Precision With
a Covariate

I now add a covariate, X, but now use a hierarchical

linear model for multilevel analysis to use all of the

information in the covariate to account for variation in

the outcome. The analysis may be viewed as a nested

analysis of covariance with random effects of clusters

and fixed effects of treatment and covariate.

Model

The model can be represented by the mixed linear

regression model

where Sj again takes on a value of 0.5 for clusters in

the experimental group and -0.5 for those in the con-

trol group; Xy is the covariate measured at the person

level; y{ again is the treatment contrast; -y2 *
s now tne

regression coefficient for the person-level covariate;

and it is assumed that w, ~ W(0, T2,^), etj ~ N(Q, o-2
k).

The symbols T2 and o"2 now both have the subscript

y\x to emphasize that both the between-cluster vari-

ance and the within-cluster variances are now residual

variances conditional on the effects of the covariate X.

Estimation

An assumption of ordinary least squares regression

is that the model residuals are independent. Equation

11 fails to satisfy this assumption, because the covari-

ance between residuals of persons in the same cluster

will be T^y Efficient estimation requires an iterative

algorithm, for example, that based on maximum like-

lihood.
The Appendix describes maximum likelihood esti-

mation for the treatment contrast and derives the vari-

ance of the treatment contrast given the covariate and

the variance components:

J/2+1 i'=l
(13)

Var(^IX) = - 1 +
J(M..E-M..c)

2/4

[ J/2

^(M.]E
j=i

+ (M.iC-M..c)
2 .

J/2+1 J

Here XijE and Xijc are the covariate values of person i

in cluster; of the experimental group and person i in

cluster j of the control group, respectively; M.jE and

M.jC are the covariate means for cluster j of the ex-

perimental group and cluster j of the control groups,

respectively; and M. .E and M. .c are the covariate

means for the experimental and control groups, re-

spectively. Also, SS^.., is the pooled, within-cluster

sum of squares of the covariate, and SSb,, is the

pooled, within-treatment, between-cluster sum of

squares of the covariate. Equation 12 has the same

form as the variance of the treatment contrast with the

covariate under the model without the covariate

(Equation 1) except that (a) the variances are residual

variances and (b) there is a correction factor that de-

pends on the distance between the treatment means on

the covariate. Thus, the benefit of adding the covariate

is greatest when the residual variance, A^ is much

smaller than the unconditional variance, A, and when

the covariate means of the two treatment groups are

similar.

Inferences about the treatment effect under the

analysis of covariance are based on the conditional

distribution of the outcome given the covariate, X, as

in Equation 12. However, in planning research, the

difference between covariate means cannot be known

in advance. Thus, in planning research, it is natural to

treat X as a random variable and to consider the vari-

ance of the treatment effect estimator averaged over

possible values of the covariate. Treating X as nor-

mally distributed produces a useful substitute for

Equation 12:

(12)
1 + ve + (14)

where where
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(15)

Here Aj. = if + crj/n, where T2. is the between-cluster

variance of X, and o-2 is the within-cluster variance of

X. Defining p., = T2./^2 + a2) as the intracluster cor-

+ a-2,,,) asrelation on the covariate and p =

the residual intracluster correlation of Y (after adjust-

ing for X), one defines

6 =
~ PyU

(16)

Equation 14 provides a general expression that sim-

plifies in specific interesting cases.

Case 1. X is a cluster-level covariate, so that SSm

= 0. Then

(17)

where F(l, / - 2) is distributed as F with 1 and / - 2

degrees of freedom. In this case, the variance of the

treatment effect over possible random samples of the

covariate is

Var (•?,) = £[Var(-v,IX)] = - (18)

Case 2. X is a person-level covariate in a study in

which persons are assigned at random to clusters and

clusters to treatments, with no independent cluster ef-

fects. Here pybc = px = 0; 9 = 1. Then

(19)

where F(l, 7n - 2) is distributed as F with 1 and Jn -

2 degrees of freedom, so that the variance of the treat-

ment effect over possible random samples of the co-

variate is

1 +
Jn-4

(20)

Case 3. Here, p^ = pybt with no other restrictions on

the parameters. The assumption that the covariate and

outcome have the same (or similar) intracluster cor-

relations is probably quite realistic in many settings.

