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ASSIGNMENT TO TREATMENT GROUP ON THE BASIS OF A COVARIATE 

Donald B. Rubin 

Educational Testing Service 

Key words: Non-Randomized Studies; Observational Studies; 
Covariance Adjustment; Causal Inference; Experimental Design; 
Treatment Assignment; Average Treatment Effects 

ABSTRACT 

When assignment to treatment group is made solely on 
the basis of the value of a covariate, X , effort should be 
concentrated on estimating the conditional expectations of 
the dependent variable Y given X in the treatment and 
control groups. One then averages the difference between 
these conditional expectations over the distribution of X 
in the relevant population. There is no need for concern 
about "other" sources of bias, e.g., unreliability of X , 
unmeasured background variables. If the conditional expecta
tions are parallel and linear, the proper regression adjust
ment is the simple covariance adjustment. However, since 
the quality of the resulting estimates may be sensitive to 
the adequacy of the underlying model, it is wise to search 
for nonparallelism and nonlinearity in these conditional 
expectations. Blocking on the values of X is also 
appropriate, although the quality of the resulting estimates 
may be sensitive to the coarseness of the blocking employed. 
In order for these techniques to be useful in practice, 
there must be either substantial overlap in the distribution 
of X in the treatment groups or strong prior information. 

1. INTRODUCTION 

In some studies, the experimental units are divided 
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into two treatment groups solely on the basis of a covariate, 
X . By this we mean that if two units have the same value 
of X either they both must receive the same treatment or 
they must be randomly assigned (not necessarily with proba
bility 0.5) to treatments. For example, those units 
(children) with high scores on X (a reading test) receive 
the experimental treatment (a compensatory reading program); 
those with low scores on X receive the standard control 
treatment; perhaps those with intermediate scores on X are 
randomly assigned with equal probability to the treatments. 
The critical point is that the probability that an experi
mental unit is exposed to Treatment 1 rather than Treatment 2 
is a function only of the values of X in the sample. After 
exposure to treatments, a dependent variable Y (a second 
reading test) is recorded in both treatment groups. 

The central question is: what is the average effect on 
Y of Treatment 1 vs. Treatment 2 for the relevant popula
tion? For simplicity of discussion, we will usually assume 
the relevant population is the one from which all the units 
being studied are considered a random sample, say P . The 
associated effect is called T . Some researchers might 
wonder whether to use gain scores, simple posttest scores, 
covariance adjusted scores (possibly adjusted for reliabil
ity), or some other device to estimate T . 

We will show that the appropriate estimate of T is 
the average value of the difference between the estimated 
conditional expectations of Y on X in the two treatment 
groups, the average being taken over all units in the study 
if the relevant population is P . The conditional expecta
tions (regressions) can be estimated using least squares, 
robust techniques, blocking, or matching methods. Neither 
gain scores nor scores adjusted for the reliability of X 
are generally appropriate (no matter how unreliable X may 
be). 

In the special case of parallel linear regressions of 
Y on X in the two groups and least squares estimation, 
the average difference between the estimated regressions in 
the two treatment groups corresponds to the simple covariance 
adjusted estimator. There are previous references to the 
appropriateness of the covariance adjusted estimator in ver
sions of this special case; see, for example, Cox (1951, 
1957), Finney (1957), Goldberger (1972a, 1972b), Greenberg 
(1953), Kenney (1975), Snedecor and Cochran (1967, pp. 438-
439). 
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However, the results presented here are general and em
phasize (1) recording the variable X used to make assign
ment decisions, (2) estimating the conditional expectations 
of Y given X in each treatment group, and (3) averaging 
the difference between the estimated conditional expectations 
over the estimated distribution of X in the relevant popula
tion. These three steps are essential in order to estimate 
causal effects of treatments in those studies which are not 
classical randomized designs. Bayesian analogues for these 
results are presented in Rubin (1977). 

In the following development we use unbiasedness as the 
criterion indicating the appropriateness of estimators. We 
do so only to show that the estimator tends to estimate the 
correct quantity without further adjustment. We do not mean 
to suggest that all biased estimators are unacceptable (a 
biased estimator with small mean squared error may of course 
be preferable to an unbiased estimator whose variance is large). 

