SMOKING IN PREGNANCY & CHILD BEHAVIOR PROBLEMS: WHO IS AT RISK?

Lauren S. Wakschlag, PhD

Department of Medical Social Sciences & IPR Faculty Fellow Northwestern University
• WHAT DO WE KNOW?
Scientific evidence base for long-term behavioral “effects” of prenatal smoking

• WHO IS MOST VULNERABLE?
Risk processes that amplify prenatal exposure effects

• WHAT SHOULD WE DO?
Implications for policy and practice
BEYOND LOW BIRTHWEIGHT: PRENATAL SMOKING & ASSOCIATED BEHAVIORAL OUTCOMES ACROSS THE LIFESPAN

Developmental spectrum of conduct problems

Infancy: Irritable Temperament

Preschool-School Age: Oppositional Behavior & Aggression

Adolescence: Delinquency & Conduct Disorder

Adulthood: Violence & Criminal Offending
50% quit spontaneously when pregnant
U.S. average = 13% of pregnant women smoke prenatally (~500,000 births per year)
Down from 10 years ago, but far from the Healthy People 2010 1% goal

(PRAMS, CDC, 2007)
Prenatal smoking is not an isolated health risk behavior

Maternal Interpersonal Problems

Maternal Problems in Daily Functioning

Pickett, Wakschlag et al., 2009
WEIGHT OF THE EVIDENCE

- Consistent evidence from more than two dozen independent, cross-national studies\(^a\)
 - Prenatal smoking associated with 1.5-4x the risk of conduct problems across the lifespan
 - \(\frac{1}{2}\) pk/day or more
 - Association remains with statistical control for alternative explanations

- But is it causal?
 - Beyond statistical control:
 - Behavior genetic designs do not support direct effect\(^b\)
 - Jury still out on exposure as:
 - Risk marker vs. causal risk factor

\(^a\)Wakschlag et al., 2002; \(^b\)D’Onofrio et al., 2009
Modeling the Proportion of Perinatal & Behavioral Outcomes Attributable to Prenatal Smoking

<table>
<thead>
<tr>
<th></th>
<th>Estimated Prevalence</th>
<th>Percent of cases attributable to prenatal smoking</th>
<th>Social, Health & Economic Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perinatal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low birth weight<sup>a</sup></td>
<td>295,000</td>
<td>11-21% (32,000-61,000)</td>
<td>NICU, medical care expenditures, illness, quality of life, early intervention, special education, caregiver burden</td>
</tr>
<tr>
<td>Birth complications<sup>b</sup></td>
<td>975,000</td>
<td>11-15% (107,250-146,250)</td>
<td></td>
</tr>
<tr>
<td>Sudden infant death syndrome (SIDS)<sup>c</sup></td>
<td>5,417</td>
<td>22-41% (1,178-2,203)</td>
<td></td>
</tr>
<tr>
<td>Behavioral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conduct Disorder<sup>d</sup></td>
<td>4,219,215</td>
<td>16-27% (675,075-1,139,188)</td>
<td>Direct: mental health services, public safety and welfare, adjudication, incarceration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Long-term: high school drop-out, smoking and substance abuse, teenage pregnancy, lower labor force participation, domestic violence, crime rate</td>
</tr>
</tbody>
</table>

^aDiFranza & Lew, 1995; ^bCDC, 1997; ^dWakschlag et al, 2000
HOW STUDIES OF MECHANISMS & DEVELOPMENTAL PATTERNS CAN INFORM POLICY

- Precision of exposure measurementa
 - Prospective
 - Longitudinal
 - Bioassays

- Theory-driven hypothesis testingb
 - Honing in on modifiable risk processes
 - Developmental unfolding (vulnerability rather than destiny)

aDukic, Wakschlag, et al 2007, Pickett, Wakschlag, et al., 2008, bWakschlag et al., 2006
BEYOND LOW BIRTHWEIGHT: PRENATAL SMOKING & ASSOCIATED BEHAVIORAL OUTCOMES ACROSS THE LIFESPAN

Infancy: Irritable Temperament
(OR=1.3a)

Preschool-School age:
Oppositional Behavior Aggression
(Preschool OR=7.3b; School age OR=2.6b)