Then, we have 6 = 1 so that

A
(21)

The ratio UI(V + Y) will not be distributed exactly as

F because, although U and Y are independent, neither

is independent of V, However, the Appendix provides

a very accurate approximation (to the order of J~5) of

the expectation of Equation 21, namely,

1

Jn-2

12
h 7n-2

(22)

It is easily shown that Equation 22 converges rapid-

ly to

(23)

This is the expression for the variance of the treatment

contrast that is used below in determining optimal

allocation.

Optimal Allocation

If one substitutes for T/(nC^ + C2) for J in Equation

23 and then minimizes with respect to n, one obtains,

to a close approximation (see the Appendix), n(opti-

mal) as the solution to

n(optimal) = —

(24)

where £j = CJT and k2 = CJT. Given the negligible

magnitude of kl and k2 as J increases, it is readily

apparent that the right-hand side of Equation 24 is

dominated by V^o^LyOt^y, which has the same

form as in Equation 9.

To illustrate, I use the same costs as before. How-

ever, computation of standard errors requires also that

I make assumptions about the magnitudes of the

within- and between-cluster variance components ad-

justed for the covariate. Such assumptions will typi-

cally be based on past research. In principle, the ad-

justed between-cluster variance, T2!̂  can be either

smaller or larger than the unadjusted between-cluster

variance, T2. This adjusted variance will be larger than

the unadjusted variance when the direction of the as-

sociation between the covariate and the outcome is

different at the two levels. At least in educational

research, however, experience shows that prior aca-

demic attainment and social background are posi-
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lively related to valued educational outcomes at both

levels. In fact, the relationship between such covari-

ates and the outcome tends to be considerably stron-

ger between clusters than within clusters. In Scotland,

prior academic achievement accounts for half the

variation in educational attainment within neighbor-

hoods and over 90% of the variation between neigh-

borhoods (Garner & Raudenbush, 1991). In U.S. high

schools, socioeconomic status explains only about 7%

of the variation within schools but over half the varia-

tion between schools (Bryk & Raudenbush, 1992,

chap. 4). Prior research can be vital in choosing co-

variates to maximize the benefits of the multilevel

covariance analysis.

Recently, Bloom (1995) has examined past find-

ings from a large-scale evaluation of adult basic edu-

cation programs to facilitate planning of a cluster ran-

domized trial. He found that the covariate, pretested

cognitive achievement, accounted for 73% of the

variation between clusters and 48% of the variation

within clusters in posttested educational achievement,

a finding that appears representative of prior research

using cognitive outcomes. Under the same assump-

tions regarding cost and the unconditional variances

as before, but assuming the covariate has the same

explanatory power as found by Bloom, one can com-

pute the optimal n, corresponding J, and the variance

of the treatment effect estimate. These are presented

in Table 3. Note that the optimal n is larger and the

corresponding J is smaller when the covariate is used

(Table 3) than when the covariate is not used (Table

2). This occurs because the explanatory power is

greater between clusters than within clusters, so that

the adjusted intracluster correlation is smaller than the

unadjusted intracluster correlation. Most important,

note the substantial reduction in the variance of the

treatment contrast when the covariate is used. As a

result, the analysis using the covariate significantly

increases the probability of detecting a non-zero treat-

ment effect.

Optimal Design

Figure 1 graphically illustrates the concept of op-

timal design. The figure plots the standard error of the

treatment contrast as a function of plausible values of

the costs and the variance components. (The standard

errors in the figure are based on Bloom's estimates of

the total unadjusted variance of 1579). For all plau-

sible values of cost and variance, the standard error

associated with the no-covariate analysis exceeds that

associated with the covariance analysis. Thus the co-

Table 3

Optimal Sample Sizes and Corresponding Sampling

Variances as a Function of the Intracluster Correlation

and Cost Based on an Analysis With a Covariate

Unconditional

intracluster

correlation (p)