2. DEFINING THE EFFECTS OF TREATMENTS: 
ASSUMPTIONS AND NOTATION 

The definition of the effect of Treatment 1 vs. Treat
ment 2 that we will use is standard in the sense that if the 
population P is essentially infinite, then the average 
treatment difference in very large randomized experiments on 
random samples from P will estimate the effect with 
negligible variance. However, we will explicitly present the 
assumptions in order to avoid ambiguity. The definition 
follows that given in Rubin (1974), the basic idea being that 
for each unit in P there is a value of Y that we could 
observe if the unit had been exposed to Treatment 1 and 
another value that we could observe if the unit had been 
exposed to Treatment 2; an important assumption is that these 
values of Y do not change as the other units in P receive 
different treatments. It is also assumed that the values of 
X are the same no matter which treatments the units received 
(i.e., X is a proper covariate). 

More precisely, first suppose that all units in P were 
exposed to Treatment 1; let u- be the resulting average 

value of Y for all units in P , and let y.. (x) be the 

resulting average value of Y for all those units in P 
with score x on variable X . Second, suppose that all 
units in P were exposed to Treatment 2; let \i? be the 

resulting average value of Y for all units in P , and let 
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u (x) be the resulting average value of Y for all those 

units in P with score x on variable X . Letting 

p [ . ] denote the average value of the quantity in 

brackets over the distribution of X in P , we have that 

ave r / N i 
yi = xeP [ y i ( x ) ] 

Assume that X is unaffected by the treatments so that 
a unit?s score on X will be the same no matter how treat
ments are assigned; this will be the case when X is 
recorded before treatments are assigned. Also assume "no 
'interference1 between different units" (Cox, 1958, p. 19) 
so that a unit's Y value given Treatment i is unaffected 
by which treatments the other units in P received. With
out this assumption, even if P were infinite, different 
infinitely large randomized experiments would estimate dif
ferent effects, in the sense that the variance of the average 
treatment difference over all such randomized experiments 
generally would not be negligible. There are weaker assump
tions under which one can estimate causal effects, but we do 
not consider them here. Note that the usual null hypothesis 
of no treatment effect assumes that Y given Treatment 1 
equals Y given Treatment 2 for all units and assignments 
of treatments, a very special form of no interference. 

Good experimental design often reflects the assumption 
of no interference between different units. For example, 
consider a time-consuming compensatory reading treatment. 
First, suppose each student is a unit with the compensatory 
and regular reading treatments assigned to different students 
in the same classroom. In this case the no interference 
assumption may be suspect because of social interactions 
among the students and competition for the teacher's time 
(the effect of the compensatory reading treatment on a stu
dent being different when only a few students receive the 
compensatory reading treatment than when all the students in 
the class receive the compensatory reading treatment). Now 
suppose instead classrooms in different schools were the 
units, and each classroom was assigned either to the regular 
or compensatory treatment condition (perhaps all students in 
a classroom receiving the compensatory reading instruction, 
or a randomly chosen group of ten, or only those in need— 
these reflect three different compensatory reading treat
ments being applied to the classroom). With the choice of 
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classrooms as units, the no interference assumption seems 
quite plausible. 

We are now ready to define the average causal effect of 
Treatment 1 vs. Treatment 2. Consider a unit randomly drawn 
from P and then exposed to Treatment i (i.e., each unit 
in P was equally likely to be chosen). Because of the 
assumption of no interference between units, the average 
value of Y for such a unit (i.e., averaging over all 
random draws of one unit from P ) is y. , no matter what 

treatments the other units in P received. Hence 
x = vu - vu is called the average or expected effect of 

Treatment 1 vs. Treatment 2 on Y in the population P . 

Now consider a unit randomly chosen from those units in 
P with X = x and then exposed to Treatment i (i.e., each 
unit in P with X = x was equally likely to be chosen). 
Because of the assumption of no interference between units, 
the average value of Y for such a unit exposed to Treat
ment i (i.e., averaging over all random draws of one unit 
from P with X = x ) is y.(x) no matter what treatments 

the other units in P received. Hence y- (x) - y~(x) is 

called the effect of Treatment 1 vs.Treatment 2 on Y at 
X = x in P . (See Figure 1.) If y-, (x) - y«(x) is 

constant for all x , y-, (x) and y^(x) are called parallel, 

and the effect of Treatment 1 vs. Treatment 2 is the same for 
each value of X . Generally, however, the relative effect 
of the treatments will depend on the value of X . 

The y.(x) are called the conditional expectations of 

Y given X and treatment condition, or the "response func
tions of Y given X " or the "regressions of Y on X ." 
Often the y.(x) are assumed to be linear in x , but this 

restriction is not needed for the general results presented 
here. 