Adolescence: Delinquency & Conduct Disorder
(OR=2.1-3.3cd)

Adulthood: Violence & Criminal Offending
(OR=1.5e)

aPickett, Wakschlag et al., 2008; bWakschlag et al., 2006; cRasaren et al., 1999; dWakschlag et al., 1997; eBrennan et al., 1999
EXPOSURE-RELATED BEHAVIOR PROBLEMS EVIDENT BY AGE TWO

Interaction of Time & Exposure $F=5.1$, $p<.008$

Mean ITSEA Externalizing T Scores

- **NONEXPOSED**
- **EXPOSED**

- 12 Months
- 18 Months
- 24 Months

Age in Months

Family Health & Development Project: Wakschlag et al., 2006
WHAT REDUCES RISK?
RESPONSIVE PARENTING AS PROTECTIVE BUFFER

- Responsive parenting
 - Parental regulating function
 - Developmentally optimal parenting
 - Parental capacity to flexibly shift based on child behavior
 - Particularly critical if exposure-related behavioral vulnerabilities impede child self-regulation of behavior and emotions

Wakschlag & Hans, 1999
RISK BUFFER: EARLY MATERNAL RESPONSIVENESS

Interaction of Exposure & Responsiveness, p<.01

School Age Conduct Symptoms Count

<table>
<thead>
<tr>
<th>School Age</th>
<th>Conduct</th>
<th>Symptoms</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observed Maternal Responsiveness During Infancy

Wakschlag & Hans, 2002
RISK BUFFER: PATERNAL RESPONSIVENESS DURING ADOLESCENCE

Interaction of Exposure & Responsiveness, p<.003

Adolescent Conduct Symptoms Score

Disruptive Behavior Score

East Boston Family Study, Wakschlag et al., 2011
Genetic susceptibility to conduct problems

- Monoamine Oxidase A (MAOA) genotype
- Risk genotype for aggression in animal studies
- Enhances susceptibility to environmental risk
 - Strong evidence from studies of adverse early postnatal exposures\(^a\)

\(^a\)Caspi et al., 2002; Kim Cohen et al., 2006
RISK AMPLIFIER: MAOA GENOTYPE

East Boston Family Study, Wakschlag et al., 2009
WHAT DOES IT ALL MEAN?

- Suggestive evidence that prenatal smoking may cause adverse behavioral effects across the lifespan
 - Social and public health costs profound
 - Emergence of these patterns measurable as early as first two years of life
- Whether risk marker or causal factor,
 - Multiple streams of evidence point to the public health benefits of early life prevention
 - Risk factors cluster together
 - Smoking during pregnancy and exposure-related behavioral vulnerabilities are modifiable
 - Tiered approach
 - Prenatal cessation +
 - Postnatal parenting intervention when cessation attempts fail
POLICY: WE KNOW WHAT TO DO BUT WE’RE NOT DOING IT

- Investing early = immediate & lasting cost savings
 - $1 spent on prenatal smoking cessation = $3 savings for neonatal costs & $6 savings for long-term costs
 - Billions > related to victims of violence and criminal justice system

- Best practice prenatal prevention inadequate
 - 5 “A”s (Ask, Advice, Assess, Assist & Arrange) poorly implemented in first prenatal visit
 - 5-15 minutes of counseling + self-help increases quit rates ~20%
 - Ineffective for those smokers >risk of persistence
 - Cessation vs. reduction below threshold

- Effective approaches exist but not widely adopted
 - Public Education Campaign + Pregnancy Quitline (“Great Start”)
 - Personalized Biomarker Feedback
 - Incentive-Based Interventions (“Quit & Win”)
 - Nicotine Replacement (benefits>risks)

POLICY: INCENTIVIZING STATEWIDE SYSTEMS OF CARE

- Identifying every prenatal smoker
- Expanding Medicaid coverage for prenatal cessation treatment
 - Disparities-low income women vast majority of prenatal smokers
- Building implementation capacity of health care systems to effectively provide evidence-based prenatal cessation treatment in routine care
- Substantial cost-savings from prenatal cessation treatments
 - Institute of Medicine -prenatal cessation identified as a top priority for transforming US quality of care