.01

.01

.01

.05

.05

.05

.10

.10

.10

.20

.20

.20

.50

.50

.50

Cluster/

person

cost ratio

(C2)

2

10

50

2

10

50

2

10

50

2

10

50

2

10

50

n(optimal)

19

43

97

9

19

43

6

13

29

4

9

20

2

4

10

J

23

9

4

48

17

5

64

22

6

85

27

7

126

35

8

Var (7,)

.0050*

.0062*

.0094*

.0060*

.0091*

.0186*

.0067*

.0116*

.0274

.0076*

.0152*

.0422

.0085*

.0225*

.0784

Note. This table is constructed with Equations 23 and 24 on the
basis of prior research of Bloom (1995) showing that a prior mea-
sure of cognitive ability accounted for 73% of the between-cluster
variation and 48% of the within-cluster variation in an educational
achievement posttest. Appropriate assumptions about the explana-
tory power of the covariate at each level will be case specific. An
asterisk indicates a scenario that produces a sampling variance less
than 0.0225 as an indicator of the designs producing a modicum of
precision.

variance analysis is uniformly optimal. Of course, this

conclusion is based on the assumptions concerning

the explanatory power of the covariate at each level.

Relative Efficiency of the Two Designs

One defines the relative efficiency of two unbiased

estimators to be the ratio of the reciprocal of their

variances. Table 4 gives the relative efficiency of the

analysis without the covariate in comparison with the

analysis with the covariate (under Bloom's, 1995, es-

timates of variance components). In each case, the

variance is computed at n(optimal) and the corre-

sponding J.

Table 4 shows that the larger the unconditional in-

tracluster correlation and the more expensive it is to

sample clusters in relation to persons within clusters,

the greater the benefit of using the covariance analysis

as opposed to the analysis with no covariate. This will

generally be the case when the covariate more effec-

tively explains variation between clusters than within
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Figure 1. Standard error of treatment contrast: With (Top)
and without (Bottom) the covariate. This figure is con-
structed on the basis of prior research of Bloom (1995)
showing that a prior measure of cognitive ability accounted
for 73% of the between-cluster variation and 48% of the
within-cluster variation in an educational achievement post-
test. Appropriate assumptions about the explanatory power
of the covariate at each level will be case specific.

clusters as when using cognitive outcomes where
schools or neighborhoods are the clusters. In other
cases, of course, this relationship may not hold, and
the relative efficiencies will not have the pattern of
Table 4.

Use of an Aggregated or
Between-Cluster Covariate

Suppose that an analyst uses the aggregated out-
come and the aggregated covariate to estimate the
treatment effect as in Equation 17, Case 1. One sees
that the efficiency of the aggregated analysis relative
to that of the two-level analysis is

1
l+Jn-4 J-3

(25)

Table 4
Efficiency of the Design That Ignores the Covariate
Relative to That of the Design That Uses the Covariate in
Two-Level Analysis

Unconditional
intracluster
correlation (p)

.01

.01

.01

.05

.05

.05

.10

.10

.10

.20

.20

.20

.50

.50

.50

Cluster/
person

cost ratio
(C2)

2
10
50

2
10
50
2

10
50
2

10
50
2

10
50

Relative
efficiency

.481

.450

.405

.449

.404

.356

.430

.381

.337

.406

.358

.320

.364

.325

.301

Note. This table is constructed with Tables 2 and 3 on the basis of
prior research of Bloom (199S) showing that a prior measure of
cognitive ability accounted for 73% of the between-cluster varia-
tion and 48% of the within-cluster variation in an educational
achievement posltest. Appropriate assumptions about the explana-
tory power of the covariate at each level will be case specific.

revealing that, while the aggregated analysis can be
quite inefficient when J is very small, as is common in
community trials (Murray et al., 1994), it becomes
nearly efficient as J becomes large.