It follows from the above definitions that the average 

effect of Treatment 1 vs. Treatment 2 on Y in P , 

x = y1 - y2 , is y-ĵ (x) - y2(x) averaged over the distribu

tion of X in P : 

T = xeP [yl(x) " V x ) ] • (1) 
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FIG. 1 

The Treatment Effect in Population P : 

T = x S [ P1 ( X ) " P 2 ( x ) ] 

3. PRELIMINARY RESULTS 

Throughout the rest of the paper we will assume the 
following sampling situation. A random sample of size 
n.. + n« from P is divided into two groups of sizes n.. 

and n~ solely on the basis of the values of _X and per
haps some randomization. That is, the assignment decisions 
are such that either all sampled units with the same value 
of X are in the same treatment group or are randomly-
divided (not necessarily with equal probability) into the two 
treatment groups. The first group is exposed to Treatment 1 
and the second group is exposed to Treatment 2. Let 
Xii* yii i = !>2 > j = l,...,n. be the values of X and 
Y in the two samples. 

6 Rubin 

This simple relationship is exploited to estimate T in non
randomized studies. In Figure 1, x is calculated by taking 
the vertical difference between the y (x) and U?(x) 

curves at each x , and finding the average value of this 
difference weighted by the distribution of X in P . 
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Since the x.. are a random sample from P , Result 1 

is immediate from equation (1). 

Result 1: The quantity 

2 ni 
X £ Z 

nl + n2 i=l j=l 

is unbiased for T . 

I^Cx..) - u2(x..) (2) 

Notice that the notation u (x..) and vuCx..) i n 

expression (2) means that the functions u (x) and u~(x) 

are to be evaluated at the observed values x.. , and that 

by the phrase "unbiased for T " we mean that the average 
value of expression (2) over all random samples of size 
n.. + n~ from P is T . 

If we had conditionally unbiased estimates of the 

values P1(xi.) and ^2 ̂ x±i ̂  ' ± = 1* 2 ' ^ = 1'---»ni > 

we could substitute them into expression (2) to obtain an 

unbiased estimate of T . By conditionally unbiased we mean 

unbiased given the values x.. that occur in the sample 

(i.e., averaging over all random draws from P that yield 
the same values for the x.. as observed in our sample). 

Only the values of x.. in the sample and the conditional 

expectations of Y given X under the two treatments are 
needed in order to obtain an unbiased estimate of T . No 
matter how "unreliable" X is, no reliability correction is 
relevant; nor does it matter what functional forms u-(x) 

and u2(x) take. 

Result 2 is the key to obtaining unbiased estimators of 
T since it gives us conditionally unbiased estimates of some 
ŷ  (x) and vu(x) values. 

Result 2: The value y is a conditionally unbiased 

estimate of ^TCX-L-;) J = l>--.,n- , and the value y?. is 

a conditionally unbiased estimate of \i2(x ) j = l,...,n9 . 

In order to prove Result 2, first note that sampled 
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units with X = x were randomly sampled from those units in 
P with X = x . Next note that since assignment was on the 
basis of X , sampled units with X = x are either (a) al
ways assigned the same treatment or (b) randomly assigned 
treatments (not necessarily with probability 0.5 of receiving 
each treatment). In either case, sampled units with X = x 
who were assigned Treatment i were randomly chosen from 
those units in P with X = x . Now by the definition of 
y.(x) and the assumption of no interference between units, 

the average value of Y for a unit randomly drawn from 
those units in P with X = x and then assigned Treatment 
i is y.(x) no matter what the other sampled values of X 

or the other treatment assignments. Therefore, y.. (the 

observed values of Y for a sampled unit with X = x.. 

given exposure to Treatment i ) is a conditionally unbiased 
estimate of y.(x..) . 

Note the crucial role in this proof of assignment on 
the basis of X . If assignment depended on some variable 
Z other than X , sampled units with X = x who were as
signed to Treatment i were not randomly sampled from those 
units in P with X = x , but rather from those units in P 
with (a) X = x and (b) Z satisfying the conditions that 
determined the assignment to Treatment i . 

By Result 2, we have conditionally unbiased estimates 
of points on the Treatment 1-part of y (x) (i.e., y (x.. .) 

j = l,...,n ) and points on the Treatment 2-part of y~(x) 

(i.e., vu(xp.) j = l,...,n?) . However, we still lack 

conditionally unbiased estimates of points on the Treatment 
2-part of l-u(x) (i.e., y..(x2.) j = l,...,n2) and points 

on the Treatment 1-part of vu(x) (i.e., vu(x...) 

j = l,...,n-) . And we need these estimates in order to use 

Result 1 to obtain an unbiased estimate of T . 