Contextual Effects Models

The model of Equation 1 1 is founded on the as-
sumption that only one parameter is needed to repre-
sent the relationship between the covariate and the
outcome. Researchers often find, however, that the
within-cluster and between-cluster relationships be-
tween the covariate and outcome can be quite differ-
ent (e.g., Willms, 1986). Then the needed model is

(26)

("Y2 + 13)

1 +
1 y-4'

J-4

Here -/2 is the within-cluster coefficient, -y3 is the
contextual coefficient, and y2

 + "fa is the between-
cluster coefficient. Clearly, if y$ is zero, the within-
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and between-cluster coefficients are equal, as is as-

sumed by the basic model (Equation 11). Now aver-

aging the outcome within clusters gives

Y-j = To + liSj + Cv2 + y3)M.j + Uj + e.f (27)

where the treatment effect will be adjusted for the

between-cluster coefficient, y2 + "fo- Thus, the aggre-

gated analysis (Equation 27) will give the same treat-

ment effect estimate as will the two-level contextual

effects model (Equation 26). Given relatively large

within-cluster sample sizes, this analysis will be more

efficient than the analysis based on Equation 11 when

1
R> j-y (28)

where R is the proportion reduction in between-cluster

variance associated with estimating y2 + "Ys rather

than just -y2. A more refined assessment of the benefit

of incorporating the contextual effect as a means of

improving estimation of the treatment effect is a use-

ful topic of further research.

Final Remarks

Although cluster randomized trials, like individual

randomized trials, provide unbiased estimates of pro-

gram impact, they are often regarded as weak in pre-

cision. The argument presented here is that careful

choice of covariates and sound planning combined

with efficient analyses that use all of the information

at each level can significantly increase the precision

of cluster randomization studies.

I have considered the simple case of a single per-

son-level covariate and have assumed that use of that

covariate would explain variation at both levels. It is

possible, of course, to use multiple person-level and

cluster-level covariates in the same analysis. The

number of person-level covariates that can be used is

constrained by nJ, while the number of cluster-level

covariates is constrained by J.

In many cases, within-cluster sample sizes are un-

der the control of the researcher. It is then useful to

determine the optimal within-cluster sample size

given plausible assumptions about costs and variance

components. In some cases, however, the research

setting will fix the within-cluster sample size n. For

example, when married couples or identical twins are

randomized to therapy, n = 2 by definition, and in

classroom research it may be logistically necessary to

include every member of each classroom in the study.

In these cases, of course, the optimal allocation for-

mulas presented here will be unnecessary, but the

standard error formulas will still apply with the fixed

n substituted for ra(optimal). When the fixed sample

sizes vary, substituting the harmonic n, nhamlonic =

JfLnj', will give a good approximation to the stan-

dard error. In either case, once within-cluster sample

sizes are determined, overall precision will depend on

the total number of clusters, which is constrained by

the resources available for the study. The overall pre-

cision may be substantially enhanced by the use of a

covariate.

I have also assumed that investigators will have

collected some covariate information at the person

level. It has become quite routine to collect at least

some demographic information. However, a decision

to collect effective covariates could significantly in-

crease the cost of data collection. Collecting covari-

ates at the person level would increase C1, while col-

lecting cluster-level covariates would increase C2.

Such costs will, of course, affect optimal allocation,

and one might well imagine a setting where aggregate

covariates would be comparatively cheap, increasing

the relative efficiency of the aggregated analysis of

covariance.

In many cases, only very rough estimates of cost

will be available. In this case, it would be wise to

compute n (optimal) across a range of plausible cost

assumptions and, in each case, to compute the rel-

evant J and standard error (as in Tables 2-3 and Fig-

ure 1). It will often be found that the optimal design

and standard error will be quite insensitive to varia-

tion in plausible assumptions about cost.

There are cases in which the optimal design will be

quite unbalanced. Suppose, as described earlier, that

the treatment increases social interactions within ex-

perimental clusters, creating a new source of depen-

dence within them. In this case, within-classroom

variance may be larger in the experimental classrooms

than in the control classrooms, implying the need for

larger sample sizes within experimental clusters than

within control clusters. Also described earlier was a

setting in which it is more costly to sample experi-

mental clusters than to sample control clusters, im-

plying an optimal design having more control clusters

than experimental clusters. While it is beyond the

scope of this article to consider more complex vari-

ance and cost functions leading to optimal designs

that are unbalanced, the basic approach outlined here

can and should be generalized to apply to these cir-

cumstances.