We will discuss two general methods for obtaining condi
tionally unbiased estimates of these quantities: (a) fitting 
a model to the data to obtain estimates of the functions 
y, (x) and y~(x), and (b) grouping Treatment 1 and Treat
ment 2 units with similar values of X to obtain estimates 
of the difference y-(x) - y?(x) at particular X values 

that are representative of the distribution of X in P . 
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4. ESTIMATING y-(x..) AND y0(x..) BY MODEL FITTING 

One method for estimating the values of y (x?.) and 

y«(x1 .) is via a model for the functions y-, (x) and y2(x) . 

This is most appropriate when X takes on many values (e.g., 
age, height). Obviously the accuracy of the resulting esti
mates will be somewhat dependent on the accuracy of the model 
chosen. 

The modelling of y-, (x) and y2(x) will be illustrated 

in the simple case when we assume both are linear in x . 
The usual least squares estimates are: 

y-^x) = yx + B1(x - xx) , and (3) 

y2(x) = y2 + 32(x - x2) , (4) 

where 

n. 
l _ _ 

£ (y• • -y.) (x.. -x.) 
6 1-1 13 X 13 X . 1 = 1 . 2 . (5) 
i n. 

£ (x.. - x.) z 

j=l 1J x 

Result 3: If both y..(x) and y2(x) are of the form 

y.(x) = a + 3.x , the estimator 

- - - - n1^2 + n2^1 
yx - y2 - (xx - x2) + (6) 

is unbiased for x . 

In order to prove Result 3, first note that expression 
(6) equals 

2 ni 

(7) 
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where y..(x..) , y~(x..), and 3. are given by equations 

(3),^(4), and (5). By Result 2, the conditional expectation 
of y.(x) is y.(x) : (a) the conditional expectation of 

y. is a. + 3."x. , and (b) the conditional expectation of 

n. n. 
1 * _ 2 

3. is E (y.(x..) - y.(x..)) (x.. - x.)/ Z (x.. - x.) = 
l . , I ii I ii ii I . - ii l 

3. . Consequently, y-(x..) - y«(x..) is a conditionally 

unbiased estimate of y-(x..) - y0(x..) (for j = l,...,n. ; 
1 IJ 2 IJ

 J l 
i = 1,2) . Thus by Result 1, expression (7) (and thus (6)) 
is unbiased for x . 

Result 4: If y-(x) and y?(x) are both linear in x and 

parallel, then the simple analysis of covariance estimator 

~y1 - y2 - (*! - x2) 3 (8) 

2 ni 
£ £ (y.. - y.)(x.. - x.) 

- i=l i=l 1J X 1J X 

where 3 = 

2 " 
^ Z (x.. - x.) Z 

i=l j=l 1J X 

is unbiased for T . 

The proof of Result 4 is essentially the same as the 
proof of Result 3 with the change that now 3-, = 3? = 3 and 

both 3 and 3~ are replaced by 3 which is a condition

ally unbiased estimate of 3 • 

Results analogous to Results 3 and 4 follow when y-(x) 

and y?(x) are polynomial in x or any linear combination 

of specified functions of x (e.g., e ). The only change 
is in the method of estimating the parameters, i.e., by a 
multiple least squares regression. Methods more robust than 
least squares (c.f., Beaton & Tukey, 1974) might be appropri
ate for estimating the conditional expectations y (x) and 
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y9(x) , especially when there is the possibility of outliers 

or long-tailed distributions. 

Of course we never know whether the functions y-(x) 

and y?(x) are linear in x (or linear in some specified 

functions of x ). But the unbiasedness of the estimators 
given by (6) and (8) is dependent upon the accuracy of the 
linear model. There is evidence (Rubin, 1973b) that in some 
cases the linear approximation is adequate to remove most of 
the bias present in the simple estimator y - y~ but that 

in other cases it is inadequate even when y (x) and y9(x) 

are smooth monotone functions. The troublesome cases are 
basically those having quite different variances of X in 
the treatment groups. 

If the observed values of X in the treatment groups 
are similar, it may be possible to check that both y (x) 

and y«(x) are reasonable approximations to y (x) and 

y?(x) for the full range of observed values of X . This 

checking is important because we must average jL (x) - y9(x) 

over the full range of observed X values, and therefore 
must have confidence in both models for most of the values of 
X that occur in the sample. 