It is also important to extend the kind of analysis

used here to other designs. For example, one might

consider designs involving multiple pretests and fol-



STATISTICAL ANALYSIS 183

low-ups of persons nested within clusters assigned at

random to treatments. In these designs, measures of

change (e.g., growth rates or acceleration rates) be-

come the outcomes. Between-cluster variances may

be much smaller than for cross-sectional status mea-

sures, thus increasing the efficiency of the cluster ran-

domized trial in a setting where it is expensive to

sample large numbers of clusters. However, longitu-

dinal follow-up of persons may be expensive. A vari-

ant involves repeated cross-sectional samples from

the same clusters before and after implementation of

the treatment (Feldman & McKinlay, 1994; Murray et

al., 1994). The relevant error variation for assessing

program effects is the within-cluster variation over

time rather than the between-cluster variation, possi-

bly leading to gains in precision when sampling large

numbers of clusters is expensive.

Sound planning of cluster randomized trials re-

quires collection of data on variance components and

costs of sampling at each level. The levels may in-

volve variation between time points within persons,

variation between persons within clusters, variation in

cluster means over time, or variation between cluster

means cross-sectionally. The levels that are relevant

depend on the design options under consideration.

Next, the most efficient statistical analysis for each

given design option must be chosen. It is then possible

to estimate the optimal allocation of resources and

power for competing design alternatives in order to

make best use of the resources available for the study.
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Appendix

Approximations for Experimental Precision

The first aim is to derive Equation 12, the variance of the

treatment contrast under the two-level model of Equation

11. The model may be formulated in matrix notation as

Y =

where

x,.=

(Al)

Thus we have, for o^ T^ known,

Var (-?)=|

Algebraic simplification leads to

(A2)

nJd/4\]-
(A4)

where d = M.. E - M.. c. Of course, a^, T^X will not be

known; ML estimation of y requires substitution of ML

estimates of o-^w T^ in Equation A4. Computing Equation

A4 yields Equation 12 for the variance of the treatment

effect estimate.

The next aim is to derive the approximation of Equation

22. One begins with Equation 14, expressed as

Var (-?,IX) = Var «, It/, Y. V) = 1 +-,
V

(A5)

The distributional assumptions for U, Y, and V are given by

Equation 15. Now, taking the expectation of Equation A5

with respect to U gives

(A6)

Next, one takes the expectation of Equation A6 with respect

to Y, giving

4Avlt

(A7)

Finding an expression for the expectation in Equation A7 is

difficult, but the expectation can be approximated to any

degree required by expanding

(V6 + Y)-1 = D-1

in a Taylor series, giving to the fifth order

(A8)

(A9)
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where

£>„ = V6 + Y,o- = J-2. (A10)

The process must iterate one more time, taking the expec-

tation of Equation A10 with respect to the distribution of V:

(All)

Ev(Em-')] =

Again, the expectations in Equation Al 1 are not expressible

in simple form. However, expanding D^1 in a fifth-degree

Taylor series, substituting the resulting expression into

Equation All (ignoring all terms less than 0 (J~3)), and

taking the expectation gives

where

+ 2(V06
2 + K,,)*3, - 8(V09

3

\2[Va(V0 + 4)9" + 2V(,yo9
2

(Al 1A)

(A12)

where

e0 = (V06 +• y0), V0 = J(n - 1). (A13)

Setting 9 = 1 in Equation A12 gives Equation 22.

Finally, one considers minimization of the variance of the

treatment effect estimate based on covariance analysis

(Equation 23) subject to the cost constraint (Equation 6).

Direct minimization of Equation 23 after substituting Equa-

tion 7 for ] produces a quartic equation that defies simple

solution. However, if one approximates Equation 23 by

i + -
1

(A14)

and minimizes Equation A14, one obtains Equation 24, an

approximation that is accurate to O(J~A).
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