If the X values in the two samples do not overlap 
(e.g., as in the regression discontinuity design, Campbell 
and Stanley, 1963, pp. 61-64) it is impossible to check the 
accuracy of either y (x) or y?(x) for the full range of 

observed X values, and we must rely on our a_ priori assump
tions. Consequently, in order for the model-fitting efforts 
described above to be useful in practice, we must either have 
samples that overlap or strong a_ priori information about the 
functional forms of the y.(x) . 

5. ESTIMATING y..(x..) AND y?(x..) BY BLOCKING ON X 

When the assignment to treatment group allows the distri
bution of X in the two treatment groups to overlap substan
tially, it may be possible to obtain conditionally unbiased 
estimates of y1(x2») and y2(x-. .) without fitting a model. 

The obvious but crucial point is that if x,. = x0. , then 
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y . . . is conditionally unbiased for y-.(x?.) = VL (x, .) and 

y9. is conditionally unbiased for y?(x-| •)
 = U~(x~.) . 

Suppose that in the samples there are only K distinct 
values of X , say x..,...,x„ , where n... Treatment 1 units 

and n?, Treatment 2 units have X values equal to x, , 

k = 1,...,K . Let y-, be the average Y value for the 

n-. Treatment 1 units whose X value equals x, ; similarly 

let y? be the average Y value for the n«. Treatment 2 

units whose X value equals x, . If n., = 0 for some i 

and k , then the corresponding y is not defined. 

Result 5: If n , > 0 and n > 0 for all k = 1,...,K , 

then the estimator 

n + n2 

k=l 

(nlk + n2k)(ylk " y2k> 

n1 + n-
n,y, - n„y 
\J\ 2-x2 n2k ylk 

k=l 

"ik^k 

k=l 

(9) 

is unbiased for T 

Result 5 follows because by Result 2 y_,n is an 
J •'Ik 

unbiased estimate of y (x, ) , y"?, is an unbiased estimate of 

y.(x, ) , and so 3^-1^- "Yn\, ^s a n unbiased estimate of 

y.. (x, ) - y«(x,) , k = 1,...,K . That is, the difference 

between the Y mean for those Treatment 1 units whose X 
value is x, and the Y mean for those Treatment 2 units 

k 
whose X value is x. is an unbiased estimate of the Treat-

k 
ment 1 vs. Treatment 2 effect at x, . Hence, from Result 1 
we have Result 5. 

The advantage of the estimator given by (9) is that it 
does not depend on the accuracy of some underlying model for 
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its unbiasedness. The disadvantage of the estimator is that 
if X takes on many values, some n., may be zero and then 

the estimator is not defined; this occurrence is not unusual 
in practice. 

A common practical method used when some n., = 0 is to 

aggregate values of the original X variable to define a new 
variable X* for which all n.. > 0 . However, since the 

lk ' 
assignment process was on the basis of X (not X* ), the 
estimator given by (9) based on X* is no longer necessarily 
unbiased for x . If X* takes on many values, the bias 
might be small. For a similar situation, Cochran (1968) 
concluded that in many cases blocking on an aggregated ver
sion of X with as few as 5 or 6 values was adequate to 
remove over 90% of the bias present in the simple estimator 
yx - 7 2 • 

Of particular interest is the case in which X* is 
chosen with minimum aggregation (i.e., K is maximized sub
ject to the constraint that each n.. > 0 ). It would be of 

lk 
practical importance to investigate the bias of the estimate 
(9) based on this X* under (a) various underlying distribu
tions of X in P , (b) different assignment processes 
based on X , and (c) several response functions y-(x) and 

Another method for handling cases in which some n., = 

0 is to discard units. Result 6 is immediate from Result 1. 

Result 6: If y-,(x) and y2(x) are parallel, then 

(10) 

K K 

£ 6k(ylk " ̂ 2k} ' L 6k 
k=l k=l 

where 6, 
k 

J 0 if nlkx n2k = 0 

otherwise 

is unbiased for x . 
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Since y,(x) and y~(x) are parallel, there are many 

other choices of 6, in (10) that will yield unbiased esti

mates of T but they generally yield different precisions. 

The choice of optimal 6, depends on conditions we have not 

discussed, those in (10) being optimal when the conditional 
variance of Y given X is constant. For further discus
sion, see for example, Kalton (1968) or Maxwell and Jones 
(1976). 

Notice that the estimator given by (10) essentially 
discards those units whose X values are not the same as 
the X value of some unit who was exposed to the other 
treatment. This procedure, known as matching on the values 
of X , makes a lot of sense in some cases. Suppose X has 
been recorded and there is an additional cost in recording 
Y even though the treatments have already been given to all 
of the units. For example, the regular and compensatory 
reading programs have been given, background variables have 
been recorded, but there is an additional expense in giving 
and recording a battery of detailed posttests to each stu
dent. In these situations it is appropriate to ask how to 
choose the units on which to record Y . However, it may not 
be appropriate to assume the regressions are parallel, so 
that the estimator given by (10) may not be useful for esti
mating T . Matching is more applicable when a subpopula-
tion of P is of primary interest, that is, when the param
eter of primary interest is the average treatment effect in 
a subpopulation. 

6. GENERALIZING TO A SUBPOPULATION OF _P DEFINED BY X 

At times, the relevant population will not be P , but 
rather a subpopulation of P , say P defined by values of 

the covariate X (perhaps supplemented by some randomiza
tion) . For example, the units exposed to Treatment 1 may be 
considered to be a random sample from the relevant popula
tion, perhaps those in need of extra treatment because of low 
values of X . 

In such cases, all the results presented here generalize 

to estimating T = [y-,(x) - ^ o ^ ] * T h e cluantity T 

is the treatment effect in the population P because 
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y, (x) - y9(x) is the treatment effect in P at X = x as ± z x 
well as in P at X = x . That is, the conditional expecta
tion of Y given (a) Treatment i , (b) X = x , and 
(c) X satisfies some criterion that defines membership in 
P is simply the conditional expectation of Y given 

(a) Treatment i and (b) X = x , which is defined to be 
y±(x) . 

Hence, Result 1 generalizes to estimating T if the 

average over all X values in the sample is replaced by the 
average over X values that are representative of P 

Result 2 is true as stated for P , In Result 3, the corre-
x 

sponding estimator of T is now given by expression (7) 
with the averaging over all units replaced by averaging over 
units representative of P . For example, if the units 

exposed to Treatment 1 are considered a random sample from 
P , this averaging of expression (7) leads to 

(y-L - y2) - (XJL - x2) 32 (ii) 

as the unbiased estimator of T . This estimator given by 
x 

expression (11) is discussed in some detail by Belsen (1956) 
and Cochran (1970). 

If y-(x) and y2(x) are parallel, T = T SO that 

Result 4 as well as Result 6 apply for obtaining unbiased 
estimates of the treatment effect for any subpopulation P 

The extension of Result 5 to the subpopulation P is 

somewhat more interesting, although equally straightforward. 
For example, again suppose the units exposed to Treatment 1 
are a random sample from P ; then if n«, > 0 whenever 

n1Lr > 0 , the estimator 

1 

Ik 
K _ _ 

E nlk (^lk " y2k} <12> 
nl k=l 

is unbiased for T . This estimator discards those units 

exposed to Treatment 2 whose X values are not found among 
the units exposed to Treatment 1. Finding for each unit 
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exposed to Treatment 1 a unit exposed to Treatment 2 with the 
same X value and forming the estimate (12) has been called 
matched sampling (Rubin, 1973a). As discussed at the end of 
Section 5, estimators that discard data are most appropriate 
when one must decide for which units the value of Y should 
be recorded. 

7. A SIMPLE EXAMPLE 

Table I presents the raw data from an evaluation of a 
computer-aided program designed to teach mathematics to 
children in fourth grade. There were 25 children in Program 
1 (the computer-aided program) and 47 children in Program 2 
(the regular program). All children took a Pretest and Post-
test, each test consisting of 20 problems, a child's score 
being the number of problems correctly solved. These data 
will be used to illustrate the estimation methods discussed 
in Sections 4, 5, and 6. We do not attempt a complete sta
tistical analysis nor do we question the assumption of no 
interference between units. 

Raw Data for 25 Program 1 Children and 47 Program 2 Children 

Pretest 
Scores 

Posttest 
Program 1 

S( zores 
Program 2 

10 
9 
8 

15 
16 
12 

6,7 
7,11,12 
5,6,9,12 

7 
6 
5 

8,11,12 
9,10,11,13,20 

5,6,7,16 
5, ,5 >6, ,6,6 

6,6,6,6,7,8 
,6,6,6,6,8,8,8,9,10 
3,5,5,6,6,7,8 

4 
3 
2 

5,6,6,12 
4,7,8,9,12 

4 

4,4,4,5,7,11 
0,5,7 
4 

1 
0 

-
7 

7.1 Assignment on the Basis of Pretest 

Suppose first that assignment to Program 1 or Program 2 
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was on the basis of Pretest, so that children with the same 
Pretest score were randomly assigned to programs with the 
probability of assignment to Program 1 increasing with lower 
Pretest scores. Hence, Pretest is the covariate X in the 
discussion of the previous sections. Posttest is the depen
dent variable Y . Figure 2 plots Posttest on Pretest for 
the treatment groups. Notice that although the Program 1 
children scored somewhat lower on the Pretest than the Pro
gram 2 children (the Pretest means being 5.24 and 5.85 
respectively) the Program 1 children scored higher on the 
Posttest than the Program 2 children (the Posttest means 
being 9.76 and 6.53 respectively). Consequently, we expect 
estimates of x to be positive. Furthermore, notice that 
the distributions of X in the groups overlap substantially; 
hence, the methods described in the previous sections are 
appropriate for estimating treatment effects. 

First consider estimating x without assuming y 1(x) 

and i-u(x) a r e parallel. Using the least squares model-

fitting methods described in Section 4, we fit separate 

linear conditional expectations in the two groups and obtain 

3.. = 1.22 and $? = 0.46 ; from equation (6), the estimate 

of x is 3.81. Fitting a quadratic conditional expecta
tion in each group by least squares 

y±(x) = y± + (x - x±) y1± + (*
2 - x*) Y 2 i , i=l,2, (13) 

~~2 ""2 
we have that x.. = 31.40 , x = 38.28 , Y n = 1.40 , 

Y 1 2 = °-
0 6 > T 2 1 = -0.02 , and Y 2 2 = 0.04 ; since the 

average difference between y (x) and U?(x) over the 

values of X that occur in the sample is 

(yi-y2) - (Xl-x2) n i + n o -(x rx 2) (14) 

the resulting estimate of x under the quadratic model is 
3.81. The blocking methods of Section 5 may also be used to 
estimate x . After pooling the one child who scored "0" on 
the Pretest with the two children that scored "2" on the Pre
test, we use equation (9) and obtain 3.98 for the estimate 
of x . 
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Now, as discussed in Section 6, let us estimate the 
treatment effect for the population P , where the Program 1 

children are considered a random sample from P . Assuming 

y9(x) is linear in x and using least squares estimation, 

equation (11) is appropriate and yields 3.51 for the estimate 
of T . Using a quadratic model for y2(x)

 a n d l e a s t 

squares estimation, the appropriate estimate of x is given 

by _ _ 

— — — — 2 2 ~ 
(y-L - y2) - (X-L - x2^

 Y12 " ^Xl " X2^ Y22 ^15^ 

which equals 3.54 for our data. And using the matching 
estimate given by (12) (discarding the data from the Program 
2 child who scored "0" on the Pretest), we obtain 3.84 for 
the estimate of x 

x 

Finally, suppose that we assume U-, (x) and U~(x) are 

parallel. Least squares estimation of the linear model gives 

3 = 0.7180, and thus from equation (8), 3.67 for the estimate 
of x = x . Using least squares to estimate a parallel 

quadratic fit, 

y±(x) = y± + (x - xi) y± + (x
2 - xj) y2 , i = 1,2, (16) 

we find y = 0.3855 and y« = 0.0293; since x is estimated 

under this quadratic model by 

^ 2 2 
(y1 - y2) - (xi - x2) Y 1 - (X-L - *2) Y 2 » (17) 

we obtain 3.66 for the estimate of x = x . The blocking 

estimate of x = x found by substituting into equation (10) 

is 3.97. 

The nine estimates presented for this example are sum
marized in Table II. The pattern of values for these esti
mates suggests that y..(x) and y2(x) may not be parallel, 

since the effect of Program 1 vs. Program 2 appears smaller 
for the lower values of X that occur more frequently in 
the Program 1 group. The implication is that the children 
who scored higher on the Pretest tended to profit more from 
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Program 1. However, the estimates displayed in Table II 
exhibit little variability, ranging between 3.5 and 4.0. 

TABLE II 

Estimates of Treatment Effect for Data in Table I 
(Relevant Expression Numbers in Parentheses) 

The unit with Pretest score of "0" is blocked 
with those units with Pretest score "2." 

Of course in practice, one should be concerned not only 
with the variability of the estimated treatment effects 
across different models, but also with the variability of the 
estimated treatment effect given a particular model (i.e., 
the standard error of the estimate under the model). For 
details on calculating standard errors of estimators like 
these under the normal error model see, for example, 
Snedecor and Cochran (1967, pp. 268-270, 423). 

Method of Estimation 
Parameter 
Being 

Model--fitting Blocking 

Estimated Linear Quadratic 

(6) (14) (9) 

T 3.81 3.81 3.98a 

x with 
X (ID (15) (12) 

Program 1 
units a 
random 

3.51 3.54 3.84 

sample 
from P 

X 
T = T 

X (8) (17) (10) 
assuming 
VU (x) and 3.67 3.67 3.97 
U2(x) 

parallel 
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7.2 Assignment Not on the Basis of Pretest 

Suppose now that instead of assignment to treatment 
group on the basis of Pretest, all Program 1 children came 
from one school and all Program 2 children came from a dif
ferent school. That is, suppose that School 1 children had 
been assigned to Program 1 and School 2 children had been 
assigned to Program 2. The same plot of Posttest on Pretest 
as given in Figure 2 would be observed, but the estimates 
given above would not be unbiased for the effect of Program 
1 vs. Program 2 because the covariate that was used to 
assign treatments was not Pretest but School. Now School 
must be included as a covariate in order to apply the 
results of this paper. However, the plot of Y vs. School 
looks like Figure 3: each treatment group has only one 
value of the covariate X . We now cannot estimate the 
response functions y-(x) or y?(x) using the methods 

discussed in Sections 4, 5, 6 because there is no range of 
X values in each group. Nor can we block Program 1 and 
Program 2 children with similar values of X , because there 
are no such children. 

 at NORTHWESTERN UNIV LIBRARY on June 16, 2014http://jebs.aera.netDownloaded from 

http://jebs.aera.net


22 Rubin 

Thus, if assignment to treatment group is on the basis 
of School, the methods we have presented cannot be directly 
applied because there is no overlap in the distribution of 
the covariate School in the two treatment groups. Using the 
estimates presented in Section 7.1 with Pretest as the covar
iate makes the implicit assumption that in each treatment 
group, the expected value of Y given Pretest and School is 
the same as the expected value of Y given just Pretest. 
Whether this assumption is reasonable depends, for instance, 
on how children were assigned to schools. 

This simple example brings out two critical points 
relevant to all nonrandomized studies. First, knowledge of 
the assignment process is critical to drawing inferences 
about the effect of the treatments; one cannot simply look 
at the plot of Posttest on Pretest and properly estimate 
treatment effects. Second, even when the assignment mechan
ism is fully understood, the most defensible analysis of the 
data requires the distribution of the covariate to overlap 
in the two groups; without overlap, the analysis relies on 
assumptions that cannot be checked using the data at hand. 

An example similar to this one is discussed by Lord 
(1967), but is used to emphasize the benefits of randomiza
tion. 

8. DISCUSSION OF NEEDED INVESTIGATIONS 

In this paper we have stated the fact that if assignment 
to treatment group is on the basis of the value of a covari
ate, X , one must concentrate effort on the essential prob
lem of estimating the conditional expectation of Y given 
X in each treatment group. One then averages the differ
ence between these conditional expectations over the values 
of X that are representative of the population of interest. 

Two general methods for estimating these expectations 
were discussed: model fitting and blocking on the values of 
X . Little relevant work has been done on how well these 
techniques are likely to do in practice, either alone or in 
combination. A relevant simulation would include several 
careful choices of: 

(a) the sample size, n + n~ 

(b) the distribution of X in P 
(c) the assignment mechanism 
(d) the functional forms for the conditional expecta

tions, y1(x) and y9(x) . 
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One would then find the distribution of estimates resulting 
from using the model fitting and blocking methods discussed 
here. 

The case of multivariate X is of real interest 
because in natural settings we may not know the assignment 
mechanism but may feel that it can be described reasonably 
well by a particular collection of variables that are 
recorded. For example, teachers deciding which students 
should receive compensatory reading treatments presumably 
use personal assessments of students in addition to back
ground characteristics of the children and test scores (not 
"true scores"), but the assignment mechanism might be ade
quately approximated by some function of the recorded back
ground variables and tests, personal assessments hopefully 
being largely determined by the recorded variables. 

All the results presented here for univariate X gener
alize immediately (conceptually at least) to multivariate X 
(e.g., B is now a vector of regression coefficients). 
Some work on multivariate matching methods is given in 
Althauser and Rubin (1970), Cochran and Rubin (1973) and 
Rubin (1976a, 1976b), but has received little attention 
otherwise. 

Certainly a serious effort on both the univariate case 
and the multivariate case is worthwhile, not only in order to 
improve the analysis of existing nonrandomized studies but 
also in order to study the possibility of finding designs 
that are tolerable given social constraints, not randomized 
in the usual sense, but still allow useful inferences for 
the effects of treatments. 
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